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Abstract
We derive upper and lower bounds on the degree d for which the Lovász ϑ function, or equivalently
sum-of-squares proofs with degree two, can refute the existence of a k-coloring in random regular
graphs Gn,d. We show that this type of refutation fails well above the k-colorability transition,
and in particular everywhere below the Kesten-Stigum threshold. This is consistent with the
conjecture that refuting k-colorability, or distinguishing Gn,d from the planted coloring model,
is hard in this region. Our results also apply to the disassortative case of the stochastic block
model, adding evidence to the conjecture that there is a regime where community detection
is computationally hard even though it is information-theoretically possible. Using orthogonal
polynomials, we also provide explicit upper bounds on ϑ(G) for regular graphs of a given girth,
which may be of independent interest.
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1 Introduction

Many constraint satisfaction problems have phase transitions in the random case: as the
ratio between the number of constraints and the number of variables increases, there is a
critical value at which the probability that a solution exists, in the limit n→∞, suddenly
drops from one to zero. Above this transition, most instances are too constrained and hence
unsatisfiable. But how many constraints do we need before it becomes easy to prove that a
typical instance is unsatisfiable? When is there likely to be a short refutation, which we can
find in polynomial time, proving that no solution exists?

For a closely related problem, suppose that a constraint satisfaction problem is generated
randomly, but with a particular solution “planted” in it. Given the instance, can we recover
the planted solution, at least approximately? For that matter, can we tell whether the
instance was generated from this planted model, as opposed to an un-planted model with
no built-in solution? We can think of this as a statistical inference problem. If there is an
underlying pattern in a dataset (the planted solution) but also some noise (the probabilistic
process by which the instance is generated) the question is how much data (how many
constraints) we need before we can find the pattern, or confirm that one exists.
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28:2 The Lovász Theta Function for Random Regular Graphs

Here we focus on the k-colorability of random graphs, and more generally the community
detection problem. Let G = G(n, p = d/n) denote the Erdős-Rényi graph with n vertices and
average degree d. A simple first moment argument shows that with high probability G is is
not k-colorable if

d ≥ dfirst = 2k ln k − ln k . (1)

(We say that an event En on graphs of size n holds with high probability if limn→∞ Pr[En] = 1,
and with positive probability if lim infn→∞ Pr[En] > 0.) Sophisticated uses of the second
moment method [8, 24] shows that this is essentially tight, and that the k-colorability
transition occurs at

dc = dfirst −O(1) .

Now consider the planted coloring model, where we choose a coloring σ uniformly at random
and condition G on the event that σ is proper.

If d > dc, then G(n, d/n) is probably not k-colorable, while graphs drawn from the
planted model are k-colorable by construction. Thus, above the k-colorability transition, we
can tell with high probability whether G was drawn from the planted or un-planted model
by checking to see if G is k-colorable. However, searching exhaustively for k-colorings would
take exponential time.

A similar situation holds for the stochastic block model, a model of graphs with community
structure also known as the planted partition problem (see [47, 2] for reviews). For our
purposes, we will define it as follows: fix a constant τ , and say a partition σ of the vertices into
k groups is “good” if a fraction τ/k of the edges connect vertices within groups. Equivalently,
if G has m edges, σ is a multiway cut with (1 − τ/k)m edges crossing between groups.
Generalizing the planted coloring model where τ = 0, the block model chooses σ uniformly,
and conditions G on the event that σ is good. The cases τ > 1 and τ < 1, where vertices are
more or less likely to be connected to others in the same group, are called assortative (or
ferromagnetic) and disassortative (or antiferromagnetic) respectively.

Two natural problems related to the block model are detection, i.e., telling with high
probability whether G was drawn from the block model or from G(n, d/n), and reconstruction,
finding a partition which is significantly correlated with the planted partition σ. (This is
sometimes called weak reconstruction to distinguish it from finding σ exactly, which becomes
possible when d = Θ(logn) [16, 1, 3, 30, 31, 9, 50].) Both problems become information-
theoretically possible at a point called the condensation transition [39, 22, 19], and the first
and second moment methods [12] show that this scales as

dc ∼
k log k

(τ − 1)2 , (2)

where ∼ hides a multiplicative constant. As in k-coloring this is roughly the first-moment
bound above which, with high probability, no good partitions exist in G(n, d/n). However,
the obvious algorithms for detection and reconstruction, such as searching exhaustively for
good partitions or sampling from an appropriate Gibbs distribution [6, 4], require exponential
time.

In fact, conjectures from statistical physics [40, 25, 26] suggest this exponential difficulty is
sometimes unavoidable. Specifically, these conjectures state that polynomial-time algorithms
for detection and reconstruction exist if and only if d is above the Kesten-Stigum threshold [34,
35],

dKS =
(
k − 1
τ − 1

)2
. (3)
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Several polynomial-time algorithms are now known to succeed whenever d > dKS, including
variants of belief propagation [49, 5] and spectral algorithms based on non-backtracking
walks [48, 38, 43, 17]. Moreover, for k = 2 we know that the information-theoretic and
Kesten-Stigum thresholds coincide [51]. Comparing (2) and (3) we see that for any τ 6= 1 we
have dc < dKS for sufficiently large k, and in fact this occurs for some τ < 1 when k = 4 and
more generally when k ≥ 5 [6, 4, 12].

Thus in the regime dc < d < dKS, detection and reconstruction are information-
theoretically possible, but are conjectured to be computationally hard. In particular, this
conjecture implies that there is no way to refute the existence of a coloring, or of a good
partition, whenever d < dKS, even when d is large enough so that a coloring or partition
probably does not exist. Our goal in this paper is to rule out spectral refutations based on
the Lovász theta function, or equivalently sum-of-squares proofs of degree two.

For technical reasons, we focus on random d-regular graphs, which we denote Gn,d. A
series of papers applying the first and second moment methods in this setting [46, 7, 33, 21]
have determined the likely chromatic number of Gn,d for almost all d, showing that the
critical d for k-colorability is dc = dfirst −O(1) just as for G(n, d/n). (There are a few values
of d and k where Gn,d could be k-colorable with probability strictly between 0 and 1, so this
transition might not be completely sharp.)

