Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH scholarly article en Coja-Oghlan, Amin; Efthymiou, Charilaos; Jaafari, Nor; Kang, Mihyun; Kapetanopoulos, Tobias http://www.dagstuhl.de/lipics License
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-75895
URL:

; ; ; ;

Charting the Replica Symmetric Phase

pdf-format:


Abstract

Random graph models and associated inference problems such as the stochastic block model play an eminent role in computer science, discrete mathematics and statistics. Based on non-rigorous arguments physicists predicted the existence of a generic phase transition that separates a "replica symmetric phase" where statistical inference is impossible from a phase where the detection of the "ground truth" is information-theoretically possible. In this paper we prove a contiguity result that shows that detectability is indeed impossible within the replica-symmetric phase for a broad class of models. In particular, this implies the detectability conjecture for the disassortative stochastic block model from [Decelle et al.: Phys Rev E 2011]. Additionally, we investigate key features of the replica symmetric phase such as the nature of point-to-set correlations (`reconstruction').

BibTeX - Entry

@InProceedings{cojaoghlan_et_al:LIPIcs:2017:7589,
  author =	{Amin Coja-Oghlan and Charilaos Efthymiou and Nor Jaafari and Mihyun Kang and Tobias Kapetanopoulos},
  title =	{{Charting the Replica Symmetric Phase}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{40:1--40:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Klaus Jansen and Jos{\'e} D. P. Rolim and David Williamson and Santosh S. Vempala},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7589},
  URN =		{urn:nbn:de:0030-drops-75895},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.40},
  annote =	{Keywords: Random factor graph, bounds for condensation phase transition, Potts antiferromagnet, diluted k-spin model, stochastic block model}
}

Keywords: Random factor graph, bounds for condensation phase transition, Potts antiferromagnet, diluted k-spin model, stochastic block model
Seminar: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)
Issue date: 2017
Date of publication: 2017


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI