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Abstract
In this paper, we investigate the finite satisfiability and model checking problems for the logic
D of the sub-interval relation under the homogeneity assumption, that constrains a proposition
letter to hold over an interval if and only if it holds over all its points. First, we prove that the
satisfiability problem for D, over finite linear orders, is PSPACE-complete; then, we show that
its model checking problem, over finite Kripke structures, is PSPACE-complete as well.
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1 Introduction

For a long time, interval temporal logic (ITL) was considered as an attractive, but impractical,
alternative to standard point-based ones. On the one hand, as pointed out, among others,
by Kamp and Reyle [9], “truth, as it pertains to language in the way we use it, relates
sentences not to instants but to temporal intervals”, and thus ITL is a natural choice for
a specification/representation language; on the other hand, the high undecidability of the
satisfiability problem for the most well-known ITLs, such as Halpern and Shoham’s HS [7]
and Venema’s CDT [18], prevented an extensive use of them (in fact, some very restricted
variants of them have been successfully applied in formal verification and AI over the years).
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2017/ [3].
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The recent discovery of a significant number of expressive enough and computationally
well-behaved ITLs changed the landscape a lot [6, 13]. Among them, the logic AA of
temporal neighborhood [5] and the logic D of (temporal) sub-intervals [4] have a central
position. In this paper, we focus on the latter one. D features one modality only, which
corresponds to the Allen relation during [1]. Since any sub-interval can be defined as an
initial sub-interval of an ending one, or, equivalently, as an ending sub-interval of an initial
one, it is a (proper) fragment of the logic BE of Allen’s relations started-by and finished-by.
From a computational point of view, D is a real character: its satisfiability problem is
PSPACE-complete over the class of dense linear orders [4, 16] (the problem is undecidable
for BE [10]), it becomes undecidable when the logic is interpreted over the classes of finite
and discrete linear orders [11], and it is still unknown over the class of all linear orders. As for
its expressiveness, unlike AA– which is expressively complete with respect to the two-variable
fragment of first-order logic for binary relational structures over various linearly-ordered
domains [5, 15] – three variables are needed to encode D in first-order logic (the two-variable
property is a sufficient condition for decidability, but it is not a necessary one).

In this paper, we show that the decidability of the satisfiability problem for D over the
class of finite linear orders can be recovered under the homogeneity assumption (such an
assumption constrains a proposition letter to hold over an interval if and only if it holds
over all its points). We first prove that the problem belongs to PSPACE by exploiting a
suitable contraction method. In addition, we prove that the proposed satisfiability checking
algorithm can be turned into a PSPACE model checking procedure for D formulas over
finite Kripke structures (under the homogeneity assumption); PSPACE-hardness of both
problems follows via a reduction from the language universality problem of nondeterministic
finite-state automata. PSPACE-completeness of D model checking strongly contrasts with
the case of BE, for which only a nonelementary model checking procedure is known [12] and
an EXPSPACE-hardness result has been given [2].

The rest of the paper is organized as follows. In Section 2, we provide some background
knowledge. Then, in Section 3, we prove the PSPACE membership of the satisfiability
problem for D over finite linear orders (under the homogeneity assumption). Finally, in
Section 4, we show that the model checking problem for D over finite Kripke structures
(again, under the homogeneity assumption) is in PSPACE as well.

All the proofs – here omitted because of lack of space – can be found in [3].

2 The logic D of the sub-interval relation

Let S = 〈S,<〉 be a linear order. An interval over S is an ordered pair [x, y], where x ≤ y. We
denote the set of all intervals over S by I(S). We consider three possible sub-interval relations:
(i) the reflexive sub-interval relation (denoted as v), defined by [x, y] v [x′, y′] iff x′ ≤ x

and y ≤ y′, (ii) the proper (or irreflexive) sub-interval relation (denoted as @), defined by
[x, y] @ [x′, y′] iff [x, y] v [x′, y′] and [x, y] 6= [x′, y′], and (iii) the strict sub-interval relation
(denoted as @· ), defined by [x, y]@· [x′, y′] iff x′ < x and y < y′.

The three modal logics Dv, D@, and D@· feature the same language, consisting of a set
AP of proposition letters/variables, the logical connectives ¬ and ∨, and the modal operator
〈D〉. Formally, formulae are defined by the grammar: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈D〉ϕ, with
p ∈ AP . The other connectives, as well as the logical constants > (true) and ⊥ (false), are
defined as usual; moreover, the dual universal modal operator [D]ϕ is defined as ¬〈D〉¬ϕ.
The length of a formula ϕ, denoted as |ϕ|, is the number of sub-formulas of ϕ.

The semantics of D@· , D@, and Dv only differ in the interpretation of the 〈D〉 operator.
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For the sake of brevity, we use ◦ ∈ {@· ,@,v} as a shorthand for any of the three sub-interval
relations. The semantics of a sub-interval logic D◦ is defined in terms of interval models
M = 〈I(S), ◦,V〉. The valuation function V : AP 7→ 2I(S) assigns to every proposition variable
p the set of intervals V(p) over which p holds. The satisfiability relation |= is defined as:

for every proposition letter p ∈ AP , M, [x, y] |= p iff [x, y] ∈ V(p);
M, [x, y] |= ¬ψ iff M, [x, y] 6|= ψ (i.e., it is not true that M, [x, y] |= ψ);
M, [x, y] |= ψ1 ∨ ψ2 iff M, [x, y] |= ψ1 or M, [x, y] |= ψ2;
M, [x, y] |=〈D〉ψ iff there is an interval [x′, y′] ∈ I(S) s.t. [x′, y′]◦[x, y] and M, [x′, y′] |=ψ.

A D◦-formula is D◦-satisfiable if it holds over some interval of an interval model and it is
D◦-valid if it holds over every interval of every interval model.