We define the d-regular block model by choosing a planted partition σ uniformly at
random and conditioning Gn,d on the event that σ is good. Equivalently, we choose G
uniformly from all d-regular graphs such that a fraction τ/k of their m = dn/2 edges
connect vertices within groups. We claim that our results also apply to the regular block
model proposed in [51] where d-regular graphs are chosen with probability proportional to
τ# within-group edges((k − τ)/(k − 1))# between-group edges: in that case, the fraction of within-
group edges fluctuates, but is τ/k + o(1) with high probability.1 We again conjecture that
refuting the existence of a coloring or a good partition is exponentially hard below the
Kesten-Stigum bound. Since the branching ratio of a d-regular tree is d− 1, in the regular
case this becomes

d < dKS =
(
k − 1
τ − 1

)2
+ 1 .

Main Results
The Lovászϑ function, which we review below, gives a lower bound on the chromatic
number which can be computed in polynomial time. In particular, if ϑ(G) > k, this
provides a polynomial-time refutation of G’s k-colorability. We first prove that this type of
refutation exactly corresponds to sum-of-squares proofs of degree two in a natural encoding
of k-colorability as a system of polynomials; the connection between SDP relaxations and
degree-two SOS is standard [54] but we give an explicit proof here for completeness. We then
show the following bounds on the likely value of ϑ(G) when G is a random d-regular graph.

I Theorem 1. Let d be constant. For any constant ε > 0, with high probability

d

2
√
d− 1

+ 1− ε ≤ ϑ(Gn,d) ≤
d

2
√
d− 1

+ 2 + ε . (4)

1 These models are not to be confused with a stricter model, where for some constants qrs each vertex
in group r has exactly qrs neighbors in group s [18, 23, 53, 15]. Our model only constrains the total
number of edges within or between groups.

APPROX/RANDOM’17
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As a consequence, the Lovászϑ function cannot refute k-colorability with high probability if

k > 2 + d

2
√
d− 1

, (5)

and in particular if d is below the Kesten-Stigum threshold.

A strict inequality suffices in (5) by appropriately choosing ε in (4). Rearranging, no refutation
of this kind can exist when

d < 2(k − 2)
(

(k − 2) +
√

(k − 2)2 − 1
)

= (4− ok(1))dKS .

Our lower bound on ϑ(Gn,d) follows easily from Friedman’s theorem [29] on the spectrum of
Gn,d. For the upper bound, we first use orthogonal polynomials to derive explicit bounds on
ϑ(G) for arbitrary regular graphs of a given girth – which may be of independent interest –
and then employ a concentration argument for Gn,d.

We also relate the Lovászϑ function to the existence of a good partition in the disassort-
ative case of the block model, giving

I Theorem 2. Fix τ < 1 and say a partition is good if a fraction τ/k of its edges connect
endpoints in the same group. Then sum-of-squares proofs of degree two cannot refute the
existence of a good partition in Gn,d if

k − τ
1− τ > 2 + d

2
√
d− 1

.

Thus degree-two sum-of-squares cannot distinguish the regular stochastic block model from
Gn,d until d is roughly a factor of 4 above the Kesten-Stigum threshold.

Related Work
The distribution of ϑ(G) for the Erdős-Rényi graph G = G(n, p) and the random d-regular
graph G = Gn,d were studied in [20]. In particular, that work showed that when d is
sufficiently large, with high probability ϑ(Gn,d) > c

√
d for a constant c > 0. Our results

tighten this lower bound, making the constant c explicit, and provide a nearly-matching
upper bound.

Our results on the power of degree-two sum-of-squares refutations for k-colorability
contribute to a recent line of work on refutations of random CSPs, which we briefly survey.
If we define the density of a CSP as the ratio of constraints to variables – which for coloring
equals half the average degree of the graph – then the conjectured hard regime for k-coloring
corresponds to a range of densities bounded below and above by constants (i.e., depending on
k but not n). For CSPs such as k-SAT and k-XOR, there is again a satisfiability transition at
constant density, but with high probability sum-of-squares refutations with constant degree
do not exist unless the density is much higher, namely Ω(nk/2−1) [55], a result which was
recently extended to general CSPs whose constraint predicate supports a (k−1)-wise uniform
distribution [36]. Conversely, if a predicate does not support a t-wise uniform distribution,
then [10] shows that there is an efficient sum-of-squares refutation when the density is
Õ(nt/2− 1). For coloring, this gives refutations at roughly constant density; our contribution
makes this a nearly-precise constant in the special case of degree-two sum-of-squares on
random regular graphs.

The hidden clique problem also has a conjectured hard regime. It is well known that
the random graph G(n, 1/2) has no cliques larger than O(logn) [28] but it is conjectured
to be computationally hard to distinguish G(n, 1/2) from a graph with a planted clique
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of size o(n1/2). A sequence of progressively stronger sum-of-squares lower bounds for this
problem [27, 32, 45] have culminated in the theorem that with high probability the degree-d
sum-of-squares proof system cannot refute the existence of a clique of size n1/2−c(d/ logn)1/2

in G(n, 1/2) for some constant c > 0 [13].
In contrast to the aforementioned work on refuting random k-CSPs and planted cliques,

our result pertains to a much more specific pair of problems, namely k-coloring and the
stochastic block model, and only to degree-two sum-of-squares refutations; but it attains a
sharp bound, within an additive constant, on the density at which these refutations become
possible. We conjecture that sum-of-squares refutations of any constant degree do not exist
below the Kesten-Stigum threshold, but it seems difficult to extend our current techniques
to degree higher than two.

2 Colorings, Partitions, and the Lovász ϑ Function

2.1 Background on sum-of-squares
One type of refutation which has gained a great deal of interest recently is sum-of-squares
proofs: see [14] for a review. Suppose we encode our variables and constraints as a system of
m polynomial equations on n variables, fj(x1, x2, . . . , xn) = 0 for all j = 1, . . . ,m.

