
Consumption Profiles in Route Planning
for Electric Vehicles: Theory and Applications∗

Moritz Baum1, Jonas Sauer2, Dorothea Wagner3, and
Tobias Zündorf4

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
moritz.baum@kit.edu

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
jonas.sauer@student.kit.edu

3 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
dorothea.wagner@kit.edu

4 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
zuendorf@kit.edu

Abstract
In route planning for electric vehicles (EVs), consumption profiles are a functional representation
of optimal energy consumption between two locations, subject to initial state of charge (SoC).
Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredi-
ent to many route planning approaches for EVs. In this work, we show that the complexity of a
profile is at most linear in the graph size. Based on this insight, we derive a polynomial-time algo-
rithm for the problem of finding an energy-optimal path between two locations that allows stops
at charging stations. Exploiting efficient profile search, our approach also allows partial recharg-
ing at charging stations to save energy. In a sense, our results close the gap between efficient
techniques for energy-optimal routes (based on simpler models) and NP-hard time-constrained
problems involving charging stops for EVs. We propose a practical implementation, which we
carefully integrate with Contraction Hierarchies (CH) and A* search. Even though the practical
variant formally drops correctness, a comprehensive experimental study on a realistic, large-scale
road network reveals that it always finds the optimal solution in our tests and computes even
long-distance routes with charging stops in less than 300ms.

1998 ACM Subject Classification G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases electric vehicles, charging station, shortest paths, route planning, profile
search, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.19

1 Introduction

Route planning services explicitly designed for EVs have to address specific aspects, since
EVs usually employ a rather limited cruising range. We study the problem of computing
routes that minimize energy consumption, in order to maximize cruising range and for drivers
to overcome range anxiety (the fear of getting stranded). This imposes nontrivial challenges.
Recharging en route may become inevitable on long-distance trips. Given that charging
stations are scarce, such stops need to be planned in advance [7, 42]. Moreover, EVs can
recuperate energy (e. g., when going downhill), but the battery capacity limits the amount

∗ Tobias Zündorf’s research was supported by DFG Research Grant WA654/23-1.

© Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Consumption Profiles in Route Planning for Electric Vehicles

of recuperable energy [9, 18, 36]. As a result, the energy-optimal route depends on the
initial SoC. This dependency is captured by the notion of (consumption) profiles, which
map SoC (at the source) to (minimum) energy consumption that is necessary to reach the
target [9, 18, 38]. Profiles are relevant in many applications, where the SoC at the start of a
journey is either unknown or can be decided by the driver, e. g., when charging overnight.
Moreover, they are an important ingredient of speedup techniques, where preprocessing is
applied to the input network for faster query times [7, 9, 18].

In this work, we examine the complexity of consumption profiles in road networks. Fur-
thermore, we discuss an important application that requires efficient computation of profiles,
namely, energy-optimal routes with intermediate charging stops. Even when optimizing
for energy consumption only, the integration of charging stations into route planning is
a nontrivial task: Recharging to a full battery at a charging station can be wasteful if it
prevents the battery from recuperating energy on a downhill ride later on. Hence, profiles
help in deciding the optimal amount of energy to be recharged at a station.

Related Work. Classic route planning approaches apply Dijkstra’s algorithm [17] to a graph
representation of the network, with fixed scalar edge costs representing, e. g., travel time.
For faster running times in practice, speedup techniques [4] accelerate online shortest-path
queries with data preprocessed in an offline phase. Examples of such techniques are CH [20],
where vertices are contracted iteratively and replaced by shortcuts in the graph, and variants
of A* search [21, 24]. Combining both techniques, Core-ALT [6] contracts most vertices and
runs A* on the remaining core graph. Some techniques were also extended to more complex
scenarios, such as time-dependent cost functions [5, 10, 12, 14]. In this context, a profile
query asks for a functional representation of travel time between locations for any departure
time. Such functions may have superpolynomial complexity [19], but can be computed by an
output-sensitive search algorithm [11, 15]. See Bast et al. [4] for a more complete survey.

Regarding route planning for EVs, computing routes that minimize energy consumption
requires the integration of battery constraints into Dijkstra’s algorithm and adaptation of
speedup techniques for fast queries [9, 18, 36]. Eisner et al. [18] observe that consumption
profiles have constant complexity for a fixed path. Subsequent works consider general profiles
possibly comprising multiple paths [9, 38], but their complexity has not been studied. Stops
at charging stations are often considered under the simplifying assumptions that the charging
always results in a fully recharged battery [22, 32, 40, 41, 42, 43]. Routes with a minimum
number of intermediate charging stops can then be computed in less than a second on
subcountry-scale graphs [41, 42]. More complex models also consider constraints on time
spent driving [8, 30] and recharging [7, 27, 31, 33, 44, 45], but this results in much more
difficult (typically NP-hard) problems and proposed techniques are inexact or impractical.

Contribution and Outline. In Section 2, we formally introduce our model, describe problem
variants, and recap basic algorithmic ingredients needed to solve them. In Section 3, we
investigate the complexity of consumption profiles. As our main result, we prove that such
profiles have linear complexity—much in contrast to profiles in time-dependent routing, which
can have superpolynomial size [19]. This enables us to compute profile search efficiently—an
algorithm relevant in various query scenarios and a crucial ingredient for many speedup
techniques. In Section 4, we consider energy-optimal routes that allow stops at charging
stations to recharge the battery. Unlike previous studies [22, 40, 41], we do not assume that
using a charging station always results in a fully recharged battery. Instead, we allow the
charging process to be interrupted beforehand to save energy. Building upon our theoretical

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:3

findings, we derive a polynomial-time algorithm to solve the problem. To make the approach
fast in practice, we propose a (heuristic) variant and integrate it with CH [18, 20] and A*
search [24]. Section 5 presents our experimental study, in which we demonstrate that our
algorithm (empirically) obtains optimal results for all queries in well below a second after
moderate preprocessing effort. We conclude with final remarks in Section 6.

2 Model, Query Variants, and Basic Algorithms

We model the road network as a directed graph G = (V,E). Energy consumption along edges
is given by the cost function c : E → R. Consumption can be negative to model recuperation,
but cycles with negative consumption are physically ruled out. An EV is equipped with a
battery of limited capacity M ∈ R≥0. Given the current SoC bu ∈ [0,M] of a vehicle at a
vertex u ∈ V , traversing an edge (u, v) ∈ E typically results in the SoC bv = bu− c(u, v) at v.
However, we also take battery constraints into account: The SoC bv must neither exceed the
limit M , nor drop below zero [1, 2, 18]. Thus, if the consumption c(u, v) of an edge (u, v)
exceeds the SoC bu at u, the edge cannot be traversed, as the battery would run empty along
the way. We indicate this case by setting bv := −∞. Conversely, if the battery is (almost)
fully charged, passing an edge with negative consumption cannot increase the SoC beyond
the maximum value M , so we obtain bv ≤ M . Given some initial SoC bs at the source
vertex s, we say that an s–t path P = [s, . . . , t] in G is feasible if and only if the battery
never runs empty, i. e., the SoC bv obtained at every vertex v of P after iteratively applying
above constraints is within the interval [0,M]. Note that a path may be infeasible even if
its cost (i. e., the sum of its consumption values) does not exceed bs: Due to negative edge
weights, there might be a prefix of greater total cost that renders the path infeasible. Given
the SoC bt at the target t of a feasible path, the energy consumption on the path is bs − bt.
This value can become negative, due to recuperation.