In this paper, we restrict our attention to the finite satisfiability problem, that is,
satisfiability over the class of finite linear orders. The problem has been shown to be
undecidable for D@ and D@· [11] and decidable for Dv [14]. In the following, we show that
decidability can be recovered for D@ and D@· by restricting to the class of homogeneous
interval models. We fully work out the case of D@ (for the sake of simplicity, we will write D
for D@), and then we briefly explain how to adapt the proofs to D@· .

I Definition 1. A model M = 〈I(S), ◦,V〉 is homogeneous if, for every interval [x, y] ∈ I(S)
and every p ∈ AP , it holds that [x, y] ∈ V(p) iff [x′, x′] ∈ V(p) for every x ≤ x′ ≤ y.

Hereafter, we will refer to the logic D interpreted over homogeneous models as D|Hom.

2.1 A spatial representation of interval models
We now introduce some basic definitions and notation which will be extensively used in the
following. Given a D-formula ϕ, we define the closure of ϕ, denoted by CL(ϕ), as the set of
all sub-formulas ψ of ϕ and of their negations ¬ψ (we identify ¬¬ψ with ψ).

I Definition 2. Given a D-formula ϕ, a ϕ-atom A is a subset of CL(ϕ) such that: (i) for
every ψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ 6∈ A, and (ii) for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A iff
ψ1 ∈ A or ψ2 ∈ A.

The idea underlying atoms is to enforce a “local” (or Boolean) form of consistency among
the formulas it contains, that is, a ϕ-atom A is a maximal, locally consistent subset of CL(ϕ).
As an example, ¬(ψ1 ∨ ψ2) ∈ A iff ¬ψ1 ∈ A and ¬ψ2 ∈ A. However, note that the definition
does not set any constraint on 〈D〉ψ formulas, hence the word “local”. We denote the set of
all ϕ-atoms as Aϕ; its cardinality is clearly bounded by 2|ϕ| (by point (i) of Definition 2).
Atoms are connected by the following binary relation Dϕ.

I Definition 3. Let Dϕ be a binary relation over Aϕ such that, for each pair of atoms
A,A′ ∈ Aϕ, A Dϕ A

′ holds iff both ψ ∈ A′ and [D]ψ ∈ A′ for each formula [D]ψ ∈ A.

Let A be a ϕ-atom. We denote by ReqD(A) the set {ψ ∈ CL(ϕ) : 〈D〉ψ ∈ A} of “temporal
requests” of A. In particular, if ψ /∈ ReqD(A), then [D]¬ψ ∈ A (by the definition of ϕ-atom).
Moreover, we denote by REQϕ the set of all arguments of 〈D〉-formulas in CL(ϕ), namely,
REQϕ = {ψ : 〈D〉ψ ∈ CL(ϕ)}. Finally, we denote by ObsD(A) the set {ψ ∈ A : ψ ∈ REQϕ}
of observables of A. It is easy to prove by induction the next proposition, stating that, once
the proposition letters of A and its temporal requests have been fixed, A gets unambiguously
determined.

I Proposition 4. For any D-formula ϕ, given a set R ⊆ REQϕ and a set P ⊆ CL(ϕ) ∩ AP ,
there exists a unique ϕ-atom A that satisfies ReqD(A) = R and A ∩ AP = P .

ICALP 2017
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(x0, y0)
(x3, y3)

(x1, y1)

(x2, y2)
[x0, y0]

[x3, y3]

[x1, y1]
[x2, y2]

Figure 1 Correspondence between intervals and points of the compass structure.

We now provide a natural interpretation of D over grid-like structures, called compass
structures, by exploiting the existence of a natural bijection between intervals [x, y] and
points (x, y), with x ≤ y, of an S × S grid, where S = 〈S,<〉 is a finite linear order. Such an
interpretation was originally proposed by Venema in [17], and it can also be given for HS
and all its (other) fragments.

As an example, Figure 1 shows four intervals [x0, y0], . . . , [x3, y3], respectively represented
by the points in the grid (x0, y0), . . . , (x3, y3), such that: (i) [x0, y0], [x1, y1], [x2, y2] @ [x3, y3],
(ii) [x1, y1]@· [x3, y3], and (iii) [x0, y0], [x2, y2] 6@· [x3, y3]. The red region highlighted in Figure 1
contains all and only the points (x, y) such that [x, y] @ [x3, y3]. Allen interval relation
contains can thus be represented as a spatial relation between pairs of points. In the following,
we make use of @ also for relating points, i.e., given two points (x, y), (x′, y′) of the grid,
(x′, y′) @ (x, y) iff (x′, y′) 6= (x, y) and x ≤ x′ ≤ y′ ≤ y. Compass structures, repeatedly
exploited to establish the following complexity results, can be formally defined as follows.

I Definition 5. Given a finite linear order S = 〈S,<〉 and a D-formula ϕ, a compass ϕ-
structure is a pair G = (PS,L), where PS is the set of points of the form (x, y), with x, y ∈ S
and x ≤ y, and L is a function that maps any point (x, y) ∈ PS to a ϕ-atom L(x, y) in
such a way that for all pairs of points (x, y) 6= (x′, y′) ∈ PS , if x ≤ x′ ≤ y′ ≤ y, then
L(x, y) Dϕ L(x′, y′) (temporal consistency).

Due to temporal consistency, the following important property holds in compass structures.

I Lemma 6. Given a compass ϕ-structure G=(PS,L), for all pairs of points (x′, y′),(x, y)∈PS,
if (x′, y′)@(x, y), then ReqD(L(x′, y′))⊆ReqD(L(x, y)) and ObsD(L(x′, y′))⊆ReqD(L(x, y)).

Fulfilling compass structures are defined as follows.

I Definition 7. A compass ϕ-structure G = (PS,L) is said to be fulfilling if, for every point
(x, y) ∈ PS and each formula ψ ∈ ReqD(L(x, y)), there exists a point (x′, y′) @ (x, y) in PS
such that ψ ∈ L(x′, y′).

Note that if G is fulfilling, then ReqD(L(x, x)) = ∅ for all points “on the diagonal” (x, x) ∈ PS.
We say that a compass ϕ-structure G = (PS,L) features a formula ψ if there exists a

point (x, y) ∈ PS such that ψ ∈ L(x, y). The following result holds.

I Proposition 8. A D-formula ϕ is satisfiable iff there is a fulfilling compass ϕ-structure
that features it.

In a fulfilling compass ϕ-structure G = (PS,L), where S = {0, . . . , t}, w.l.o.g., we will
sometimes assume ϕ to be satisfied by the maximal interval [0, t], that is, ϕ ∈ L(0, t).

The notion of homogeneous models directly transfers to compass structures.
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I Definition 9. A compass ϕ-structure G = (PS,L) is homogeneous if, for every point
(x, y) ∈ PS and each p ∈ AP , we have that p ∈ L(x, y) iff p ∈ L(x′, x′) for all x ≤ x′ ≤ y.

Proposition 8 can be tailored to homogeneous compass structures as follows.

I Proposition 10. A D|Hom-formula ϕ is satisfiable iff there is a fulfilling homogeneous
compass ϕ-structure that features it.

3 Satisfiability of D|Hom over finite linear orders

In this section, we devise a satisfiability checking procedure for D|Hom-formulas over finite
linear orders, which will also allow us to easily derive a model checking algorithm for D|Hom
over finite Kripke structures. To start with, we show that there is a ternary relation between
ϕ-atoms, that we denote by Dϕ , such that if it holds among all atoms in consecutive
positions of a compass ϕ-structure, then the structure is fulfilling. Hence, we may say that
Dϕ is the rule for labeling fulfilling compasses. Next, we introduce an equivalence relation
∼ between rows of a compass ϕ-structure. Since it has finite index – exponentially bounded
by |ϕ| – and it preserves fulfillment of compasses, it is intuitively possible to “contract” the
structures when we can find two related rows. Moreover, any contraction done according
to ∼ keeps the same atoms (only the number of their occurrences may vary), and thus if
a compass features ϕ before the contraction, then ϕ is still featured after it. This fact is
exploited to build a satisfiability algorithm for D|Hom-formulas which makes use of polynomial
working space only, because (i) it only needs to keep track of two rows of a compass at a
time, (ii) all rows satisfy some nice properties that make it possible to succinctly encode
them, and (iii) compass contractions are implicitly performed by means of a reachability
check in a suitable graph, whose nodes are the equivalence classes of ∼.

Let us now introduce the aforementioned ternary relation Dϕ among atoms.

I Definition 11. Given three ϕ-atoms A1, A2 and A3, we say that A3 is Dϕ-generated
by A1, A2 (written A1A2 Dϕ A3) if: (i) A3 ∩ AP = A1 ∩ A2 ∩ AP and (ii) ReqD(A3) =
ReqD(A1) ∪ReqD(A2) ∪ ObsD(A1) ∪ ObsD(A2).

It is immediate to check that A1A2 Dϕ A3 iff A2A1 Dϕ A3, that is, the order of the
first two components in the ternary relation is irrelevant. The next result, following from
Proposition 4, proves that Dϕ expresses a functional dependency on ϕ-atoms.

I Lemma 12. Given two ϕ-atoms A1, A2 ∈ Aϕ, there exists exactly one ϕ-atom A3 ∈ Aϕ
such that A1A2 Dϕ A3.

Definition 11 and Lemma 12 can be exploited to label a homogeneous compass ϕ-structure
G, namely, to determine the ϕ-atoms labeling all the points (x, y) of G, starting from the
ones on the diagonal. The idea is the following: if two ϕ-atoms A1 and A2 label respectively
the greatest proper prefix [x, y − 1], that is, the point (x, y − 1), and the greatest proper
suffix [x + 1, y], that is, (x + 1, y), of the same interval [x, y], then the atom A3 labeling
[x, y] is unique, and it is precisely the one satisfying A1A2 Dϕ A3 (see Figure 2). The next
lemma proves that this is the general rule for labeling fulfilling homogeneous compasses.

I Lemma 13. Let G = (PS,L). G is a fulfilling homogeneous compass ϕ-structure iff,
for every pair x, y ∈ S, we have: (i) L(x, y − 1)L(x + 1, y) Dϕ L(x, y) if x < y, and
(ii) ReqD(L(x, y)) = ∅ if x = y.

ICALP 2017
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(x, y) (x+1, y)

(x, y−1)

x x+1

y

y−1 rowy−1

rowy

Figure 2 Rule for labeling homogeneous fulfilling compass ϕ-structures.

Now we introduce the concept of ϕ-row, which can be viewed as the ordered sequence of
(the occurrences of) atoms labelling a row of a compass ϕ-structure. Given an atom A ∈ Aϕ,
we call it reflexive if A Dϕ A, irreflexive otherwise.

I Definition 14. A ϕ-row is a finite sequence of ϕ-atoms row = Am0
0 · · ·Amn

n , where Am
stands for m repetitions of A, such that for each 0 ≤ i ≤ n, we have that mi > 0 – if
mi > 1, then Ai is reflexive – and for each 0 ≤ j < i, it holds that Ai Dϕ Aj , Ai 6= Aj , and
(Aj ∩ AP ) ⊇ (Ai ∩ AP ). Moreover, ReqD(A0) = ∅.