One way to prove that no solution x ∈ Rn exists – in algebraic terms, that this variety
is empty – is to find a linear combination of the fj which is greater than zero for all x.
Moreover, the positivstellensatz of Krivine [37] and Stengle [57] shows that a polynomial is
nonnegative over Rn if and only if it can be written as a sum of squares of rational functions.
Thus, clearing denominators, we need polynomials g1, . . . , gm and h1, . . . , ht and a constant
ε > 0 (which we can always scale to 1 if we like) such that

m∑
j=1

gj(x)fj(x) = S + ε where S =
t∑
`=1

h`(x)2 . (6)

This proof technique is complete as well as sound. That is, there is such a set of polynomials
{gj} and {h`} if and only if no solution exists.

Even when the fj are of low degree, the polynomials gj and h` might be of high degree,
making them difficult to find. However, we can ask when a refutation exists where both sides
of (6) have degree δ or less. As we take δ = 2, 4, 6, . . . we obtain the SOS hierarchy. The
case δ = 2 is typically equivalent to a familiar semidefinite relaxation of the problem. More
generally, a degree-δ refutation exists if and only if a certain semidefinite program on O(nδ)
variables is feasible: thus we can find degree-δ refutations, or confirm that they do not exist,
in time poly(nδ) [56, 52, 54, 41]. To see why, note that if we write a polynomial S(x) as a
bilinear form on monomials x(α) =

∏
i x

αi of degree δ/2,

S(x) =
∑
α,α′

S(α, α′)x(α)x(α′) ,

then S(x) is a sum of squares of degree δ/2 polynomials if and only if the matrix S is positive
semidefinite, or equivalently if S is the sum of positive symmetric rank-one matrices. These
are outer products of vectors with themselves, so there are vectors w1, . . . , wt such that
S =

∑t
`=1 w`⊗w` and S =

∑
` h

2
` where h`(x) =

∑
α w`(α)x(α). Finally, the constraint that

S =
∑
j gjfj − ε for some {gj} and some ε > 0 corresponds to a set of linear inequalities on

the entries of S.

APPROX/RANDOM’17
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The dual object to a degree-δ refutation is a pseudoexpectation. This is a linear operator
Ẽ on polynomials of degree at most δ with the properties that

Ẽ[1] = 1, (7)
Ẽ[fj ] = 0 for all j, (8)
Ẽ[p2] ≥ 0 for any polynomial p of degree at most δ/2. (9)

If we write Ẽ as a bilinear form on monomials x(α), then (7) and (8) are linear constraints
on its entries, and (9) states that this matrix is positive semidefinite. The resulting SDP is
dual to the SDP for refutations, so each of these SDPs is feasible precisely when the other is
not. Thus there is a degree-δ refutation if and only if no degree-δ pseudoexpectation exists,
and vice versa.

We can think of a pseudoexpectation as a way for an adversary to fool the SOS proof
system. The adversary claims there are are many solutions – even if in reality there are none
– and offers to compute the expectation of any low-degree polynomial over the set of solutions.
As long as (7) and (8) hold, this appears to be a distribution over valid solutions, and as
long as (9) holds, the SOS prover cannot catch the adversary in an obvious lie like the claim
that some quantity of degree δ/2 has negative variance.

2.2 Colorings, partitions, and sum-of-squares
For a given graph G with adjacency matrix A, we can encode the problem of k-colorability
as the following system of polynomial equations in kn variables x = {xi,c}, where i ∈ [n]
indexes vertices and c ∈ [k] indexes colors:

The xi,c are Boolean: pbooli,c , x2
i,c − xi,c = 0 ∀i, c (10)

Each vertex has one color: psingi , −1 +
∑
c

xi,c = 0 ∀i (11)

The coloring is proper: pcolij ,
∑
c

xi,c xj,c = 0 ∀(i, j) ∈ E (12)

Then G is k-colorable if and only if (10)–(12) has a solution in Rkn. We can encode the
stochastic block model similarly: fix τ , and recall that a partition of G into k groups is good
if a fraction τ/k of the edges have endpoints in the same group. If G has m edges, we can
replace constraint (12) with

Good partition: pcut , −τ
k

+ 1
2m

∑
i,j

Aij
∑
c

xi,c xj,c = 0 . (13)

A degree-δ sum-of-squares refutation of (10)–(12) is an equation of the form∑
i,c

bi,cp
bool
i,c +

∑
i

sip
sing
i +

∑
(i,j)∈E

gijp
col
ij = S + ε (14)

where bi,c, si, gij are polynomials over x, S is a sum of squares of polynomials, ε is a small
positive constant which we will omit when clear, and the degree of each side is at most δ.
Such an equation is a proof that no coloring exists. Replacing

∑
i,j gijp

col
ij with gcutpcut gives

a refutation of the system formed by (10), (11), and (13), proving that no good partition
exists. We focus on refutations of degree two, which as we will see are related to a classic
relaxation of graph coloring.
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2.3 The Lovász ϑ function
An orthogonal representation of a graph G with n vertices is an assignment of a unit vector
ui ∈ Rn to each vertex i such that

〈
ui, uj

〉
= 0 for all (i, j) ∈ E. The Lovász function,

denoted ϑ(G) by convention, is the smallest κ for which there is an orthogonal representation
{ui} and an additional unit vector z ∈ Rn such that

〈
ui, z

〉
= 1/

√
κ: that is, such that all

the ui lie on a cone2 of width cos−1(1/
√
κ).

The Gram matrix Pij =
〈
ui, uj

〉
of an orthogonal representation is positive semidefinite

with Pii = 1 and Pij = 0 for (i, j) ∈ E. Adding an auxiliary row and column for the inner
products with z, we can define ϑ in terms of a semidefinite program,

ϑ(G) = min
P

κ > 0 such that
(

1 1/
√
κ

1/
√
κ P

)
� 0 (15)

Pii = 1 ∀i
Pij = 0 ∀(i, j) ∈ E ,

where 1 is the n-dimensional vector whose entries are all 1s. The dual of this program can
be written as

ϑ(G) = max
D
〈D, J〉 such that D � 0 (16)

trD = 1
Dij = 0 ∀(i, j) /∈ E ,

where J is the matrix of all 1s and
〈
A,B

〉
= tr(A†B) =

∑
i,j AijBij denotes the matrix inner

product.
If G is k-colorable then ϑ(G) ≤ k, since we can use the first k basis vectors e1, . . . , ek

as an orthogonal representation and take z = (1/
√
k)
∑k
t=1 et. Thus if ϑ(G) > k, the

Lovász function gives a polynomial-time refutation of k-colorability. As stated above, degree-
two sum-of-squares proofs typically correspond to well-known semidefinite relaxations, and
the next theorem shows that this is indeed the case here.