For the sake of simplicity and without loss of generality, we assume in this work that
c(e) ∈ [−M,M] for all edges of the input graph. Moreover, we assume that shortest paths
(wrt. the cost function c) between arbitrary pairs of vertices are unique.

Profiles. Given two vertices s ∈ V and t ∈ V of the input graph G, we define the SoC
function f : [0,M] ∪ {−∞} → [0,M] ∪ {−∞}, also called SoC profile or s–t profile, which
maps SoC at the source s to the maximum SoC at the target t (after traversing any s–t path
in G). We define f(−∞) := −∞. SoC functions are piecewise linear, so we use a sequence
F = [(x1, y1), . . . , (xk, yk)] of breakpoints to define f , such that f(b) = −∞ for b < x1,
f(b) = yk for b ≥ xk, and f(b) is obtained by linear interpolation in all other cases.

For some s–t path P , we denote by fP the profile of P , i. e., the SoC function that maps
initial SoC at s to the resulting SoC at t after traversing P . Given the SoC functions fP

and fQ of two paths P and Q, we say that fP dominates fQ (similarly, P dominates Q) if
fP (b) ≥ fQ(b) for all b ∈ [0,M].

To give a simple example, consider the SoC function f[u,v] induced by an edge (u, v) ∈ E.
Given the cost c(u, v) of the edge, battery constraints yield

f[u,v](b) :=


−∞ if b− c(u, v) < 0,
M if b− c(u, v) > M,

b− c(u, v) otherwise.

The function f[u,v] is represented by the sequence F[u,v] = [(c(u, v), 0), (M,M − c(u, v))] if

SEA 2017

19:4 Consumption Profiles in Route Planning for Electric Vehicles

c(u, v) ≥ 0 is nonnegative, and F[u,v] = [(0,−c(u, v)), (M + c(u, v),M)] otherwise. In both
cases, the function consists of two breakpoints.

Query Variants. Typically, there are two problem variants of interest. First, an SoC query
consists of a source s ∈ V , a target t ∈ V , and an initial SoC bs ∈ [0,M]. It asks for a (single)
energy-optimal s–t path when departing at s with SoC bs, i. e., a path that maximizes the
SoC bt at t (and minimizes the consumption bs− bt). Second, a profile query does not take bs

as input, but asks for an s–t profile, i. e., the optimal value bt for every initial SoC bs ∈ [0,M].

Basic Algorithms. SoC queries can be answered by a variant [1, 2] of Dijkstra’s algorithm
that handles battery constraints on-the-fly, using explicit checks. However, the algorithm
is label correcting, i. e., negative edge costs may cause (exponentially many) re-scans of
vertices [28]. Potential shifting [29] can remedy this, making use of a potential function
π : V → R on the vertices with the property that c(u, v) − π(u) + π(v) ≥ 0 holds for
all (u, v) ∈ E. Then the search becomes label setting when using the reduced cost function
c(u, v)− π(u) + π(v), i. e., each vertex is scanned at most once. Distances wrt. the original
cost function are maintained and battery constraints can still be applied on-the-fly [18, 36].
We refer to this algorithm as EV Dijkstra (EVD).

Profile search [9, 37, 38] is a label-correcting algorithm that answers profile queries.
Starting from the source vertex s ∈ V , the algorithm maintains, for each vertex v, a
(tentative) s–v profile fv. It initializes fv ≡ −∞ for all v ∈ V , except fs = id. It adds s
to a priority queue, which uses the value minb∈[0,M]{b − fv(b)} as key of a vertex v, i. e.,
the minimum energy consumption of its SoC function. In each step of the main loop, the
algorithm extracts a vertex u with minimum key from the queue (thereby scanning it) and
proceeds along the lines of Dijkstra’s algorithm: Incident outgoing edges e = (u, v) are
scanned by computing the composition f = fe ◦ fu. Afterwards, it sets fv = max(fv, f), i. e.,
the pointwise maximum of fv and f , and updates v in the priority queue, if its key changed.
After termination, the label fv of every vertex v ∈ V is the s–v profile.

3 On the Complexity of Profiles

In this section, we first examine characteristics of SoC functions of single paths. Then, we
show that the complexity (i. e., number of breakpoints) of general SoC functions is linear
in the number |V | of vertices in the graph. An alternative notion that is common in the
literature [7, 8, 9, 18] utilizes consumption profiles g(·), which map initial SoC to energy
consumption between two vertices. We obtain the relation f(b) = b− g(b), hence our insights
on the complexity of SoC profiles carry over to consumption profiles directly.

Profiles Representing Paths. Given an s–t path P , Eisner et al. [18] show that the number
of breakpoints of the SoC function fP is bounded by a constant. Below, Lemma 1 recaps
this fundamental insight, but also provides a full specification of the SoC function of a single
path based on the costs of certain subpaths. We begin by defining important subpaths of an
s–t path P . First, let P+

s denote the maximum prefix of P , i. e., the prefix of P that has
maximum cost c(P+

s) wrt. energy consumption among all its prefixes. (Recall that the cost
of a path is defined as the sum of its edge costs, hence, battery constraints do not apply.)
If every prefix of P (including P itself) is negative, we obtain P+

s = [s] and c(P+
s) = 0.

Similarly, the minimum prefix P−s minimizes the cost c(P−s) among all prefixes of P . We
obtain P−s = [s] and c(P−s) = 0 in case every prefix of P is positive. The maximum suffix

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:5

s

t
1

−2
1

2
−1

P +
s P−t

P−s P +
t

(a) An s–t path with depicted edge costs.

c(P +
s)

c(P +
t)

−c(P−t)

−c(P−s)

1 2 3 4 5
0

1

2

3

4

5

−∞

(b) The corresponding SoC function.

Figure 1 An s–t path together with its SoC function, assuming that the battery capacity is M = 5.
The cost of the path is 1 and its important subpaths are indicated. Relative vertical positions of
vertices correspond to costs of subpaths starting or ending at the respective vertex. The coordinates
of breakpoints in the profile are equal to the costs of certain important subpaths.

P+
t and minimum suffix P−t are defined symmetrically. For the sake of simplicity, we assume

that P contains no subpath with cost 0 consisting of more than one vertex (this can be
enforced by perturbation of edge costs). Thus, the subpaths above are uniquely defined.
Moreover, observe that P = P−s ◦ P+

t = P+
s ◦ P−t ; see Figure 1.

Lemma 1 shows that the SoC function fP (defined by its breakpoints) of a path P is
completely determined by the costs of its important subpaths. At most two breakpoints are
necessary to represent the SoC function. It has a characteristic form: It consists of a first
part with infinite consumption (the path is infeasible for low SoC), followed by a segment
with slope 1 (the consumption is constant, thus SoC at t increases with SoC at s), and a
last segment of constant SoC (for high values of initial SoC, the battery is fully charged at
some point due to recuperation). Each of these three intervals may collapse to a single point.
The segment with slope 1 is also called the characteristic segment of the SoC function. An
example of a path and its SoC function is depicted in Figure 1.

I Lemma 1. Given an s–t path P , its SoC function fP is a piecewise linear function. It is
defined by a sequence F of breakpoints in the following way.
1. If there exists a subpath of P with cost greater than M , F = ∅ and fP ≡ −∞.
2. Otherwise, if there is a subpath of P with cost below −M , F = [(c(P+

s),M − c(P+
t))].