The length of a ϕ-row row = Am0
0 · · ·Amn

n is defined as |row| =
∑

0≤i≤nmi, and for
each 0 ≤ j < |row|, the j-th element, denoted by row[j], is the j-th symbol in the word
Am0

0 · · ·Amn
n , e.g., row[0] = A0, row[m0] = A1, . . . . We denote by Rowsϕ the set of all

possible ϕ-rows. This set may be infinite.
The number of distinct atoms in any ϕ-row is bounded. Since for each 0 ≤ i ≤ n

and each 0 ≤ j < i, Ai Dϕ Aj , it holds that ReqD(Aj) ⊆ ReqD(Ai). Therefore, two
monotonic sequences for every ϕ-row can be considered, one increasing, i.e., ∅ = ReqD(A0) ⊆
ReqD(A1) ⊆ . . . ⊆ ReqD(An), and one decreasing, i.e., (A0 ∩ AP) ⊇ (A1 ∩ AP) ⊇ . . . ⊇
(An ∩AP ). The number of distinct elements is bounded by |ϕ| in the former sequence and by
|ϕ|+ 1 in the latter (as |REQϕ | ≤ |ϕ| − 1 and |AP | ≤ |ϕ|–w.l.o.g., we can consider only the
letters actually occurring in ϕ). Since, as already shown (Proposition 4), a set of requests
and a set of proposition letters uniquely determine a ϕ-atom, any ϕ-row may feature at most
2|ϕ| distinct atoms, i.e., n < 2|ϕ|.

Given a homogeneous compass ϕ-structure G = (PS,L), for every y ∈ S, we define rowy
as the word of ϕ-atoms rowy = L(y, y) · · · L(0, y), i.e., the sequence of atoms labeling points
of G with the same y-coordinate, starting from the one on the diagonal inwards (see Figure 2).

I Lemma 15. Let G = (PS,L) be a fulfilling homogeneous compass ϕ-structure. For every
y ∈ S, rowy is a ϕ-row.

We now define the successor relation between pairs of ϕ-rows, denoted as rowϕ , which
is basically a component-wise application of Dϕ over the elements of two ϕ-rows (remember
that atoms on rows are collected from right to left).

I Definition 16. Given two ϕ-rows row and row′, we say that row′ is a successor of row, or
row rowϕ row′, if |row′| = |row|+1, and for all 0 ≤ i < |row|, row[i]row′[i] Dϕ row′[i+1].
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row1 Ai . . . ↑k . . . Ai

B′B′′. . .B′′′. . .B′′′

=

row2

mi

starti positions

rank(Ai) ≥ rank(B′) > rank(B′′) > . . . > rank(B′′′)

B′ = row2[starti + 1]

Figure 3 A graphical account of the proof of Lemma 18.

The next lemma states that consecutive rows in homogeneous fulfilling compass ϕ-
structures respect the successor relation.

I Lemma 17. Let G = (PS,L), with ReqD(L(x, x)) = ∅ for all (x, x) ∈ PS. G is a fulfilling
homogeneous compass ϕ-structure iff, for each 0 ≤ y < |S| − 1, rowy rowϕ rowy+1.

Given an atom A ∈ Aϕ, we define the rank of A, written rank(A), as |REQϕ |−|ReqD(A)|.
Clearly, rank(A) < |ϕ|. Whenever A Dϕ A′, for some A′ ∈ Aϕ, ReqD(A′) ⊆ ReqD(A),
and hence rank(A) ≤ rank(A′) and |ReqD(A) \ ReqD(A′)| ≤ rank(A′). We can see the
rank of an atom as the “number of degrees of freedom” that it gives to the atoms that
stay “above it”. In particular, by definition, for every ϕ-row row = Am0

0 · · ·Amn
n , we have

rank(A0) ≥ . . . ≥ rank(An). The next result uses the notion of rank to provide an insight
on how consecutive ϕ-rows are connected (see Figure 3).

I Lemma 18. Let row1, row2 be two ϕ-rows, with row1 =Am0
0 · · ·Amn

n and row1 rowϕ row2.
For each 0 ≤ i ≤ n, let starti =

∑
0≤j<imj. If mi > rank(Ai), then there exists starti <

k ≤ starti +mi such that: (i) row2[k] is reflexive; (ii) rank(row2[j]) > rank(row2[j + 1])
for each starti < j < k; (iii) row2[j] = row2[j + 1] for each k ≤ j < starti +mi; (iv) if m′
is the exponent of the atom row2[k], then m′ > rank(row2[k]).

Proof. If mi = 1, by hypothesis we have rank(Ai) = 0. Hence, rank(row2[starti + 1]) = 0,
because row1 rowϕ row2, and thus row2[starti + 1] is (trivially) reflexive. All claims hold
by choosing k = starti + 1.

Let us then assume mi > 1. First, we prove that for each starti < j ≤ starti + mi,
if row2[j] is reflexive, then for each j ≤ j′ ≤ starti + mi, row2[j′] = row2[j]. If j =
starti + mi there is nothing to prove. Thus, let us consider j < starti + mi. Since
we are assuming that row2[j] is reflexive, then ObsD(row2[j]) ⊆ ReqD(row2[j]). Since
row1 rowϕ row2, we have that ReqD(Ai),ObsD(Ai) ⊆ ReqD(row2[j]), and ReqD(row2[j +
1]) = ReqD(row2[j]) ∪ ObsD(row2[j]) ∪ReqD(Ai) ∪ ObsD(Ai) = ReqD(row2[j]). Moreover,
again from row1 rowϕ row2, we have that row2[j] ∩ AP = row2[j − 1] ∩ Ai ∩ AP and
row2[j + 1] ∩ AP = row2[j] ∩ Ai ∩ AP = row2[j − 1] ∩ Ai ∩ AP . Thus, row2[j + 1] =
row2[j], because the two atoms feature exactly the same requests and proposition letters
(Proposition 4). Then, since Ai row2[j] Dϕ row2[j + 1], by iterating the reasoning and
exploiting Lemma 12 we can conclude that row2[j] = row2[j′] for each j ≤ j′ ≤ starti +mi.