I Theorem 3. There is a degree-2 SOS refutation of k-colorability for a graph G if and only
if ϑ(G) > k.

We prove this in the Appendix, where we show that any orthogonal representation of G that
lies on an appropriate cone lets us define a pseudoexpectation for the system (10)–(12). This
will also allow us to modify the SDPs for refutations and pseudoexpectations, and work with
simplified but equivalent versions.

2.4 Good partitions and a relaxed Lovász function
The reader may have noticed that while the coloring constraint (12) fixes the inner product∑

c xi,cxj,c =
〈
xi, xj

〉
to zero for each edge (i, j) ∈ E, the “good partition” constraint (13)

only fixes the sum of all these inner products. This suggests a slight relaxation of the Lovászϑ
function, where we weaken the SDP (15) by replacing the individual constraints on Pij for

2 To see that this definition of ϑ is equivalent to the more common one that
〈
ui, z
〉
≤ 1/

√
κ for every i,

i.e., where the ui can be in the interior of this cone, simply rotate each ui in the subspace perpendicular
to its neighbors until

〈
ui, z
〉
is exactly 1/

√
κ.

APPROX/RANDOM’17
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all (i, j) ∈ E with a constraint on their sum. In other words, we allow a vector coloring
where neighboring vectors are orthogonal on average. We denote the resulting function ϑ̂:

ϑ̂(G) = min
P

κ > 0 such that
(

1 1/
√
κ

1/
√
κ P

)
� 0 (17)

Pii = 1 ∀i〈
P,A

〉
= 0 ,

The dual SDP tightens (16) by requiring that the matrix D take the same value on every
edge. Thus D is a multiple of A plus a diagonal matrix,

ϑ̂(G) = max
η,b
〈D, J〉 such that D , ηA+ diag b � 0 (18)

trD =
〈
b,1
〉

= 1

Since ϑ̂ is a relaxation of ϑ, we always have ϑ̂(G) ≤ ϑ(G).
This modified Lovász function ϑ̂ is equivalent to degree-two SOS for good partitions in

the dissasortative case of the block model, in the following sense.

I Theorem 4. If τ < 1, there exists a degree-two SOS refutation of a partition of G where a
fraction τ/k of the edges are within groups if and only if

ϑ̂(G) > k − τ
1− τ . (19)

Once again we leave the proof to the Appendix. Note that the SDP (17) for ϑ̂ contains no
information about k or τ : this relaxed orthogonal representation has the uncanny capacity
to fool degree-two SOS about an entire family of related cuts of different sizes and qualities.

2.5 Upper and lower bounds
With these theorems in hand, we can set about producing degree-two sum-of-squares refut-
ations and pseudoexpectations for our problems; throughout this section we will refer to
these simply as ‘refutations’ and ‘pseudoexpectations’. In fact, the same construction will
give us asymptotically optimal refutations and pseudoexpectations for both the coloring and
partition problems.

To warm-up, we have the following simple construction of a refutation, which we will
phrase in terms of the Lovász theta function and its relaxed version.

I Lemma 5. Let G be a d-regular graph, and let λmin be the smallest eigenvalue of its
adjacency matrix A. Then

ϑ(G) ≥ ϑ̂(G) ≥ 1 + d/|λmin| . (20)

Proof. Denote by 1 the identity matrix. We construct a feasible solution D to the dual
SDP (18) by taking

D ,
1
n

(
1 + 1
|λmin|

A

)
,

and use the fact that
〈
A, J

〉
= dn. J

By invoking Friedman’s theorem [29] that (as n→∞) the smallest eigenvalue of a random
d-regular graph is with high probability larger than −2(1 + ε)

√
d− 1 for any ε > 0, we obtain:
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I Corollary 6. When G = Gn,d, for any ε > 0, with high probability

ϑ(G) ≥ ϑ̂(G) > 1 + d

2
√
d− 1

− ε . (21)

Putting this together with Theorems 3 and 4 gives

I Corollary 7. If G = Gn,d and τ < 1, with high probability there exists a refutation of a
partition with a fraction τ/k of within-group edges when

k − τ
1− τ < 1 + d

2
√
d− 1

. (22)

Setting τ = 0, a refutation of k-colorability exists with high probability when

k < 1 + d

2
√
d− 1

.

Note that for large k, the minimum value of d satisfying (22) is a factor of four above the
Kesten-Stigum threshold in both the coloring and partition problems.

Our construction for this lower bound on ϑ is quite simple, but remarkably we find that
for both the coloring and partition problems, it is asymptotically optimal in d and k. In
particular,

I Theorem 8. For any d-regular graph G with girth at least γ, we have

ϑ̂(G) ≤ ϑ(G) < 1 + d

2(1− εγ)
√
d− 1

. (23)

where εγ is a sequence of constants which decrease to zero as γ →∞.

Since for any constant γ a random regular graph has girth γ with positive probability [59,
Theorem 2.12], we rely on the following result showing that ϑ(Gn,d) is concentrated in an
interval of width one. The proof is essentially the same as that of [7] for the chromatic
number, and is given in the Appendix.

I Lemma 9. Let θ ≥ 3. If ϑ(Gn,d) ≤ θ with positive probability, then ϑ(Gn,d) ≤ θ + 1 with
high probability.

I Corollary 10. If G = Gn,d, with high probability there does not exist a refutation of a
partition with a fraction τ/k of within-group edges when

k − τ
1− τ > 2 + d

2
√
d− 1

. (24)

Setting τ = 0, with high probability no refutation of k-colorability exists when

k > 2 + d

2
√
d− 1

.

Thus for both problems, no degree-two sum-of-squares refutation exists until d is roughly a
factor of 4 above the Kesten-Stigum threshold.