3. If neither such subpath exists, F = [(c(P+
s),−c(P−t)), (M + c(P−s),M − c(P+

t))].

General Profiles. For a pair of vertices s and t, different paths may be the optimal choice
for different values of initial SoC; see Figure 2. Therefore, a general SoC function is the
upper envelope of a set of SoC functions, each corresponding to a single path. We say that
an s–t path contributes to the s–t profile if it is optimal for some initial SoC. We bound the
number of breakpoints in the SoC function subject to the number of contributing paths. The
following Lemma 2 is a direct implication of the observations by Atallah [3]. (In general, the
number of breakpoints in the upper envelope of linear functions can be superlinear [46].)

I Lemma 2. Given the set P of all contributing paths of an s–t profile, the number of
breakpoints in the SoC function is linear in |P|.

Since the number of s–t paths can be exponential in the graph size, Lemma 2 does not
yield an immediate polynomial bound on the complexity of the s–t profile. Note that in the

SEA 2017

19:6 Consumption Profiles in Route Planning for Electric Vehicles

s t

−1 2

2
−5

3

(a) Graph with vertices s and t.

1 2 3 4 5 6
0

1

2

3

4

5

−∞

(b) The corresponding SoC function.

Figure 2 The SoC profile of given vertices s and t. The battery capacity is M = 6. The dashed
segment indicates dominated parts of the SoC function of the upper s–t path.

related scenario of time-dependent profiles, it was shown that the number of contributing
paths can actually become superpolynomial in the graph size [19]. In contrast, we now show
that the number of breakpoints of an SoC function is in fact linear in the number of vertices
of the input graph in the worst case.

We start with basic properties of paths and their SoC functions. Lemma 3 claims that
a path P dominates another path Q if it is shorter (wrt. the cost function c) and both its
maximum prefix and maximum suffix are shorter than the respective subpaths of Q. This
follows immediately from the structure of SoC functions and is illustrated in Figure 3.

I Lemma 3. Let P and Q be two s–t paths, such that c(P+
s) ≤ c(Q+

s), c(P+
t) ≤ c(Q+

t),
and c(P) ≤ c(Q). Then the SoC function fP of P dominates the SoC function fQ of Q.

As argued above, certain subpaths of an s–t path P are relevant to determine the
corresponding profile. We add the following definitions. The bottom vertex v− is the last
vertex of the minimum prefix (and the first vertex of the maximum suffix) of P . Similarly,
the top vertex v+ denotes the last vertex of the maximum prefix (and the first vertex of
the minimum suffix) of P . We call v− and v+ the important vertices of P . We presume
that v− 6= v+, which always holds except in the trivial case s = t. The important vertices
then separate P into three subpaths. (In case s or t are important vertices, one or two of
these subpaths may consist of a single vertex.) Moreover, we distinguish two types of paths,
depending on the order of appearance of important vertices. A path is called top-bottom path
if v+ appears before v−, otherwise it is a bottom-top path. Lemma 4 states that prefixes and
suffixes of contributing paths are uniquely defined by their corresponding important vertices.

I Lemma 4. Given two vertices s ∈ V and t ∈ V , let v ∈ V be an arbitrary fixed vertex. All
paths of the same type contributing to the s–t profile with v as their first important vertex
share the same s–v subpath. Moreover, all contributing paths of the same type with v as their
second important vertex share the same v–t subpath.

Proof. Assume for contradiction that there are two contributing paths P and Q of the same
type, such that the first important vertex of each path is v, but their respective s–v subpaths
differ. Without loss of generality, let the s–v subpath of P be shorter. We replace the
s–v subpath of Q by the subpath of P , which yields a modified path Q′. Clearly, the total
length of Q′ is below the length of Q, i. e., c(Q′) < c(Q). At the same time, neither the
maximum prefix nor the maximum suffix of Q′ exceeds the cost of the respective subpath

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:7

x = c(P +
s)

y = M − c(P +
t)

x− y = c(P)

1 2 3 4
0

1

2

3

4

−∞

Figure 3 Dominated area of an SoC function, for a path P with c(P) = −1. Its maximum prefix
and maximum suffix have cost c(P +

s) = c(P +
t) = 1. The costs induce three lines, each of which

subdivides the Euclidean plane into two half planes. The SoC function of a path Q with c(Q) ≥ c(P),
c(Q+

s) ≥ c(P +
s), and c(Q+

t) ≥ c(P +
t) lies in the shaded intersection of three of these half planes.

of Q. By Lemma 3, the modified path Q′ dominates Q, contradicting the assumption that Q
is a contributing path.

Similarly, we can replace the v–t subpath in one of two paths of the same type that share
the second important vertex v by a shorter v–t subpath. Again, we obtain a new path that
is shorter, while the lengths of its maximum prefix and suffix do not increase. Hence, at least
one of the two paths does not contribute to the profile. J

Below, Lemma 5 shows that together with their order in the path, pairs of important
vertices uniquely define contributing paths of the same type. Note that this already implies
that there are at most O(|V |2) paths contributing to an s–t profile. Afterwards, we use a
somewhat more sophisticated argument to show that the number of breakpoints is at most
linear in the number of vertices.

I Lemma 5. Let s ∈ V , t ∈ V , v− ∈ V , and v+ ∈ V be four vertices of the input graph.
There is at most one bottom-top path contributing to the s–t profile that has v− as its bottom
vertex and v+ as its top vertex. Similarly, at most one contributing top-bottom path has v+

as its top vertex and v− as its bottom vertex.

Proof. Assume for contradiction that there exist two distinct contributing s–t paths P
and Q, such that both are bottom-top paths, their bottom vertex is v−, and their top vertex
is v+. By Lemma 4, we know that P and Q share the same s–v− subpath and the same
v+–t path. Hence, their v−–v+ subpaths must differ. Without loss of generality, let the
v−–v+ subpath of P be shorter. Apparently, the total cost of the path P is lower than
the cost of Q, i. e., c(P) < c(Q). Similarly, the cost of the maximum prefix (suffix) of P is
at most the cost of the maximum prefix (suffix) of Q. By Lemma 3, this implies that P
dominates Q, contradicting the fact that Q contributes to the optimal solution. The other
case is symmetric, so the claim follows. J

Using a somewhat more sophisticated argument, Theorem 6 shows that the number of
breakpoints is at most linear in the number of vertices. It is easy to construct an example
where the number of breakpoints in the SoC function is in fact linear in |V |, so this bound is
tight up to a constant factor. This also enables profile search to run in O(|V |2 log |V |) time.

I Theorem 6. Given a source s ∈ V and a target t ∈ V in the input graph G = (V,E), the
number of contributing paths (and breakpoints) in the s–t profile is in O(|V |).

SEA 2017

19:8 Consumption Profiles in Route Planning for Electric Vehicles

V +
1 V −2

v5

x3

v3x2

v1
x1

v6
y6

v2 y5

v4

y4

1

4

2

3

5
?

(a) A constructed bipartite graph.

y4

y5

y6

1 2 3 4 5

x1 x2 x3 x4 x5 x6

M

0
M

−∞

(b) The SoC functions of the edges.