Now, it can be easily shown that if we have two atoms A and A′ such that A Dϕ A
′ and

A′ is irreflexive, then rank(A) < rank(A′), and we have just proved that we cannot interleave
reflexive atoms with irreflexive ones “above” the Ai’s (all irreflexive atoms must “come before”
reflexive ones in the part of row2 “above” the Ai’s). Thus, in the worst possible case, the atoms
row2[starti + 1], . . . , row2[starti + rank(Ai)] may be irreflexive (as rank(row2[starti + 1]) >
. . . > rank(row2[starti + rank(Ai)]) and rank(Ai) ≥ rank(row2[starti + 1])). Note that
these irreflexive atoms may be the “first” rank(Ai) atoms above the Ai’s only, and not the

ICALP 2017



120:8 Satisfiability and Model Checking for the Logic of Sub-Intervals under Homogeneity

“first” rank(Ai) + 1, since any atom with rank equal to 0 is reflexive. We conclude that
row2[starti+rank(Ai)+1] must be reflexive. Thus, we can choose k = starti+rank(Ai)+1.
Since by hypothesis mi ≥ rank(Ai) + 1, we get that starti < k ≤ starti +mi.

As for the last claim, we have that rank(row2[k]) ≤ rank(row2[starti + 1]) − (k −
starti − 1) ≤ rank(Ai) − (k − starti − 1). Then, the exponent m′ of row2[k] is such that
m′ ≥ mi − (rank(Ai) − rank(row2[k])), that is, at least mi − (rank(Ai) − rank(row2[k]))
atoms labelled by row2[k] occur in the block starti+1, . . . , starti+mi of row2 (see Figure 3).
Since by hypothesis mi > rank(Ai), then mi − rank(Ai) > 0 and rank(row2[k]) < m′. J

Now we introduce an equivalence relation ∼ over Rowsϕ which is the key ingredient of
the proofs showing that both satisfiability and MC for D|Hom-formulas are decidable.

I Definition 19. Given two ϕ-rows row1 = Am0
0 · · ·Amn

n and row2 = Âm̂0
0 · · · Âm̂n̂

n̂ , we say
that they are equivalent, written row1 ∼ row2, if (i) n = n̂, and (ii) for each 0 ≤ i ≤ n,
Ai = Âi, and mi = m̂i or both mi and m̂i are (strictly) greater than rank(Ai).

Note that if two rows feature the same set of atoms, the lower the rank of an atom Ai, the
lower the number of occurrences of Ai both the rows have to feature in order to belong to the
same equivalence class. As an example, let row1 and row2 be two rows with row1 = Am0

0 Am1
1 ,

row2 = Am0
0 Am1

1 , rank(A0) = 4, and rank(A1) = 3. If m1 = 4 and m1 = 5 they are both
greater than rank(A1), and hence they do not violate the condition for row1 ∼ row2. On
the other hand, if m0 = 4 and m0 = 5, we have that m0 is less than or equal to rank(A0).
Thus, in this case, row1 6∼ row2 due to the indexes of A0. This happens because rank(A0)
is greater than rank(A1). Two cases in which row1 ∼ row2 are m0 = m0 and m0,m0 ≥ 5.

The relation ∼ has finite index, which is roughly bounded by the number of all the
possible ϕ-rows row = Am0

0 · · ·Amn
n , with exponents mi ranging from 1 to |ϕ|. Since (i) the

number of possible atoms is 2|ϕ|, (ii) the number of distinct atoms in any ϕ-row is at most
2|ϕ|, and (iii) the number of possible functions f : {1, . . . , `} → {1, . . . , |ϕ|} is |ϕ|`, we have
that the number of distinct equivalence classes of ∼ is bounded by

2|ϕ|∑
j=1

(2|ϕ|)j · |ϕ|j ≤ 23|ϕ|2 ,

which is exponential in the length of the input formula ϕ. We denote the set of the equivalence
classes of ∼ over all the possible ϕ-rows by Rows∼ϕ .

Now we extend the relation rowϕ to equivalence classes of ∼ in the following way.

I Definition 20. Given two ϕ-row classes [row1]∼ and [row2]∼, we say that [row2]∼ is
a successor of [row1]∼, written [row1]∼ rowϕ [row2]∼, if there exist row′1 ∈ [row1]∼ and
row′2 ∈ [row2]∼ such that row′1 rowϕ row′2.

The following result proves that if some row′1 ∈ [row1]∼ has a successor in [row2]∼, then
every ϕ-row of [row1]∼ has a successor in [row2]∼.

I Lemma 21. Given two ϕ-row classes [row1]∼ and [row2]∼ such that [row1]∼ rowϕ [row2]∼,
for every row ∈ [row1]∼ there exists row′ ∈ [row2]∼ such that row rowϕ row′.

The proof, omitted for space reasons, begins by considering two ϕ-rows, row and row,
such that row ∈ [row1]∼, row ∈ [row2]∼, and row rowϕ row (such a pair always exists
by Definition 20). Then, we consider another ϕ-row, row′ 6= row in [row1]∼, and we show
(constructively) how to build row′ ∈ [row2]∼ such that row′ rowϕ row′. This is sufficient to
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Input: a D|Hom-formula ϕ

1. Put M ← 23|ϕ|2
, step← 0 and row ← A for some atom A ∈ Aϕ with ReqD(A) = ∅.

2. If there exists 0 ≤ i < |row| such that ϕ ∈ row[i], return satisfiable.
3. If step = M − 1, return unsatisfiable.
4. Non-deterministically generate a ϕ-row row′ and check that row rowϕ row′.
5. Put step← step+ 1 and row ← row′.
6. Go back to 2.

Figure 4 Non-deterministic procedure deciding the satisfiability of a D|Hom-formula ϕ.

prove the claim: row′ is built by making use of the facts that row′ ∼ row and row rowϕ row,
and of the properties stated by Lemma 18.

The following result arranges the equivalence classes Rows∼ϕ in a graph Gϕ∼.

I Definition 22. Let ϕ be a D|Hom-formula. The ϕ ∼graph of ϕ is the graph Gϕ∼ =
(Rows∼ϕ , rowϕ ).

The next theorem reduces the problem of satisfiability checking for a D|Hom-formula ϕ
over finite linear orders (equivalent, by Proposition 10, to deciding if there is a homogeneous
fulfilling compass ϕ-structure that features ϕ) to a reachability problem in the ϕ∼graph,
allowing us to determine the computational complexity of the former problem.

I Theorem 23. Given a D|Hom-formula ϕ, there exists a homogeneous fulfilling compass
ϕ-structure G = (PS,L) that features ϕ iff there exists a path in Gϕ∼ = (Rows∼ϕ , rowϕ )
from some class [row]∼ ∈ Rows∼ϕ to some class [row′]∼ ∈ Rows∼ϕ such that (1) there exists
row1 ∈ [row]∼ with |row1| = 1, and (2) there exist row2 ∈ [row′]∼ and 0 ≤ i < |row2| such
that ϕ ∈ row2[i].

Proof. Preliminarily we observe that, in (1), if |row1| = 1, then {row1} = [row]∼; moreover,
in (2), if for row2 ∈ [row′]∼ and 0 ≤ i < |row2| we have that ϕ ∈ row2[i], then for any
row′2 ∈ [row′]∼, there is 0 ≤ i′ < |row′2| such that ϕ ∈ row′2[i′].

(⇒) Let us consider a homogeneous fulfilling compass ϕ-structure G = (PS,L) that
features ϕ. By Lemmata 15 and 17, L(0, 0) rowϕ row1 rowϕ · · · rowϕ rowmax(S). Thus
there exist two indexes 0 ≤ j ≤ max(S) and 0 ≤ i < |rowj | for which ϕ ∈ rowj [i]. By
Definition 20, we get that [L(0, 0)]∼ rowϕ [row1]∼ rowϕ · · · rowϕ [rowj ]∼ is a path in
Gϕ∼; it is immediate to check that it fulfils requirements (1) and (2).

(⇐) Let us assume there exists a path [row0]∼ rowϕ · · · rowϕ [rowm]∼ in Gϕ∼ =
(Rows∼ϕ , rowϕ ) for which |row0| = 1 and there exists i such that ϕ ∈ rowm[i]. By applying
repeatedly Lemma 21 we get that there exists a sequence row′0 rowϕ · · · rowϕ row′m of
ϕ-rows where row′0 = row0, for every 0 ≤ j ≤ m, row′j ∈ [rowj ]∼, and there exists i′ such
that ϕ ∈ row′m[i′]. We observe that, by Definition 16, |row′j | = |row′j−1|+ 1 for 1 ≤ j ≤ m
and, since |row′0| = 1, we have |row′j | = j + 1. Let us now define G = (PS,L) where
S = {0, . . . ,m} and L(x, y) = row′y[y − x] for every 0 ≤ x ≤ y ≤ m. By Lemma 17, G is a
fulfilling homogeneous compass ϕ-structure. Finally, since ϕ ∈ row′m[i′], G features ϕ. J

The size of Gϕ∼ = (Rows∼ϕ , rowϕ ) is bounded by |Rows∼ϕ |2, which is exponential in
|ϕ|. However, it is possible to (non-deterministically) perform a reachability in Gϕ∼ by using
space logarithmic in |Rows∼ϕ |2. The non-deterministic procedure of Figure 4 exploits this
fact in order to decide the satisfiability of a D|Hom-formula ϕ, by using only a working space
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polynomial in |ϕ|: it searches for a suitable path in Gϕ∼, [row0]∼ rowϕ · · · rowϕ [rowm]∼,
where row0 = A for A ∈ Aϕ withReqD(A) = ∅, m < M , and ϕ ∈ rowm[i] for 0 ≤ i < |rowm|.
At the j-th iteration of line 4., rowj is non-deterministically generated, and it is checked
whether rowj−1 rowϕ rowj . The procedure terminates after at most M iterations, where
M is the maximum possible length of a simple path in Gϕ∼.

The working space used by the procedure is polynomial: M and step (which ranges in
[0,M−1]) can be encoded in binary with dlog2Me+1 = O(|ϕ|2) bits. At each step, we need to
keep track of two ϕ-rows at a time, the current one, row, and its successor, row′: each ϕ-row
can be represented as a sequence of at most 2|ϕ| (distinct) atoms, each one with an exponent
that, by construction, cannot exceed M . Moreover, each ϕ-atom A can be represented using
exactly |ϕ| bits (for each ψ ∈ CL(ϕ), we set a bit to 1 if ψ ∈ A, and to 0 if ¬ψ ∈ A). Hence a
ϕ-row can be encoded using 2|ϕ| · (|ϕ|+ dlog2Me+ 1) = O(|ϕ|3) bits. Finally, the condition
row rowϕ row′ can be checked by O(|ϕ|2) bits of space once we have guessed row′. This
analysis entails the following result (we recall that NPSPACE = PSPACE).

I Theorem 24. The satisfiability problem for D|Hom-formulas over finite linear orders is in
PSPACE.

We now outline which are the modifications to the previous concepts needed for proving the
decidability of satisfiability for D|Hom with the strict relation @· , in place of @. It is sufficient
to replace the definitions of Dϕ , ϕ-row and rowϕ with the following ones. For the sake
of simplicity, we introduce a dummy atom �, for which we assume ReqD(�) = ObsD(�) = ∅.

I Definition 25. Given A1, A3, A4 ∈ Aϕ and A2 ∈ Aϕ ∪ {�}, we say that A4 is Dϕ @· -
generated by A1, A2, A3, written A1, A2, A3 Dϕ@· A4 iff (i) A4 ∩ AP = A1 ∩A3 ∩ AP and
(ii) ReqD(A4) = ReqD(A1) ∪ReqD(A3) ∪ ObsD(A2).

