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Abstract
Clausal forms of logics are of great relevance in Artificial Intelligence, because they couple a
high expressivity with a low complexity of reasoning problems. They have been studied for a
wide range of classical, modal and temporal logics to obtain tractable fragments of intractable
formalisms. In this paper we show that such restrictions can be exploited to lower the complexity
of interval temporal logics as well. In particular, we show that for the Horn fragment of the
interval logic AA (that is, the logic with the modal operators for Allen’s relations meets and
met by) without diamonds the complexity lowers from NExpTime-complete to P-complete. We
prove also that the tractability of the Horn fragments of interval temporal logics is lost as soon
as other interval temporal operators are added to AA, in most of the cases.
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1 Introduction

Sub-propositional logics are particularly interesting from a practical point of view, because
they couple a high expressivity with a low complexity of reasoning problems. There are two
standard ways to weaken the classical propositional language based on the clausal form of
formulas: the Horn fragment, that only allows clauses with at most one positive literal [18],
and the Krom fragment, that only allows clauses with at most two (positive or negative)
literals [20]. The core fragment combines both restrictions. In the case of modal logics
two more possible restrictions arise, namely by excluding the use of universal or the use of
existential modal operators, giving rise, respectively, to the diamond fragment and the box
fragment of modal logic. Such restrictions apply, as well, to temporal, spatial, and description
logic, and, in each case, combined with classical sub-propositional restriction, they generate
a complex scenario encompassing several fragments.

Weakening a logic is motivated by the search of computationally well-behaved fragments.
For example, the satisfiability problem for classical propositional Horn logic is P-complete,
while the classical propositional Krom logic satisfiability problem (also known as the 2-SAT
problem) is NLogSpace-complete [23], and the same holds for the core fragment, where
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the classical NLogSpace-hardness theorem for 2-SAT can be easily strengthened to deal
with the case of binary Horn clauses. The satisfiability problem for quantified propositional
logic (QBF), which is PSpace-complete in its general form, becomes P when formulas are
restricted to binary (Krom) clauses [7]. Horn fragments of modal logic K and of several
of its axiomatic extensions have been considered in [12, 13, 15, 16, 22]; in particular, it is
known that K, T, K4, and S4 are all PSpace-complete even under the Horn restriction,
but they become P-complete under the Horn restriction without diamonds [12]. In [4, 14],
the authors study different sub-propositional fragments LTL. By excluding the operators
Since and Until from the language, and keeping only the Next/Previous-time operators and
the box version of Future and Past, it is possible to prove that the Krom and core fragments
are NP-hard, while the Horn fragment is still PSpace-complete (the same complexity of the
full language). Moreover, the complexity of the Horn, Krom, and core fragments without
Next/Previous-time operators range from NLogSpace (core), to P (Horn), to NP-hard
(Krom). Where only a global (anywhere in time) modality is allowed, their complexity is
even lower (from NLogSpace to P). Temporal extensions of the description logic DL-Lite
have been studied under similar sub-propositional restrictions, and similar improvements in
the complexity have been obtained [5].

In this paper we show that clausal forms can be exploited to lower the complexity of
interval temporal logics as well. Halpern and Shoham’s Modal Logic of Allen’s Relations
(HS) [17] is a multi-modal logic where each world is interpreted as an interval in time, and
accessibility relations are built over Allen’s relations [2]. So, HS is the classical propositional
logic extended with six modal operators later (denoted by 〈L〉), meets (〈A〉), overlaps (〈O〉),
during (〈D〉), finishes (〈E〉), and starts (〈B〉), plus their inverse ones (equality does not
play any role in modal logic). The finite satisfiability problem for fragments of HS (that is,
logics that emerge from a systematic exclusion of some of these modalities) has been studied
in [9], resulting in a very informative picture of the various classes of fragments classified
by their computational complexity. The Horn, Krom, and core restrictions of HS are still
undecidable [11], but weaker restrictions have shown positive results. In particular, the
Horn fragment of HS without diamonds becomes P-complete in two interesting cases [6, 8]:
first, when it is interpreted over dense linear orders, and, second, when the semantics of
its modalities becomes reflexive. On the other hand, in the classical irreflexive semantics,
interpreted on finite/discrete linear orders, the Horn fragment of HS without diamonds is still
undecidable, and this justifies our interest in finding well-behaved syntactical fragments of it.
Without restrictions, the satisfiability for A and for AA is NExpTime-complete in the finite
case, the case of natural numbers, the integers, and the class of all discrete linear orders [10].
The purpose of this paper is to prove that their Horn fragments without diamonds become
P-complete at least in the finite case, which is (usually) emblematic for the behaviour of
interval temporal logics in the whole range of classes of discrete linear orders. We shall also
prove that tractability of these fragments is lost as soon as other modal operators from the
HS machinery are added, in most of the cases.