Figure 4 Illustration of the proof of Theorem 6. The constructed bipartite graph G′ contains
copies of top and bottom vertices of the input graph. Edges represent paths connecting certain
important vertices. Vertices have assigned constants x1, x2, x3, y4, y5, y6. Edge labels indicate
intervals depicted in Figure 4b, where the corresponding characteristic segments are contained in
the upper envelope. Characteristic segments connect vertical lines induced by constants x1, . . . , x6.
Parts of characteristic segments that lie on the upper envelope are highlighted (dark blue). Adding
the missing characteristic segment that connects the lines induced by x1 and x6 (to form a cycle in
the graph) results in at least one dominated SoC function.

Proof. To prove the claim, we construct a graph G′ consisting of vertices representing
important vertices in G. Edges of G′ represent contributing paths between pairs of important
vertices. We examine the structure of SoC functions of contributing paths to show that the
number of edges in this graph is in O(|V |).

We construct an undirected graph G′ that consists of the union of four sets of vertices
V −1 = {v−1 | v ∈ V }, V

+
1 = {v+

1 | v ∈ V }, V
−

2 = {v−2 | v ∈ V }, and V +
2 = {v+

2 | v ∈ V }.
Clearly, the number of vertices in G′ is linear in the number of vertices in the original graph.
We add one undirected edge for every s–t path in the original graph that contributes to the
SoC function: For every contributing bottom-top path with first important vertex u and
second important vertex w, we add the edge {u−1 , w

+
2 }. For every contributing top-bottom

path with first important vertex u and second important vertex w, we add the edge {u+
1 , w

−
2 }.

Lemma 5 implies that there are no multi-edges in the resulting graph. By construction, G′
consists of at least two components and each component induces a bipartite subgraph. We
claim that G′ contains no cycles. This implies that the resulting graph has at most O(|V |)
edges, which proves the theorem.

Assume for contradiction that there is a cycle C = [v1, . . . , vk, v1] in the graph constructed
above. There are two possible cases: Either all edges in the cycle correspond to top-bottom
paths and it contains only vertices in V +

1 ∪ V
−

2 , or all edges correspond to bottom-top paths
and all its vertices are in the set V −1 ∪ V

+
2 .

Case 1. All edges represent top-bottom paths, and therefore {v1, . . . , vk} ⊆ V +
1 ∪ V

−
2 .

Figure 4a shows an example. Consider the profile induced by all paths corresponding to the
edges of this cycle. Edges incident to some vertex vi ∈ V +

1 , with i ∈ {1, . . . , k}, correspond
to paths with the same top vertex. Lemma 4 implies that these paths also share the same
maximum prefix of some length x ∈ [0,M]. Therefore, by Lemma 1, every edge incident to
vi corresponds to some SoC function whose first breakpoint has the x-coordinate x. Thus,

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:9

the leftmost point of the characteristic segment of each of these SoC functions lies on a
vertical line defined by x; see Figure 4b. Similarly, edges incident to a bottom vertex vi ∈ V −1
represent paths with the same maximum suffix of length y ∈ [0,M]. The last breakpoint
of each SoC function associated with these paths lies on a horizontal line defined by the
y-coordinate y. Hence, each of the k vertices defines either a vertical or a horizontal line.
Every edge in the cycle C corresponds to a characteristic segment that starts at a vertical
line and ends at a horizontal line, as shown in Figure 4b.

For a constant y inducing a horizontal line, we consider the leftmost x-coordinate of
any breakpoint in an SoC function (corresponding to an edge in the cycle C) with the
y-coordinate y; see Figure 4b. In total, we defined one x-coordinate for each vertex in C,
denoted by xi for i ∈ {1, . . . , k}. Without loss of generality, assume x1 < x2 < · · · < xk.
Then, we obtain k − 1 intervals [xi, xi+1], i ∈ {1, . . . , k − 1}. By assumption, every edge
of C corresponds to a contributing path. Moreover, the characteristic segment of the SoC
function of each contributing path is (partially) contained in the upper envelope of the SoC
functions of all these paths (otherwise it would not contribute to the s–t profile). Given that
all characteristic segments are parallel (with slope 1), this implies that each segment is the
unique maximum over all characteristic segments on some interval [x, xi+1], i ∈ {1, . . . , k−1}.
However, there are only k − 1 such intervals for k contributing paths; a contradiction.

Case 2. All edges represent bottom-top paths, and therefore {v1, . . . , vk} ⊆ V −1 ∪ V
+

2 . In
this case, edges incident to a bottom vertex vi ∈ V −1 for an i ∈ {1, . . . , k} correspond to paths
with the same bottom vertex. By Lemma 4, these paths share the same minimum prefix
with length y ∈ [0,M]. Moreover, observe that a contributing bottom-top path contains no
subpath with cost below −M , since the cost of its maximum prefix must not exceed M . It
follows that SoC functions of contributing bottom-top paths are of the form as in Case 3
of Lemma 1. Thus, the leftmost point of the characteristic segment of each SoC function
represented by an edge incident to a bottom vertex vi ∈ V −1 lies on the horizontal line defined
by y. Similarly, edges incident to top vertices vi ∈ V +

1 correspond to characteristic segments
whose rightmost point lies on the same vertical line defined by a constant x ∈ [0,M]. Along
the lines of the first case, this yields a contradiction. J

4 Energy-Optimal Routes with Charging Stops

As battery capacities of EVs are typically rather small, recharging en route can be inevitable
on long-distance trips. Therefore, we extend our model to incorporate charging stops. A
subset S ⊆ V of the vertices represents designated charging stations. Every station v ∈ S has
a predefined SoC range Rv = [bmin

v , bmax
v] ⊆ [0,M]. When arriving at v with arrival SoC b,

we pick a desired departure SoC b′ ∈ [bmin
v , bmax

v] ∪ {b} with b ≤ b′. SoC ranges are useful
to model user preferences or technical features of charging stations. For example, we set
Rv := [M,M] for battery swapping stations. It is always allowed to pick the arrival SoC b as
departure SoC, to account for the possibility of not charging at v.

Given a source s ∈ V , a target t ∈ V , and the initial SoC bs ∈ [0,M] at s, the Energy-
Optimal Route with Charging Stops (EORCS) problem asks for a feasible path that minimizes
overall energy consumption, defined as the difference bs − bt between SoC at source and
target, plus the total amount rt of energy recharged at charging stations v ∈ S to reach t.
Hence, our objective is to maximize bt − rt among all feasible solutions.

There are certain challenging aspects to this problem. First, we have to determine the
departure SoC when reaching a charging station with some arrival SoC. Note that it may

SEA 2017

19:10 Consumption Profiles in Route Planning for Electric Vehicles

be wasteful to fully recharge the battery, as this may prevent recuperation on subsequent
road segments. Second, subpaths of optimal paths are not optimal in general (e. g., detours
to a charging station may be necessary). Hence, “greedy” choices can lead to suboptimal
results. A natural way to overcome this issue is the use of label sets to keep multiple solutions
at vertices, as in (exponential-time) multi-criteria search [23, 34]. In fact, this algorithm
can be adapted to our problem setting, using labels with continuous ranges of SoC and
recharged energy to reflect different choices at charging stations and the resulting SoC at
a vertex. Then, vertices maintain labels that store an SoC range and a charging range.
As in the multi-criteria scenario, we can apply Pareto dominance to remove suboptimal
labels. However, it is not obvious whether such an approach has subexponential running
time. Instead, we build upon tools from Section 3 to derive an alternative algorithm that
maintains single labels on an extended search graph and that is conceptually simpler, can
easily be integrated with known speedup techniques, and runs in polynomial time.