APPROX/RANDOM’17
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3 Constructing a Pseudoexpectation with Orthogonal Polynomials

We now prove Theorem 8 by constructing a feasible solution to the primal SDP (15): that
is, unit vectors {ui} such that

〈
ui, uj

〉
= 0 for every edge (i, j), and a unit vector z so that〈

ui, z
〉

= 1/
√
κ for all i. Recall that such a collection exists if and only if ϑ(G) ≤ κ.

It is convenient to instead define a set of unit vectors {vi} such that
〈
vi, vj

〉
= −1/(κ− 1)

for every edge (i, j). We claim that such a set exists if and only if ϑ(G) ≤ κ. In one direction,
given {ui} and z with the above properties, if we define

vi =
√

κ

κ− 1 ui −
1√
κ− 1

z

then the vi are unit vectors with
〈
vi, vj

〉
= −1/(κ− 1) for (i, j) ∈ E. For instance, if the ui

are k orthogonal basis vectors, then the vi point to the corners of a k-simplex. In the other
direction, given {vi} we can take z to be a unit vector perpendicular to all the vi, and define

ui =
√
κ− 1
κ

vi + 1√
κ
z .

Then
〈
ui, uj

〉
= 0 for (i, j) ∈ E, and

〈
ui, z

〉
= 1/

√
κ for all i. This means that we can

characterize the Lovászϑ function with a slightly different SDP, which uses the Gram matrix
of the {vi}:

ϑ(G) = min
P

κ > 1 such that P � 0 (25)

Pii = 1 ∀i
Pij = −1/(κ− 1) ∀(i, j) ∈ E

Alternatively, the matrix P above is a scaled Schur complement of the block matrix in (15).
We will show that for any d-regular graph G with girth at least γ, this SDP has a feasible

solution with

κ = 1 + d

2(1− εγ)
√
d− 1

,

where εγ depends only on γ and tends to zero as γ → ∞. Therefore, there is a pseudoex-
pectation that prevents degree-two SOS from refuting k-colorability for any k ≥ κ. We will
construct this pseudoexpectation by taking a linear combination of the “non-backtracking
powers” of G’s adjacency matrix A.

Denote by A(t) the matrix whose i, j entry is the number of non-backtracking walks of
length t from i to j; that is, walks which may freely wander the graph so long as they do
not make adjacent pairs of steps a→ b→ a for any vertices a, b. There is a simple two-term
recursion for these matrices: to count non-backtracking walks of length t+ 1, we first extend
each walk of length t by one edge, and then subtract off those that backtracked on the last
step. This gives

A(0) = 1

A(1) = A

A(2) = A2 − d1

A(t) = A ·A(t−1) − (d− 1)A(t−2) t ≥ 3 . (26)
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Borrowing notation from [11], we can write A(t) in closed form as

A(t) =
√
d(d− 1)t−1 qt

(
A

2
√
d− 1

)
t ≥ 1 (27)

where qt(z) is a polynomial of degree t. Specifically,

q0(z) = 1

q1(z) = 2
√
d− 1
d

z

and for t > 1 the qt satisfy the Chebyshev recurrence

qt+1(z) = 2zqt(z)− qt−1(z) .

We can write qt explicitly as

qt(z) =
√
d− 1
d

Ut(z)−
1√

d(d− 1)
Ut−2(z) t ≥ 1 (28)

and Ut is the tth Chebyshev polynomial of the second kind (note that U−1(z) = 0).
Let µ(z) denote the Kesten-McKay measure µ on the interval [−1,+1], which after scaling

by 2
√
d− 1 describes the typical spectral density of a random regular graph [44]:

µ(z) = 2
π

(
d(d− 1)

d2 − 4(d− 1)z2

)√
1− z2 . (29)

Then the polynomials qt are orthonormal with respect to this measure. That is, if we define
the inner product

〈f, g〉 =
∫
f(z) g(z) dµ =

∫ 1

−1
f(z) g(z)µ(z) dz ,

then

〈q`(z), qm(z)〉 =
{

1 ` = m

0 ` 6= m.
(30)

If the girth of the graph is at least γ, there is no way for a non-backtracking walk of
length γ − 2 or less to return to its starting point or to a neighbor of its starting point,
so
〈
1, A(t)〉 =

〈
A,A(t)〉 = 0 for 1 < t ≤ γ − 2. We can thus satisfy the diagonal and edge

constraints of (25) by considering solutions of the form

P = 1− 1
κ− 1A+

γ−2∑
t=2

atA
(t)

= 1−
√
d

κ− 1 q1

(
A

2
√
d− 1

)
+
γ−2∑
t=2

at
√
d(d− 1)t−1 qt

(
A

2
√
d− 1

)
(31)

, f

(
A

2
√
d− 1

)
,

since the first two terms ensure that P has 1s on its diagonal and −1/(κ− 1) on the edges.
If we write

f(z) =
γ−2∑
t=0

ctqt(z) where c0 = 1 and c1 = −
√
d

κ− 1 , (32)
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our job is to optimize the coefficients ct for 1 < t ≤ γ − 2 so as to minimize c1, and hence κ,
while ensuring that P � 0.

The eigenvalues of the matrix f(A/(2
√
d− 1)) are of the form f(λ/(2

√
d− 1)) where λ

ranges over all of A’s eigenvalues. Therefore, P � 0 if and only if f(λ/(2
√
d− 1)) for all

eigenvalues λ of A. Friedman’s celebrated theorem [29] shows that, with high probability,
the eigenvalues of A are contained in the set

S =
(
−(1 + ε)2

√
d− 1, (1 + ε)2

√
d− 1

)
∪ {d}

for any ε > 0. Thus we require that

f(z) ≥ 0 for all z ∈
(
− (1 + ε), 1 + ε

)
∪
{

d

2
√
d− 1

}
. (33)

We will relax this condition slightly by demanding just that f is nonnegative on [−1,+1],
although as we will see the resulting optimum is achieved by a function which is nonnegative
on all of R. First we use orthonormality (30) to write the coefficients ct as inner products,

ct = 〈qt, f〉 .