2 Preliminaries

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered pair [x, y], where
x, y ∈ D and x < y1. There are 12 different relations between two intervals in a linear order,

1 This definition excludes point intervals [x, x], and conforms to the one adopted by Allen in [1] and by
most of the recent literature; it differs from the one in [17], where point intervals are allowed.
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Figure 1 Allen’s interval relations and HS modalities.

often called Allen’s relations [1]: the six relations RA (adjacent to), RL (later than), RB
(begins), RE (ends), RD (during), and RO (overlaps), depicted in Fig. 1, and their inverses
RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}.

Halpern and Shoham’s logic HS [17] is a multi-modal logic with formulae built from
a finite, non-empty set AP of atomic propositions (or proposition letters), the classical
propositional connectives, and a modality for each Allen relation:

ϕ ::= ⊥ | p | ¬ψ | ψ ∨ ξ | ψ ∧ ξ | 〈X〉ψ | 〈X〉ψ,

where p ∈ AP and X ∈ {A,L,B,E,D,O}. The other propositional connectives and
constants (e.g., →, and >), and the universal modalities [X] and [X] can be derived in the
standard way. A syntactical fragment of HS is any fragment obtained by selecting a specific
subset F = {X1, X2, . . . , Xn} of relations, and denoted by X1X2 . . .Xn.

The semantics of HS is given in terms of interval modelsM = 〈I(D), V 〉, where D = 〈D,<〉
is a linear order, I(D) is the set of all (strict) intervals over D, and V is a valuation function
V : AP 7→ 2I(D), which assigns to each atomic proposition p ∈ AP the set of intervals V (p)
on which p holds. The truth of a formula ϕ on a given interval [x, y] in an interval model M
is defined by structural induction on formulae, as follows:

M, [x, y]  p if [x, y] ∈ V (p), for p ∈ AP;
M, [x, y]  ¬ψ if M, [x, y] 6 ψ;
M, [x, y]  ψ ∨ ξ if M, [x, y]  ψ or M, [x, y]  ξ;
M, [x, y]  ψ ∧ ξ if M, [x, y]  ψ and M, [x, y]  ξ;
M, [x, y]  〈X〉ψ if there exists [z, t] such that [x, y]RX [z, t] and that M, [z, t]  ψ;
M, [x, y]  〈X〉ψ if there exists [z, t] such that [x, y]RX [z, t] and that M, [z, t]  ψ.

In this paper we are interested in finite models, so that for all intent and purposes, we
assume that D = {0, 1, . . . , N − 1} is a finite domain. If a formula ϕ is satisfiable on a
model of length N , we say that ϕ is N -satisfiable. The finite satisfiability problems of HS
is undecidable, and the computational complexity of its decidable (syntactical) fragments
range from P-complete to non-primitive recursive (see [9] and references within).