Optimal Paths between Charging Stations. When charging at a station u ∈ S, we have
to ensure that the SoC is sufficient to reach t or the next charging station v ∈ S. Therefore,
we examine an important subproblem, where given a charging station u ∈ S, an (optimal)
arrival SoC barru , the amount ru of energy recharged so far (at previous charging stations),
and a vertex v ∈ S ∪ {t}, we want to find a departure SoC bdepu > barru that maximizes
the objective at the target vertex t under the assumption that v is the next vertex where
energy is recharged (or v = t is the target itself). If we compute the u–v profile fu,v, we can
greedily optimize the objective on the s–v path by picking an SoC bdepu > barru that maximizes
f(bdepu)− (ru + r), where r := bdepu − barru is the amount of energy charged at u. Unfortunately,
the s–v path that maximizes this objective does not extend to the best solution at t in
general. The reason for this is that charging too much energy might prevent the vehicle from
recuperating energy on the following v–t path; see Figure 5 for an example.

Instead, we need a more sophisticated approach. To this end, we identify SoC values bdepu

that may possibly lead to an optimal solution. We know (by the FIFO property [18]) that
for an arbitrary departure SoC bdepu ∈ [0,M], the optimal u–v subpath is also energy-optimal
for bdepu . By Theorem 6, there can be at most O(|V |) such u–v paths. For each u–v path P
contributing to the u–v profile fu,v, we identify a (unique) canonical departure SoC bdepP at u
that always optimizes the objective at t under the assumption that recharging is necessary
at v (or v = t). Consider the SoC function fP of P and let bmin

P := c(P+
u) denote the

minimum SoC that is necessary to traverse P , i. e., fP (b) = −∞ if and only if b < bmin
P .

Consequently, we have bdepP ≥ bmin
P . We also know that the objective fP (bdepP)−bdepP +barru −ru

of the s–v path can only decrease for bdepP > bmin
P , since barru − ru is constant and the slope of

fP is at most 1 in the interval [bmin
P ,M]. Assuming that we recharge energy at v anyway,

charging more than bmin
P will also never turn out to be essential after visiting v: If necessary,

we can recharge missing energy at v. Therefore, given the SoC range [bmin
u , bmax

u] of u, we
pick the canonical departure SoC bdepP := max{bmin

P , bmin
u } for P , if this value lies in the SoC

range of u. Otherwise, we have bmax
u < bmin

P and charging at u never renders P feasible.

Search Graph Construction. Given the original graph G and the target vertex t ∈ V ,
we augment G with a charging station (sub-)graph Gc = (Vc, Ec), which keeps separate
vertices for distinct values of departure SoC at charging stations; see Figure 5. For each
vertex u ∈ S, we create one charging vertex u′ per distinct canonical departure SoC bdepP of
any contributing path P from u to another charging station or to the target. We explicitly
store the corresponding departure SoC bdepP with the vertex u′, i. e., we keep a mapping

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:11

s u v t

Gc

2

4

1

5 ∞

0
4 −4

2
−5

5
1 −5

b < 2
b < 4

b < 1
b < 5

0
0

4
5

5
3

Figure 5 Search graph with charging stations (red, charging range [0, M], M = 5). Vertex labels
in Gc (shaded) indicate departure SoC. Edge labels indicate costs in G, arrival SoC in Gc, and SoC
restrictions for transfer edges. While t is always reached from s with bt = 5, the optimal path (and
the objective bt − rt) depends on bs: For bs < 2, energy is charged at u (bdep

u = 2) and v (bdep
v = 1),

which yields rt = 3− bs > 1; for bs ∈ [2, 3] it is optimal to charge only at v (bdep
v = 1) to get rt = 1;

for bs ∈ [3, 4) energy is only charged at v (bdep
u = 4) to get rt = 4− bs ≤ 1; no charging is necessary

at all for bs ≥ 4. In all cases the objective at v is maximized for bdep
u = 4, which yields bv − rv = bu.

bdep : Vc → [0,M] and set bdep(u′) := bdepP . The vertex u′ itself is added to Vc. We also
add a dummy target vertex t′ to Vc with bdep(t′) := ∞. For every contributing u–v path
between vertices u ∈ S and v ∈ S ∪ {t}, we add edges (u′, v′) from the (unique) charging
vertex u′ ∈ Vc of u with bdep(u′) = bdepP to every corresponding vertex v′ ∈ Vc of v with
fP (bdepP) < bdep(v′) to Ec. Together with the edge (u′, v′), we also store the SoC upon arrival
at v′, i. e., we use a mapping barr : Ec → [0,M] and set barr(u′, v′) := fP (bdepP). To connect
G and Gc, we add (directed) transfer edges (v, v′) from each charging station v ∈ S ∪ {t}
to all its corresponding departure vertices v′ ∈ Vc. Transfer edges have no cost, but may
only be traversed if the current SoC is below the departure SoC bdep(v′) of the respective
departure vertex v′. Given the set E′ of transfer edges, we obtain the augmented graph
G′ := (V ∪ Vc, E ∪ E′ ∪ Ec). Note that its size is polynomial in the size of G.

A Polynomial-Time Algorithm. Using the augmented graph, we adapt EVD to find energy-
optimal routes in G′. The modified algorithm maintains a single label `(v) per vertex v ∈
V ∪ Vc, which stores the values of SoC bv and recharged energy rv that maximize the
objective bv− rv at v. Initially, it sets bv = −∞ and rv = 0 for all v ∈ V , except for the label
`(s) = (bs, 0) of s. In each iteration of the main loop, the label `(u) = (bu, ru) of some vertex
u in G′ with maximum key bu − ru is extracted from the queue. If u is an original vertex,
i. e., u ∈ V , the algorithm proceeds exactly like plain EVD by scanning its outgoing edges. If,
additionally, u is a charging station, i. e., u ∈ S, its corresponding charging vertices u′ ∈ Vc

are updated (and inserted into the queue) if bu < bdep(u′) and `(u) yields an improvement
to the label `(u′). Vertices u ∈ Vc in the charging station graph are handled separately by
the algorithm. For each outgoing edge (u, v) in Gc, a new label (b, r) is generated as follows.
Its SoC is set to the arrival SoC b := barr(u, v) at v and the amount of charged energy is set
to r := ru + bdep(u) − bu. If the resulting label (b, r) improves `(v), the latter is updated
accordingly. After termination, the label at the dummy target vertex t′ (i. e., the unique
vertex t′ ∈ Vc with bdep(t′) = ∞) contains the optimal pair of SoC and recharged energy.
Making use of potential shifting, Theorem 7 follows directly from the polynomial size of G′.

I Theorem 7. The problem EORCS can be solved in polynomial time.

SEA 2017

19:12 Consumption Profiles in Route Planning for Electric Vehicles

A Practical Variant. The construction of Gc is rather time-consuming on realistic instances.
Luckily, we can move most work to preprocessing, since paths between charging stations
are independent of source and target. We also propose a much simpler search graph, which
can naturally be combined with CH for further speedup. We replace the graph Gc with an
overlay graph GS = (S ∪ {t}, S × S ∪ {(v, t) | v ∈ S)}). Every edge (u, v) in GS stores as its
cost function the u–v profile (wrt. the original graph). Compared to Gc, this significantly
reduces the number of vertices. Moreover, it is straightforward to construct GS using profile
search. We slightly modify the search algorithm to work with GS instead of Gc: If a scanned
vertex u ∈ S represents a charging station, all shortcuts (u, v) in GS are scanned. For
each, the arrival SoC b that maximizes the objective at v is picked (such that b ≥ bu and
b ∈ [bmin

u , bmax
u]). If this yields an improvement to the label of v, it is updated accordingly.