The idea of this definition is that, if an interval [x, y], with x < y, is labeled by A4, and
the three subintervals [x, y − 1], [x+ 1, y − 1], and [x+ 1, y] by A1, A2, A3, resp., we want
A1, A2, A3 Dϕ@· A4. In particular, if x = y − 1, then A2 = � (because [x+ 1, y − 1] is not
a valid interval). Note that only [x+ 1, y− 1]@· [x, y], hence we want ObsD(A2) ⊆ ReqD(A4);
moreover, since the requests of A1 and A3 are fulfilled by a strict subinterval of [x, y], it must
be ReqD(A1) ⊆ ReqD(A4) and ReqD(A3) ⊆ ReqD(A4).

I Definition 26. A ϕ-@· -row is a finite sequence of ϕ-atoms row = Am0
0 · · ·Amn

n such that for
every 0 ≤ i ≤ n we have mi > 0, and for every 0 ≤ j < i, ReqD(Aj) ⊆ ReqD(Ai), Ai 6= Aj ,
and (Aj ∩ AP ) ⊇ (Ai ∩ AP ). Moreover ReqD(A0) = ∅.

I Definition 27. Given two ϕ-rows row and row′, we say that row′ is a successor of
row, denoted as row rowϕ@· row′, if |row′| = |row| + 1, and for every 0 ≤ i < |row|,
row[i]row[i− 1]row′[i] Dϕ@· row′[i+ 1], where we assume row[i− 1] = � if i = 0.

We conclude the section by stating the PSPACE-completeness of satisfiability for D|Hom
over finite linear orders (under both the strict and the proper semantic variants). The
hardness proof can be found in [3].

I Theorem 28. The satisfiability problem for D|Hom-formulas over finite linear orders is
PSPACE-complete.

4 Model checking for D|Hom over Kripke structures

In this section we focus our attention on the model checking (MC) problem for D|Hom, namely,
the problem of checking whether some behavioural properties, expressed as D|Hom-formulas,
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s0
p

s1
q

Figure 5 Kripke structure K2.

are satisfied by a model of a given system. The typical models are Kripke structures, which
will now be introduced along with the semantic definition of D|Hom over them.

I Definition 29. A finite Kripke structure is a tuple K = (AP ,W,E, µ, s0), where AP is a
finite set of proposition letters, W is a finite set of states, E ⊆W ×W is a left-total relation
between states, µ : W → 2AP is a total labelling function, and s0 ∈W is the initial state.

For all s ∈W , µ(s) is the set of proposition letters that hold on s, while E is the transition
relation that describes the evolution of the system over time.

Figure 5 depicts the finite Kripke structure K2 = ({p, q}, {s0, s1}, E, µ, s0), with E =
{(s0,s0),(s0,s1),(s1,s0),(s1,s1)}, µ(s0) = {p}, and µ(s1) = {q}. The initial state s0 is
identified by a double circle.

I Definition 30. A trace ρ of a finite Kripke structure K = (AP ,W,E, µ, s0) is a finite
sequence of states s1 · · · sn, with n ≥ 1, such that (si, si+1) ∈ E for i = 1, . . . , n− 1.

For any trace ρ = s1 · · · sn, we define: (i) |ρ| = n, and for 0 ≤ i ≤ |ρ| − 1, ρ(i) = si+1;
(ii) ρ(i, j) = si+1 · · · sj+1, for 0 ≤ i ≤ j ≤ |ρ| − 1, is the subtrace of ρ bounded by i and j.
Finally, if the first state of ρ is s0 (the initial state of K ), ρ is called an initial trace.

I Definition 31. The interval model Mρ = 〈I(S), ◦,V〉 induced by a trace ρ of a finite Kripke
structure K = (AP ,W,E, µ, s0) is the homogeneous interval model such that:
(i) S = {0, . . . , |ρ| − 1}, and (ii) for all x ∈ S and p ∈ AP : [x, x] ∈ V(p) iff p ∈ µ(ρ(x)).

I Definition 32. Let K be a finite Kripke structure and ψ be a D|Hom-formula. We say that
a trace ρ(i, j) of K satisfies ψ, denoted as K , ρ(i, j) |= ψ, iff Mρ, [i, j] |= ψ. Moreover, we say
that K models ψ, written K |= ψ, iff for all initial traces ρ′ of K , it holds that K , ρ′ |= ψ.
The MC problem for D|Hom over finite Kripke structures is the problem of deciding if K |= ψ.

Note that p ∈ AP holds over ρ = s1 · · · sn iff it holds over all the states s1, . . . , sn of ρ
(homogeneity assumption). Since the number of initial traces of K is infinite, MC for
D|Hom over Kripke structures is not trivially decidable. We now describe how, with a slight
modification of the previous satisfiability procedure, it is possible to derive a MC algorithm
for D|Hom-formulas ϕ over finite Kripke structures K . The idea is to consider some finite
linear orders – not all the possible ones, unlike the case of satisfiability – precisely those
corresponding to (some) initial traces of K , checking whether ¬ϕ holds over them: in such a
case we have found a counterexample, and we can conclude that K 6|= ϕ. To ensure this kind
of “satisfiability driven by the traces of K ”, we make a product between K and the previous
graph Gϕ∼, getting what we call a “(ϕ∼K )-graph”. In the following, we will also exploit the
notion of “compass structure induced by a trace ρ of K ”, which is a fulfilling homogeneous
compass ϕ-structure built from ρ and completely determined by it.