Then we optimize the pseudoexpectation as follows,

min 〈q1, f〉 (34)
such that 〈q0, f〉 = 1

f(z) ≥ 0 ∀z ∈ [−1,+1] .

When the degree γ − 2 of f is even, we can solve this optimization problem explicitly.
Set m = γ/2, and let r1 > · · · > rm be the roots of qm in decreasing order; it follows from
standard arguments about orthogonal polynomials that these are all in the support of µ, i.e.,
in the interval [−1,+1]. Consider the following polynomial of degree 2(m− 1) = γ − 2,

s(z) = 1
ζ

m−1∏
j=1

(z − rj)2 , (35)

where

ζ =
〈
q0,

m−1∏
j=1

(z − rj)2

〉

is a normalizing factor to ensure that
〈
q0, s

〉
= 1. We claim that s(z) is the optimum of (34).

To prove this, we begin with a general lemma on orthogonal polynomials and quadrature.
The proof is standard (e.g. [58]) but we include it in the Appendix for completeness.

I Lemma 11. Let {pt} be a sequence of polynomials of degree t which are orthogonal with
respect to a measure ρ supported on a compact interval I. Then the roots r1, . . . , rt of pt
form a quadrature rule which is exact for any polynomial u of degree less than 2t, in that∫

I

u(z) dρ =
t∑
i=1

ωiu(ri)

for some positive weights {ω1, . . . , ωt} independent of u.
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Now let g(z) = z − rm. In view of Lemma 11, for any polynomial f(z) of degree at
most γ − 2, the inner product 〈g, f〉 can be expressed using the roots r1, . . . , rm of qm as a
quadrature,

〈g, f〉 =
∫

(z − rm)f(z)dµ =
m∑
j=1

ωj(rj − rm)f(rj) =
m−1∑
j=1

ωj(rj − rm)f(rj) .

Note that ωj(rj − rm) > 0 for every 1 ≤ j ≤ m− 1, since rm is the left-most root. If impose
the constraints that f(rj) ≥ 0 for all j = 1, . . . ,m− 1, then 〈g, f〉 ≥ 0. If we also impose the
constraint 〈f, q0〉 = 1, then

〈q1, f〉 =
〈

2
√
d− 1
d

z, f

〉

= 2
√
d− 1
d
〈g, f〉+ 2

√
d− 1
d

rm〈q0, f〉

≥ 2
√
d− 1
d

rm , (36)

with equality if and only if f(rj) = 0 for all j = 1, . . . ,m− 1. Since s(z) obeys this equality
condition, we have

〈q1, s〉 = 2
√
d− 1
d

rm ,

and this is the minimum possible value of c1 = 〈q1, s〉 subject to the constraints that
〈q0, f〉 = 1 and f(rj) ≥ 0 for j = 1, . . . ,m− 1. Moreover, s(z) ≥ 0 on all of R, so s(z) in fact
obeys the stronger constraint (33).

Referring back to (32) gives

c1 = −
√
d

κ− 1 = 2
√
d− 1
d

rm ,

and so

ϑ ≥ κ = 1 + d

2(−rm)
√
d− 1

.

Finally, we obtain (23) by defining εγ = rm + 1. Since rm → −1 as m tends to infinity3, we
have εγ → 0 as γ →∞, completing the proof.

We end with a brief note on the above construction. Recall that our project for the
last several pages has been to set the coefficients of non-backtracking paths of length t in a
feasible solution P to the SDP (25),

P =
γ∑
t=0

atA
(t).

As discussed in the Appendix, this matrix can be translated into a degree-two pseudoexpect-
ation Ẽ for the coloring problem: a linear operator that claims to give the joint distribution

3 The fact that rm → −1 as m→∞ can be deduced, for example, by using the definition of qm in (28)
to observe that qm(−1) and qm(− cos( π

m−1 )) have opposite signs, and then applying the intermediate
value theorem.
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of colors at at each pair of vertices i and j. The reader will find there that Pij is related to
the ‘pseudocorrelation’ between vertices i and j, by

k

k − 1 (Pij − 1/k) = P̃r[i and j are the same color] .

Our expansion of P in terms of non-backtracking paths means that, for most pairs i, j, this
pseudoexpectation depends only on the shortest path distance d(i, j). Specifically, whenever
d(i, j) = t ≤ γ − 2 and the shortest path is unique, we have Pij = at, and if d(i, j) > γ − 2
then Pij = 0. One might think that in the limit of large γ, the optimal pseudoexpectation
would make the natural choice that at = (1 − k)−t: in that, case, the pseuodocorrelation
would decay just as if these shortest paths were colored uniformly at random, ignoring
correlations with the remainder of the graph. However, a quick calculation shows that this
choice is in fact not optimal. In fact, the optimal coefficients we derive above cause the
pseudocorrelation to decay more quickly with distance than this naïve guess.
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A Proof of Theorems 3 and 4

We prove Theorems 3 and 4 by directly simplifying the SDP that defines feasible degree-
two pseudoexpectations. The first step is a broad result on the structure of these objects
that applies to any set of constraints which includes the boolean (10) and single-color (11)
constraints and is suitably symmetric; we then specialize to the coloring and partition
problems.

Recall that a degree-two pseudoexpectation for a system of polynomials fj(x) = 0 is a
linear operator Ẽ : R[x]≤2 → R which satisfies

Ẽ[1] = 1,
Ẽ[fjq] = 0 for any polynomials fj and q such that deg fjq ≤ 2,
Ẽ[p2] ≥ 0 for any polynomial p with deg p2 ≤ 2.