As argued before, picking the SoC at v in this greedy fashion may lead to suboptimal
results (recall Figure 5). On real-world networks, however, this is very unlikely to occur, as it
requires an optimal route with two charging stops u and v, such that t can be reached from
u via v, but not directly, and at the same charging too much energy at u (to reach v on an
optimal s–v path) prevents recuperation along the v–t path due to a fully-charged battery.
Consequently, our approach always produced optimal solutions in our tests; see Section 5.

Integration with CH. In its basic variant, CH [20] iteratively contract vertices in increasing
order of (heuristic) importance during preprocessing, maintaining distances between all
remaining vertices by adding shortcut edges, if necessary. Witness searches determine
whether a shortcut is required to preserve distances. The CH query runs bidirectional from
source and target on the input graph augmented by all shortcuts added during preprocessing,
following only upward edges (from less important to more important vertices).

When solving EORCS with CH, we do not contract charging stations during preprocess-
ing [7, 41]. Hence, we stop vertex contraction at some point, leaving an uncontracted core of
charging stations (and possibly other vertices). We run profile searches on this (relatively
small) core graph to quickly construct the overlay GS . Shortcuts are only added to GS if
their corresponding SoC function is finite for some SoC.

In a basic approach, witness search uses profile search to determine whether a shortcut is
necessary. For faster preprocessing, an alternative approach replaces profiles by scalar upper
bounds maxb∈[0,M](b − f(b)) on the energy consumption of an edge with SoC function f .
Observe that negative costs are ruled out this way, since consumption must be at least
zero for a fully charged battery. This re-enables Dijkstra’s algorithm for witness searches,
computing upper bounds a ∈ [0,M] on energy consumption between a given pair of vertices.
A shortcut candidate is inserted only if its SoC function f consumes less energy for at least
one SoC, i. e., b− f(b) < a for some b ∈ [0,M]. When using upper bounds, we may end up
inserting unnecessary shortcuts. This does not affect correctness, but may (slightly) slow
down queries. (Similarly, Eisner et al. [18] use a sampling approach to avoid costly profile
search during preprocessing in their implementation.)

To obtain the full path description, we enable path unpacking by storing via vertices
during contraction, as in plain CH [20]. (Note, however, that we need one via vertex per
contributing path of an SoC function.) Additionally, we have to reconstruct paths representing
shortcuts between charging stations within the core. This can be done by precomputing
and storing the paths explicitly (in the core), or by running a profile search between each
consecutive pair of charging stations in the optimal path. Finally, the retrieved paths in the
core are unpacked. The optimal amount of energy that must be recharged is easily obtained
from the SoC profiles in the overlay GS (by picking a departure SoC for each profile that
maximizes the objective).

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:13

The query algorithm consists of two phases. The first runs a backward profile search
from t, scanning only upward and edges in the core. Shortcuts in GS are ignored by this
search. After its termination, SoC profiles from each charging station to the target are known.
We (temporarily) add the target and all corresponding shortcuts to GS . The second phase
runs modified EVD from the source s with initial SoC bs, on a graph consisting of upward
edges and all edges in the core (including GS).

Adding A* Search. On large instances, scanning shortcuts in the dense subgraph GS

becomes the major bottleneck of the approach. We add A* search [24] to improve performance.
The basic idea of A* search is to compute a consistent potential function π : V → R on the
vertices, which fulfills the condition c(u, v)− π(u) + π(v) ≥ 0 for all edges (v, v) ∈ E. The
potential of a vertex is added to the key of a label when updating the priority queue. To
make the search goal directed, we compute a consistent potential function where vertices
that are closer to the target have smaller keys.

Before the CH search, we run a label-correcting backward search from t, scanning upward
edges and core edges (except for shortcuts in GS), with (scalar) lower bounds on energy
consumption as edge costs. This yields, for each vertex v in the core, a lower bound

¯
c(v) on

energy consumption from v to t. Moreover,
¯
c(·) induces a consistent potential function on V ,

as follows immediately from the triangle inequality. The forward search is then split into
two phases. The first scans upward edges, but ignores outgoing edges of core vertices. The
second phase is initialized with all core vertices scanned during the first phase. Using the
potential function, this phase becomes goal directed.

An aggressive variant of A* search achieves further speedup at the cost of suboptimal
results. As before, when a charging station is visited by the forward search, all outgoing
shortcuts (u, v) in GS are scanned. However, we update the label of at most one vertex v ∈ S
and insert it into priority queue, namely, the one with maximum key among all vertices that
are improved by the scans.

5 Experiments

We implemented all approaches in C++, using g++ 4.8.5 (-O3) as compiler. Experiments
were conducted on a single core of a 4-core Intel Xeon E5-1630v3 clocked at 3.7GHz, with
128GiB of DDR4-2133 RAM, 10MiB of L3, and 256KiB of L2 cache.

Input and Methodology. We ran experiments on a graph representing the road network of
Western Europe, kindly provided by PTV AG (http://ptvgroup.com). Energy consumption
data stems from PHEM, a detailed micro-scale emission model [25]. We consider two vehicle
models. The first is based on a real production vehicle (Peugeot iOn) with a battery
capacity of 16 kWh (corresponding to a range of roughly 100–150 km). The second is
an artificial model with a capacity of 85 kWh (400–500 km range, similar to recent Tesla
models). Data source mentioned above are proprietary, but enable us to test our algorithms
on detailed and realistic input data. To accurately assign consumption values to road
segments, we retrieved road slopes based on elevation data from the freely available SRTM
dataset (http://www2.jpl.nasa.gov/srtm). Removing edges without reasonable energy
consumption (e. g., due to large areas with missing elevation data), we obtain a graph
with 22 198 628 vertices and 51 088 095 edges after extracting the largest strongly connected
component from the remaining graph [9]. About 11.8% and 15.2% of these edges have
negative cost for the Peugeot and the artificial model, respectively. We also conduct

SEA 2017

http://ptvgroup.com
http://www2.jpl.nasa.gov/srtm

19:14 Consumption Profiles in Route Planning for Electric Vehicles

Table 1 Performance of our approaches (Europe). The columns GS , CH, A*, and agg. (aggres-
sive A*) indicate whether a technique is enabled (•) or not (◦). For each approach and model, we
report preprocessing time, number of vertex scans during queries (#V. Sc.), and query times.

Techniques Peugeot, 16 kWh Artificial, 85 kWh

GS CH A* agg. Prepr. [s] #V. Sc. Q. [ms] Prepr. [s] #V. sc. Q. [ms]

◦ ◦ ◦ ◦ – 8 895 038 20 160.9 – 11 033 760 32 928.8
• ◦ ◦ ◦ 1 487 759 951 710.0 15 062 7 753 601 6 285.7
• • ◦ ◦ 2 860 8 433 309.6 3 246 19 616 1 281.5
• • • ◦ 2 860 3 563 128.2 3 246 10 418 297.5
• • • • 2 860 1 599 41.0 3 246 9 579 157.8

Table 2 Performance for different distributions and types of charging stations (Germany, Peugeot).
Besides timings for preprocessing and queries, we report the number of charging stations (|S|), edges
in GS (|ES |), and vertex scans (#V. Sc.) and edge scans (#E. Sc.) during queries.