In order to define sub-propositional fragments of HS we start from the clausal form of
formulas of HS, whose building blocks are the positive literals:

λ ::= > | p | 〈X〉λ | [X]λ | 〈X〉λ | [X]λ, (1)

CSL 2017
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Figure 2 Sub-propositional fragments of AA.

and we say that ϕ is in clausal form if it can be generated by the following grammar:

ϕ ::= λ | ψ ∧ ξ | [U ](¬λ1 ∨ . . . ∨ ¬λn ∨ λn+1 ∨ . . . ∨ λn+m), (2)

where [U ](¬λ1 ∨ . . . ∨ ¬λn ∨ λn+1 ∨ . . . ∨ λn+m) is a clause, and [U ] is the global operator.
A formula [U ]ψ is true on the interval [x, y] if and only if ψ holds on every interval [z, t] of
the model. Depending on the language, the global operator can be either definable using
the other modalities, or included as a primitive modality. From now on we follow the latter
approach and we consider [U ] as part of the language. In the following, we use ϕ1, ϕ2, . . .

to denote clauses, λ1, λ2, . . . to denote positive literals, and ϕ,ψ, ξ, . . . to denote formulas.
We write clauses in their implicative form [U ](λ1 ∧ . . . ∧ λn → λn+1 ∨ . . . ∨ λn+m), and use
⊥ as a shortcut for ¬>. It is known that every modal logic formula can be rewritten in
clausal form [22], and this holds for HS, as well. Thus, any formula ϕ can be written as a
conjunction ϕ1 ∧ . . . ∧ ϕn of positive literals and global clauses and, from now on, will be
represented as the set {ϕ1, . . . , ϕn} of positive literals and global clauses.

Sub-propositional fragments of HS can be defined by constraining the cardinality and
the structure of clauses: the fragment in which each clause in (2) is such that m ≤ 1 is
called Horn fragment, and denoted by HSHorn, while the fragment in which each clause
is such that n + m ≤ 2 it is called Krom fragment, and it is denoted by HSKrom; when
both restrictions apply we obtain the core fragment, denoted by HScore. We constrain
fragments also by allowing only the use of universal modalities and only existential modalities
in positive literals, obtaining the box and diamond fragments of modal logic HS. In this
way, we define HS�

Horn and HS♦Horn as, respectively, the box and the diamond fragments
of HSHorn. By applying the same restrictions to HSKrom and HScore, we obtain the pair
HS�

Krom and HS♦Krom from the former, and the pair HS�
core and HS♦core, from the latter.

These definitions are borrowed from [13, 12]. In this paper we are interested in studying
sub-propositional syntactical fragments of HS, and, in particular, the fragment AA under
the Horn restriction without diamonds, that is, AA�

Horn; the interesting fragments are shown
in Fig. 2, ordered by syntactical containment.

The fragment AA�
Horn is very similar to its reflexive version (see [6, 8]) but there are

significant differences. For instance, in the finite/discrete case the satisfiability problem
for irreflexive HS�

Horn is still undecidable, while it is P-complete in its reflexive version,
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which means that, in general, the good computational behaviour of a fragment of HS is not
necessarily related to that of its reflexive variant. As we have already pointed out, in this
paper we limit ourselves to study the complexity of the satisfiability problem in the finite
case: this is not only interesting on its own, but, also, it is emblematic for the entire range of
(strongly) discrete linearly ordered sets, such as N or Z.

Finally, observe that the fragment AA�
Horn, despite its weakness, can be still used to

describe meaningful situations. First, notice that [U ](〈A〉λ ∧ ϕ → λ′) can be written as
[U ](λ → [A](ϕ → λ′)), which is to say that AA�

Horn allows a (limited) use of diamonds.
Then, for example, we can express a medical statement such as During therapy no patient is
allowed to smoke with a simple combination of clauses of AA�

Horn:

[U ](therapy → [A](stop ∧ [A]stop)) therapy’s boundaries
[U ](therapy → [A][A](〈A〉〈A〉(smoking ∧ 〈A〉stop)→ ⊥))
[U ](therapy → [A][A](〈A〉(smoking ∧ 〈A〉stop)→ ⊥))

}
smoking constraint

3 P-Completeness of AA�Horn

The complexity of the finite satisfiability problem for AA is NExpTime-complete. In this
section, we prove that the same problem for AA�

Horn is P-complete (and, therefore, for
AA�

core it is in P), and hence that, at least in this case, interval logics are showing a similar
behaviour to modal logic [12].