Given a finite Kripke structure K = (AP ,W,E, µ, s0) and a D|Hom-formula ϕ, we consider
the (ϕ∼K )-graph Gϕ∼K , which is basically the product of K and Gϕ∼ = (Rows∼ϕ , rowϕ ),
formally defined as: Gϕ∼K = (Γ,Ξ), where:

Γ is the maximal subset of W ×Rows∼ϕ s.t.: if (s, [row]∼) ∈ Γ then µ(s) = row[0] ∩ AP ;(
(s1, [row1]∼), (s2, [row2]∼)

)
∈ Ξ iff (i)

(
(s1, [row1]∼), (s2, [row2]∼)

)
∈ Γ2, (ii) (s1, s2) ∈

E, and (iii) [row1]∼ rowϕ [row2]∼.
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Input: a Kripke structure K = (AP ,W,E, µ, s0), a D|Hom-formula ϕ

1. Put M ← |W | · 23|ϕ|2
, step ← 0 and (s, row) ← (s0, A) for some atom A ∈ Aϕ with

ReqD(A) = ∅ and A ∩ AP = µ(s0).
2. If ϕ 6∈ row[|row| − 1], return yes.
3. If step = M − 1, return no.
4. Non-deterministically choose s′ such that (s, s′) ∈ E.
5. Non-det. generate a ϕ-row row′ and check that row′[0]∩ AP = µ(s′) and row rowϕ row′.
6. Put step← step+ 1 and (s, row)← (s′, row′).
7. Go back to 2.

Figure 6 Non-deterministic procedure deciding the existence of initial traces ρ such that K , ρ 6|= ϕ.

Note that the definition of Γ is well-given, since for all row′ ∈ [row]∼, row′[0] = row[0]. The
size of Gϕ∼K is bounded by (|W | · |Rows∼ϕ |)2.

Given a generic trace ρ of K , we define the compass ϕ-structure induced by ρ as the
fulfilling homogeneous compass ϕ-structure G(K ,ρ) = (PS,L), where S = {0, . . . , |ρ| − 1}, and
for 0 ≤ x < |ρ|, L(x, x) ∩ AP = µ(ρ(x)) and ReqD(L(x, x)) = ∅. Note that, given ρ, G(K ,ρ)
always exists and is unique: all ϕ-atoms L(x, x) “on the diagonal” are determined by the
labeling of ρ(x) (and by the absence of requests). Moreover, by Lemma 17, all the other
atoms L(x, y), for 0 ≤ x < y < |ρ|, are determined by the rowϕ relation between ϕ-rows.

The following property can easily be proved by induction.

I Proposition 33. Given a Kripke structure K , a trace ρ of K , and a D|Hom-formula ϕ, for
all 0 ≤ x ≤ y < |ρ| and for all subformulas ψ of ϕ: K , ρ(x, y) |= ψ iff ψ ∈ L(x, y) in G(K ,ρ).

We can now introduce Theorem 34, that can be regarded as a version of Theorem 23 for MC.

I Theorem 34. Given a Kripke structure K = (AP ,W,E, µ, s0) and a D|Hom-formula ϕ,
there exists an initial trace ρ of K such that K , ρ |= ϕ iff there exists a path in Gϕ∼K = (Γ,Ξ)
from some node (s0, [row]∼) ∈ Γ to some node (s, [row′]∼) ∈ Γ such that: (1) there is
row1 ∈ [row]∼ with |row1| = 1, and (2) there is row2 ∈ [row′]∼ with ϕ ∈ row2[|row2| − 1].

Now, analogously to the case of satisfiability, we can perform a reachability in Gϕ∼K ,
exploiting the previous theorem to decide whether there is an initial trace ρ of K such that
K , ρ |= ¬ϕ, for a D|Hom-formula ϕ (i.e., the complementary problem of MC K |= ϕ). The
non-deterministic procedure of Figure 6 searches for a suitable path in Gϕ∼K , (s0, [row0]∼) Ξ→
· · · Ξ→ (sm, [rowm]∼), where row0 = A ∈ Aϕ with ReqD(A) = ∅, A ∩ AP = µ(s0), m < M ,
and ¬ϕ ∈ rowm[|rowm| − 1] (i.e., ϕ 6∈ rowm[|rowm| − 1]). At the j-th iteration of lines
4./5., (sj−1, sj) ∈ E is selected, and rowj is non-deterministically generated checking that
rowj [0] ∩ AP = µ(sj) and rowj−1 rowϕ rowj .

Basically, the same observations about the working space of the procedure in Figure 4 can
be done also for this algorithm, except for the space used to encode in binary M ≤ |W | ·23|ϕ|2

and step, ranging in [0,M − 1], which is O(log |W |+ |ϕ|2) bits. Moreover we need to store
two states, s and s′ of K , that need O(log |W |) bits to be represented.

I Theorem 35. The MC problem for D|Hom-formulas over finite Kripke structures is
PSPACE-complete. Moreover, for constant-length formulas, it is NLOGSPACE-complete.

Proof. Membership is immediate by the previous space analysis, and the fact that the com-
plexity classes NPSPACE = PSPACE and NLOGSPACE are closed under complement.
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As for the PSPACE-hardness, we make a reduction from the PSPACE-complete
problem of universality of the language of an NFA [8]. The full proof can be found in [3].
For the NLOGSPACE-hardness, there exists a trivial reduction from the problem of
(non-)reachability of two nodes in a directed graph. J

Finally, it is possible to adapt the procedure also for strict D|Hom (by exploiting Defini-
tions 25–27).

5 Conclusions

In this paper, we have shown that both satisfiability and model checking for the logic D
of sub-intervals – over finite linear orders and finite Kripke structures, respectively – are
PSPACE-complete, under the homogeneity assumption. We are investigating the possibility
of generalizing the given procedures to cope with the logic BE: nothing is known about its
satisfiability, while a large gap separates known upper and lower bounds for model checking.

Acknowledgements. We sincerely thank an anonymous reviewer for his/her thorough
review and valuable comments, which significantly contributed to improving the quality of
the publication – in particular for spotting a problem with the hardness proof of satisfiability
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