Prepr. Queries

Scenario |S| T. [s] |ES | #V. Sc. #E. Sc. T. [ms]

reg-cm 1 966 548.5 539 145 4 592 125 535 4.22
mix-cm 1 966 548.1 539 145 4 592 125 381 4.19
reg-r0.01 469 487.2 22 231 2 234 50 070 1.30
reg-r0.1 4 692 582.7 2 263 310 8 904 223 779 7.97
reg-1.0 46 920 965.0 227 514 459 60 527 1 828 581 73.46

experiments on the subnetwork of Germany, which has 4 692 091 vertices and 10 805 429
edges. We located 13 810 charging stations (1 966 of them in Germany) on ChargeMap
(chargemap.com). Unless mentioned otherwise, all reported query times are average values of
1 000 queries, with source and target vertices picked uniformly at random. Charging stations
have the SoC range [0,M] and the initial SoC is set to bs = M .

Evaluation. Table 1 compares different approaches to solve EORCS on our main test
instance (Europe) for both vehicle models. Applied techniques are indicated by the four
leftmost columns. The first line (no speedup technique enabled) shows our exact baseline
approach, which is based on bi-criteria search. It requires no preprocessing, but takes 20–30
seconds to answer queries, which is rather impractical. Simply using the charging station
graph already reduces query times greatly. However, scalability of this approach is limited,
as increasing the vehicle range affects both preprocessing (longer paths between charging
stations must be computed) and queries (the search in the uncontracted network dominates
running times). Integrating CH clearly pays off, as it significantly reduces the number of
vertex scans and query time after moderate preprocessing effort (below an hour). Query time
is dominated by the search in GS . A* search helps to reduce effort spent searching in GS and
makes our approach rather practical, with running times of less than 300ms for the artificial
model. Moreover, note that even though we use a (formally) inexact implementation, the
optimal solution is found in all queries. The aggressive variant of A* further reduces query
times at the cost of inexact results (even in practice). The average relative error (not reported
in the table) is 0.7% for the Peugeot model and less than 0.01% for the artificial one. This
discrepancy in relative error can be explained by the fact that a larger battery allows the EV

chargemap.com

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:15

16 32 64 128
0

500

1 000

1 500

2 000

Battery capacity [kWh]

T
im

e
[m

s]

CH
CH+A*
CH+A* (agg.)

Figure 6 Algorithm performance subject to cruising range (Europe, Peugeot). Each point is the
median running time of 1 000 queries for one of the different approaches (CH, CH with A*, CH with
aggressive A*) under varying battery capacities.

to stick to energy-optimal paths (fewer detours are necessary), so the quality of the bounds
used in A* search increases. Consequently, outliers for the Peugeot scenario exceed 10% in
relative error in about 1% of the cases, while even the maximum error is below 0.5% for the
artificial model. For all techniques, the artificial model is harder to solve. This is mostly due
to the dense charging station graph (more labels per vertex for the baseline approach), since
more charging stations are reachable from each station.

In Table 2, we evaluate the performance of our fastest empirically exact approach (CH
with A* search) under varying types and distributions of charging stations. The first scenario
(reg-cm) uses stations from ChargeMap with (default) SoC range [0,M]. The second (mix-cm)
uses the same stations, but assigns each a charging range of a regular station ([0,M]), a “super
charger” that quickly charges to 80% SoC ([0, 0.8M]), or a swapping station ([M,M]), with
equal probability. The results indicate that SoC ranges have little impact on performance.
This is not surprising, since restricting the departure SoC can only reduce the search space
(the effect is negligible, though). Finally, we consider random distributions of charging
stations with default SoC ranges (reg-r0.01, reg-r0.1, reg-1.0), where we pick 0.01%, 0.1%,
and 1.0% of the vertices in V as charging stations uniformly at random, respectively. The
number of charging stations has a significant impact on algorithm performance. Given
that the number of edges in GS grows quadratically in the number of charging stations,
preprocessing and query slow down for very dense networks of charging stations. This limits
scalability, but our approach easily handles realistic distributions of charging stations (for
the scenario reg-1.0, the number of charging stations is higher than the current number of
gas stations in Germany).

Finally, Figure 6 shows running times of our algorithms for different battery capacities.
Without A* search, running time roughly doubles with battery capacity, because GS becomes
more dense (more reachable charging stations). Adding A* search, scalability with available
cruising range improves, since potentials quickly guide the search towards the target.

6 Conclusion

We examined consumption profiles for EVs and proved that their complexity is at most
linear in the graph size. We also investigated energy-optimal routes with charging stops
and showed how profile search can be utilized to solve the problem in polynomial time.
In a sense, we closed the gap between (efficiently solvable) energy-optimal routes [18, 36]

SEA 2017

19:16 Consumption Profiles in Route Planning for Electric Vehicles

and NP-hard time-constrained variants with charging stops [7, 35] (which generalize the
problem setting considered in this work). In particular, it is indeed the addition of a second
optimization criterion (travel time) that makes the latter problems NP-hard, rather than
the incorporation of charging stations in combination with battery constraints. We also
proposed a practical variant, which computes optimal results in well below a second on
realistic, large-scale networks.

Interesting lines of future work include reducing the number of edges in the overlay
of charging stations for better performance and scalability [13, 26, 39] or integration of
Customizable CH [16] for faster preprocessing. Moreover, one could consider a profile variant
of EORCS, i. e., ask for a consumption profile instead of a single path.

References
1 Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The Op-

timal Routing Problem in the Context of Battery-Powered Electric Vehicles. In Proceedings
of the 2nd CPAIOR Workshop on Constraint Reasoning and Optimization for Computa-
tional Sustainability (CROCS’10), 2010.

2 Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The
Shortest Path Problem Revisited: Optimal Routing for Electric Vehicles. In Proceedings of
the 33rd Annual German Conference on Advances in Artificial Intelligence (KI’10), volume
6359 of Lecture Notes in Computer Science, pages 309–316. Springer, 2010.

3 Mikhail J. Atallah. Some Dynamic Computational Geometry Problems. Computers &
Mathematics with Applications, 11(12):1171–1181, 1985.

4 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks, volume 9220 of Lecture Notes in Computer Science, pages 19–
80. Springer, 2016.

5 Gernot V. Batz and Peter Sanders. Time-Dependent Route Planning with Generalized
Objective Functions. In Proc. of the 20th Annual European Symp. on Algorithms (ESA’12),
volume 7501 of Lecture Notes in Computer Science, pages 169–180. Springer, 2012.

6 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-up Techniques for
Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15:2.3:1–2.3:31, 2010.

7 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf.
Shortest Feasible Paths with Charging Stops for Battery Electric Vehicles. In Proceed-
ings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (GIS’15), pages 44:1–44:10. ACM, 2015.

8 Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and Dorothea
Wagner. Speed-Consumption Tradeoff for Electric Vehicle Route Planning. In Proceedings
of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimiza-
tion, and Systems (ATMOS’14), volume 42 of OpenAccess Series in Informatics (OASIcs),
pages 138–151. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.