We can identify such objects with PSD (nk + 1)× (nk + 1) matrices of the form

Ẽ =
(

1 `†

` E

)
(37)

where `i,c = Ẽ[xi,c] and E(i,c),(j,c′) = Ẽ[xi,c xj,c′ ]. It is useful to think of E as a block matrix,
with a k × k block Eij corresponding to each pair of vertices i, j. Consistency with the
boolean and single-color constraints (10), (11) then controls the diagonal elements and row
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and colum sums of each of these blocks,

E(i,c),(i,c) = Ẽ[x2
i,c] = Ẽ[xi,c] = `i,c ∀i (38)∑

c′

E(i,c),(j,c′) =
∑
c′

Ẽ[xi,c xj,c′ ] = Ẽ[xj,c] = `i,c ∀i, j (39)

Moreover, each of our constraints is fixed under permutations of the colors, and Ẽ inherits
this symmetry. That is the matrix carries with it a natural Sk action that simultaneously
permutes Ẽ[xi,c]→ Ẽ[xi,σ(c)] and Ẽ[xi,c xj,c′ ]→ Ẽ[xi,σ(c) xi,σ(c′)]. This action preserves the
spectrum of Ẽ as a matrix, as well as every hard constraint. By convexity, we may assume
that Ẽ is stabilized under it, by beginning with an arbitrary pseudoexpectation and averaging
over its orbit.

This assumption substantially constrains and simplifies Ẽ. In particular we are free to
(i) assume that `i,c = Ẽ[xi,c] = 1/k and (ii) assume that each k × k block in E has only two
distinct values: one on the diagonal and the other off the diagonal. In other words, the
pseudoexpectation claims that the marginal distribution of each vertex is uniform, and that
joint marginal of any two vertices depends only on the probability that they have the same
or different colors.

As a result, for each i, j we can assume that Eij is a linear combination of the identity
matrix 1k and the matrix Jk of all 1s, and that the row and column sums of Eij are all 1/k.
In that case for each i, j we can write

Eij = 1
k − 1

(
Pij −

1
k

)(
1k −

Jk
k

)
+ Jk
k2 (40)

for some Pij , or equivalently that

E = 1
k − 1(P − Jn/k)⊗

(
1k −

Jk
k

)
+ Jnk

k2 (41)

for some n× n matrix P . Note that

tr Eij = Pij ,

so (38) requires that Pii = 1 for all i.
Since the pseudoexpectation (37) consists of E with an additional row and column, we

consider the following lemma. We leave its proof as an exercise for the reader.

I Lemma 12. For any matrix X, vector v and scalar b > 0,(
b v†

v X

)
� 0

if and only if X − (1/b)v ⊗ v � 0 .

Since ` is the nk-dimensional vector whose entries are all 1/k, we have ` ⊗ ` = Jnk/k2.
Thus (41) and Lemma 12 imply that Ẽ � 0 if and only if

(P − Jn/k)⊗ (1k − Jk/k) � 0 .

Since 1k − Jk/k is a projection operator, this in turn occurs if and only if

P − Jn/k � 0 .



J. Banks, R. Kleinberg, and C. Moore 28:19

To summarize, finding a pseudoexpectation is equivalent to finding a PSD matrix P ∈
Rn×n with Pii = 1 for all i, such that P remains PSD when we subtract the rank-one matrix
Jn/k. However, we have thus far only reasoned about the boolean and single color constraints,
and including either the coloring or cut constraint places an additional restriction on P . In
the case of coloring, we demanded that∑

c

E(i,c),(j,c) =
∑
c

Ẽ[xi,c xj,c] = 0 (42)

for every edge (i, j). This implies that tr Eij = 0, and so Pij = 0 for each edge. Collecting
these observations, a pseudoexpectation for coloring exists exactly when k > ϑ(G), where

ϑ(G) , min
P

κ > 0 such that P − Jn/κ � 0 (43)

Pii = 1 ∀i
Pij = 0 ∀(i, j) ∈ E .

Finally, note that Jn/κ = v ⊗ v where v = 1n/
√
κ. Applying Lemma 12 again then gives

exactly the PSD (15) for the Lovasz ϑ function, thus completing the proof of Theorem 3.
In the case of good partitions, we required that∑
i,j

Aij
∑
c

E(i,c),(j,c) =
∑
i,j

Aij
∑
c

Ẽ[xi,c xj,c] = (τ/k)dn , (44)

but this means that∑
i,j

Aij tr Eij =
∑
i,j

AijPij = 〈P,A〉 = (τ/k)dn .

Following the path above, a degree-two pseudoexpectation exists for community detection
when k > ϑ̂τ (G), where

ϑ̂τ (G) , min
Pτ

κτ such that Pτ − Jn/κτ � 0 (45)

(Pτ )ii = 1 ∀i
〈Pτ , A〉 = (τ/κτ )dn .

A priori, it seems that we may need to solve a different SDP for each value of τ , but a bit
more work shows that this is not the case. Lemma 12 lets us transform the SDP (17) for ϑ̂
to the following problem,

ϑ̂(G) , min
P

κ such that P − Jn/κ � 0 (46)

Pii = 1 ∀i
〈P,A〉 = 0 .

The following lemma then shows us how to relate optima of (46) to those of (45) for any τ
in the disassortative range τ < 1, thus completing the proof of Theorem 4.

I Lemma 13. For any τ < 1,

ϑ̂(G) = ϑ̂τ (G)− τ
1− τ . (47)

APPROX/RANDOM’17



28:20 The Lovász Theta Function for Random Regular Graphs

Proof. We show how to translate back and forth between solutions of (45) and (46). Given
a matrix P , define

Pτ = (1− τ/κτ )P + (τ/κτ )Jn .

It is easy to check that Pii = 1 if and only if (Pτ )ii = 1, and 〈Pτ , A〉 = (τ/κτ )dn if and only
if 〈P,A〉 = 0. Finally, if we set

κ = κτ − τ
1− τ , (48)

then

Pτ − Jn/κτ = (1− τ/κτ ) (P − Jn/κ) ,

so Pτ − Jn/κτ � 0 if and only if P − Jn/κ � 0. Thus (46) is feasible for κ if and only if (45)
is feasible for κτ . Since ϑ̂(G) and ϑ̂τ (G) are the smallest κ and κτ respectively for which
this is the case, (48) implies (47). J

B Proof of Lemma 11

It is immediate that there is such a quadrature rule for polynomials of degree strictly less
than t, since the space of linear functionals on such polynomials has dimension t and is thus
spanned by the t linearly independent functionals which evaluate at the roots xi. Now let
deg u < 2t. We can divide u by pt to write u(z) = a(z)pt + b(z) where deg a,deg b < t. We
have∫

I

u(z) dρ =
∫
I

(
a(z)pt(z) + b(z)

)
dρ = 〈pt, a〉+

∫
I

b(z) dρ = 0 +
t∑
i=1

ωib(ri) =
t∑
i=1

ωiu(ri),

since pt is orthogonal to all polynomials of degree less than t and has roots ri. This verifies
exactness of the quadrature rule for polynomials of degree smaller than 2t.