9 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-Optimal
Routes for Electric Vehicles. In Proc. of the 21st ACM SIGSPATIAL Int’l Conference on
Advances in Geographic Information Systems (GIS’13), pages 54–63. ACM, 2013.

10 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Dynamic Time-
Dependent Route Planning in Road Networks with User Preferences. In Proceedings of
the 15th International Symposium on Experimental Algorithms (SEA’16), volume 9685 of
Lecture Notes in Computer Science, pages 33–49. Springer, 2016.

11 Brian C. Dean. Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms.
Technical report, Massachusetts Institute of Technology, 2004.

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:17

12 Daniel Delling. Time-Dependent SHARC-Routing. Algorithmica, 60(1):60–94, 2011.
13 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable

Route Planning in Road Networks. Transportation Science, 2015.
14 Daniel Delling and Dorothea Wagner. Landmark-Based Routing in Dynamic Graphs. In

Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), volume 4525 of
Lecture Notes in Computer Science, pages 52–65. Springer, 2007.

15 Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning, volume 5868 of
Lecture Notes in Computer Science, pages 207–230. Springer, 2009.

16 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction Hierarchies.
ACM Journal of Experimental Algorithmics, 21:1.5:1–1.5:49, 2016.

17 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

18 Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal Route Planning for Electric
Vehicles in Large Networks. In Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI’11), pages 1108–1113. AAAI Press, 2011.

19 Luca Foschini, John Hershberger, and Subhash Suri. On the Complexity of Time-Dependent
Shortest Paths. Algorithmica, 68(4):1075–1097, 2014.

20 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing
in Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388–
404, 2012.

21 Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory. In Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’05), pages 156–165. SIAM, 2005.

22 Michael T. Goodrich and Paweł Pszona. Two-Phase Bicriterion Search for Finding Fast
and Efficient Electric Vehicle Routes. In Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (GIS’14), pages
193–202. ACM, 2014.

23 Pierre Hansen. Bicriterion Path Problems. In Multiple Criteria Decision Making – Theory
and Application, volume 177 of Lecture Notes in Economics and Mathematical Systems,
pages 109–127. Springer, 1980.

24 Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

25 Stefan Hausberger, Martin Rexeis, Michael Zallinger, and Raphael Luz. Emission Factors
from the Model PHEM for the HBEFA Version 3. Technical report I-20/2009, University
of Technology, Graz, 2009.

26 Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering Multilevel Overlay
Graphs for Shortest-Path Queries. ACM Journal of Experimental Algorithmics, 13:2.5:1–
2.5:26, 2009.

27 Gerhard Huber and Klaus Bogenberger. Long-Trip Optimization of Charging Strategies for
Battery Electric Vehicles. Transportation Research Record: Journal of the Transportation
Research Board, 2497:45–53, 2015.

28 Donald B. Johnson. A Note on Dijkstra’s Shortest Path Algorithm. Journal of the ACM,
20(3):385–388, 1973.

29 Donald B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. Journal
of the ACM, 24(1):1–13, 1977.

30 Sebastian Kluge, Claudia Sánta, Stefan Dangl, Stefan M. Wild, Martin Brokate, Konrad
Reif, and Fritz Busch. On the Computation of the Energy-Optimal Route Dependent on
the Traffic Load in Ingolstadt. Transportation Research Part C: Emerging Technologies,
36:97–115, 2013.

SEA 2017

19:18 Consumption Profiles in Route Planning for Electric Vehicles

31 Yuichi Kobayashi, Noboru Kiyama, Hirokazu Aoshima, and Masamori Kashiyama. A Route
Search Method for Electric Vehicles in Consideration of Range and Locations of Charging
Stations. In Proceedings of the 7th IEEE Intelligent Vehicles Symposium (IV’11), pages
920–925. IEEE, 2011.

32 Chung-Shou Liao, Shang-Hung Lu, and Zuo-Jun Max Shen. The Electric Vehicle Touring
Problem. Transportation Research Part B: Methodological, 86:163–180, 2016.

33 Chensheng Liu, Jing Wu, and Chengnian Long. Joint Charging and Routing Optimization
for Electric Vehicle Navigation Systems. In Proceedings of the 19th International Federation
of Automatic Control World Congress (IFAC’14), volume 47 of IFAC Proceedings Volumes,
pages 9611–9616. Elsevier, 2014.

34 Ernesto Q. V. Martins. On a Multicriteria Shortest Path Problem. European Journal of
Operational Research, 16(2):236–245, 1984.

35 Sören Merting, Christian Schwan, and Martin Strehler. Routing of Electric Vehicles: Con-
strained Shortest Path Problems with Resource Recovering Nodes. In Proceedings of the
15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS’15), volume 48 of OpenAccess Series in Informatics (OASIcs), pages 29–
41. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015.

36 Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. Efficient
Energy-Optimal Routing for Electric Vehicles. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence (AAAI’11), pages 1402–1407. AAAI Press, 2011.

37 René Schönfelder and Martin Leucker. Abstract Routing Models and Abstractions in the
Context of Vehicle Routing. In Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI’15), pages 2639–2645. AAAI Press, 2015.

38 René Schönfelder, Martin Leucker, and Sebastian Walther. Efficient Profile Routing for
Electric Vehicles. In Proceedings of the 1st International Conference on Internet of Vehicles
(IOV’14), volume 8662 of Lecture Notes in Computer Science, pages 21–30. Springer, 2014.

39 Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using Multi-Level Graphs for
Timetable Information in Railway Systems. In Proceedings of the 4th Workshop on Algo-
rithm Engineering & Experiments (ALENEX’02), volume 2409 of Lecture Notes in Com-
puter Science, pages 43–59. Springer, 2002.

40 Olivia J. Smith, Natashia Boland, and Hamish Waterer. Solving Shortest Path Problems
with a Weight Constraint and Replenishment Arcs. Computers & Operations Research,
39(5):964–984, 2012.

41 Sabine Storandt. Quick and Energy-Efficient Routes: Computing Constrained Shortest
Paths for Electric Vehicles. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Computational Transportation Science (IWCTS’12), pages 20–25. ACM, 2012.

42 Sabine Storandt and Stefan Funke. Cruising with a Battery-Powered Vehicle and Not
Getting Stranded. In Proceedings of the 26th AAAI Conference on Artificial Intelligence
(AAAI’12), pages 1628–1634. AAAI Press, 2012.

43 Zhonghao Sun and Xingshe Zhou. To Save Money or to Save Time: Intelligent Routing
Design for Plug-In Hybrid Electric Vehicle. Transportation Research Part D: Transport
and Environment, 43:238–250, 2016.

44 Timothy M. Sweda, Irina S. Dolinskaya, and Diego Klabjan. Adaptive Routing and Recharg-
ing Policies for Electric Vehicles. Working paper no. 14-02, Northwestern University, Illinois,
2014.

45 Yan Wang, Jianmin Jiang, and Tingting Mu. Context-Aware and Energy-Driven Route Op-
timization for Fully Electric Vehicles via Crowdsourcing. IEEE Transactions on Intelligent
Transportation Systems, 14(3):1331–1345, 2013.

46 Ady Wiernik and Micha Sharir. Planar Realizations of Nonlinear Davenport-Schinzel Se-
quences by Segments. Discrete & Computational Geometry, 3(1):15–47, 1988.

	Introduction
	Model, Query Variants, and Basic Algorithms
	On the Complexity of Profiles
	Energy-Optimal Routes with Charging Stops
	Experiments
	Conclusion