To show that the weights {ωi} are positive, let i ∈ {1, . . . , t} and let vi(z) = (pt(z)/(z −
ri))2 be the polynomial with double roots at every root of pt save ri. Since vi is everywhere
nonnegative and is a polynomial of degree 2t− 2 < t, we have

0 <
∫
I

vi(z) dρ =
t∑

j=1
ωjvi(rj) = ωivi(ri) ,

but since v(z) is nonnegative, ωi must be positive.

C Proof of Lemma 9

The proof closely follows [7, Theorem 4] which shows that the chromatic number of Gn,d is
concentrated on two adjacent integers, and which is in turn based on the proof in [42] of
two-point concentration for G(n, p) with p = O(n−5/6−ε). Recall the configuration model [59],
where we make d “copies” of each vertex corresponding to its half-edges, and then choose
uniformly from all (dn − 1)!! = (dn)!/(2dn/2(dn/2)!) perfect matchings of these copies. If
we denote the set of such matchings by Pn,d and condition the corresponding multigraphs
on having no self-loops or multiple edges, the resulting distribution is uniform on the set of
d-regular graphs, and occupies a constant fraction of the total probability of Pn,d. Thus any
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property which holds with high probability for Pn,d holds with high probability for Gn,d as
well.

If P, P ′ are two perfect matchings in Pn,d, we write P ∼ P ′ if they differ by a single
swap, changing {(a, b), (c, d)} to {(a, c), (b, d)} or {(a, d), (b, c)}. The following martingale
inequality [59, Theorem 2.19] shows that a random variable which is Lipschitz with respect
to these swaps is concentrated.

I Lemma 14. Let c be a constant, and let X be a random variable defined on Pn,d such that
|X(P )−X(P ′)| ≤ c whenever P ∼ P ′. Then

Pr[|X − E[X]| > t] ≤ 2e− t2
dnc .

Now fix θ, and define X as the minimum number of edge constraints Pij = 0 in the SDP (15)
violated by an otherwise feasible solution with κ = θ. This meets the Lipschitz condition
with c = 2. By assumption X = 0 with positive probability. Lemma 14 then implies that
(say) E[X] ≤ (1/2)

√
n logn, in which case X <

√
n logn with high probability.

Let S denote the set of endpoints of the violated edges. Then there is an orthogonal
representation {ui} of the subgraph induced by V \ S and a unit vector z such that

〈
ui, z

〉
=

1/
√
θ and

〈
ui, uj

〉
= 0 if (i, j) ∈ E and i, j /∈ S. Our goal is to “fix” {ui} on the violated

edges, and if necessary on some additional vertices, to give an orthogonal representation {vi}
for all of G.

As in [7, 42], we inductively build a set of vertices S = U0, U1, . . . , UT = U as follows.
Given Ut, let Ut+1 = Ut ∪{i, j} where i, j /∈ Ut, (i, j) ∈ E, and i and j each have at least one
neighbor in Ut. We define T as the step at which there is no such pair i, j and this process
ends. Let I denote U ’s neighborhood, i.e., the set of vertices outside U which have a neighbor
in U . Then I is an independent set, since otherwise the process would have continued. We
make the following claim:

I Lemma 15. With high probability, the subgraph induced by U is 3-colorable.

Proof. For all 0 ≤ t ≤ T we have |Ut| = 2t+ |S|. Moreover, the subgraph induced by Ut has
at least 3t+ |S|/2 = (3/2)|Ut| − |S| edges and thus average degree at least 3− 2|S|/|Ut|. On
the other hand, a crude union bound shows that for any d and any β > 2, there is an α > 0
such that, with high probability, all induced subgraphs of G containing αn or fewer vertices
have average degree less than β. Since |S| = o(n) with high probability, this implies that
|Ut| ≤ (2 + o(1))|S| for all t, and in particular that |U | = o(n).

The same union bound then implies that with high probability the subgraph induced
by |U |, and all its subgraphs, have average degree less than 3. But this means that this
subgraph has no 3-core: that is, it has at least one vertex of degree less than 3, and so will
the subgraph we get by deleting this vertex, and so on. Working backwards, we can 3-color
the entire subgraph by starting with the empty set and adding these vertices back in, since
at least one of the three colors will always be available to them. J

To define our orthogonal representation, let w be a unit vector such that
〈
z, w
〉

=〈
ui, w

〉
= 0 for all i /∈ S; such a vector exists since |S| ≥ 2. Then define

z′ =
√

θ

θ + 1 z + 1√
θ + 1

w .

Then |z′|2 = 1, and
〈
w, z′

〉
=
〈
ui, z

′〉 = 1/
√
θ + 1 for all i /∈ S. Moreover, there exist three

mutually orthogonal unit vectors y1, y2, y3 such that
〈
yj , z

′〉 = 1/
√
θ + 1 and

〈
yj , w

〉
= 0 for

APPROX/RANDOM’17
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all j ∈ {1, 2, 3}. This follows from the fact that the following matrix is PSD whenever θ ≥ 3,
in which case it can be realized as the Gram matrix of {y1, y2, y3, w, z

′}:
1 0 0 0 1√

θ+1
0 1 0 0 1√

θ+1
0 0 1 0 1√

θ+1
0 0 0 1 1√

θ+1
1√
θ+1

1√
θ+1

1√
θ+1

1√
θ+1 1

 .

Finally, let σ(i) ∈ {1, 2, 3} be a proper 3-coloring of the subgraph induced by U . Then the
following is an orthogonal representation of G,

vi =


ui i ∈ V \ (U ∪ I)
w i ∈ I
yσ(i) i ∈ U ,

and
〈
vi, z

′〉 = 1/
√
θ + 1 for all i. This gives a feasible solution to the SDP (15) with κ = θ+1,

implying that ϑ(G) ≤ θ + 1.
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