The fragment of AA�
Horn in which we limit the modal depth to one is model-extending

equivalent to AA�
Horn, that is, equivalent at the price of adding fresh propositional letters,

with a polynomial translation that witnesses such an equivalence. Therefore, for the purposes
of this section, we may assume that every literal has modal depth at most one. Given a
finitely satisfiable set of clauses ϕ, among any set of models of fixed length N , we can define
a notion of ordering: we say that M1 ≤N M2 if and only if M1 and M2 are based on the
same domain (of length N) and, for each p ∈ AP, V1(p) ⊆ V2(p); obviously, M1 <N M2 if
M1 ≤N M2 and M1 6= M2.

I Lemma 1. Let ϕ be a set of clauses of AA�
Horn, and letM be the (finite) set of models

of length N that satisfy ϕ on the interval [x, y]. Then, (M,≤N ) has a minimum.

Proof. Let ϕ be a satisfiable set of clauses of AA�
Horn, and let M be the set of interval

models of length N that satisfy ϕ. Obviously, M is finite. If M is a singleton, then the
property is trivially true. Suppose, then, that there exist at least two ≤N -incomparable
interval models, denoted by M1 and M2, inM. Thus, M1, [x, y]  ϕ and M2, [x, y]  ϕ. We
define a new model M ′ = 〈I(D), V ′〉 based on the same domain as M1 and M2 and such that
its valuation V ′, for each propositional letter p, is {[t, t′] | [t, t′] ∈ V1(p) ∩ V2(p)}. We claim
that M ′, [x, y]  ϕ. Suppose, by way of contradiction, that this is not the case. So, there
exists a clause ϕi of ϕ such that M ′, [x, y] 6 ϕi. Several cases arise:

If ϕi = p for some propositional letter p, then we have a contradiction given that
M ′, [x, y] 6 ϕi implies that M1, [x, y] 6 p or M2, [x, y] 6 p;
If ϕi = [A]p (the case for ϕi = [A]p is symmetrical) for some propositional letter p, then we
have a contradiction given that M ′, [x, y] 6 ϕi implies that for some z > y M ′, [y, z] 6 p,
that is, M1, [y, z] 6 p or M2, [y, z] 6 p, that is, M1, [x, y] 6 [A]p or M2, [x, y] 6 [A]p;

CSL 2017
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If ϕi = [U ](λ1 ∧ . . . ∧ λn → λ) or ϕi = [U ](λ1 ∧ . . . ∧ λn → ⊥), then, for some [t, t′], we
have that M ′, [t, t′]  λ1 ∧ . . . ∧ λn and M ′, [t, t′] 6 λ. Consider the generic antecedent
λj . If it is a propositional letter p, then M ′, [t, t′]  λj implies that both M1, [t, t′]  λj
and M2, [t, t′]  λj . On the other hand, if λj = [A]p (the case for [A]p is symmetrical)
for some propositional letter p, then M ′, [t, t′]  λj implies that, for each t′′ > t′ ,
M ′, [t′, t′′]  p, which, in turn, implies that both M1, [t′, t′′]  p and M2, [t′, t′′]  p for
each t′′ > t′. Either way, if M ′, [t, t′]  λ1 ∧ . . . ∧ λn, then both M1, [t, t′]  λ1 ∧ . . . ∧ λn
and M2, [t, t′]  λ1 ∧ . . . ∧ λn. If λ = ⊥, this is already a contradiction. If λ = p for
some propositional letter p, then both M1, [t, t′]  p and M2, [t, t′]  p, which implies
that M ′, [t, t′]  p, which is a contradiction. If λ = [A]p (and, again, the case for [A]p is
symmetrical) for some propositional letter p, then we have that both M1, [t′, t′′]  p and
M2, [t′, t′′]  p for each t′′ > t, that is, M ′, [t, t′]  [A]p, which is a contradiction.

This proves that M ′ is an interval model such that M ′, [x, y]  ϕ, that is, that AA�
Horn is

closed under intersection. Clearly, M ′ ≤N M1,M2 and M ′ ∈ M: by iterating this process
we prove thatM has a minimum with respect to ≤N . J

Notice that the previous result strongly depends on the absence of diamonds in the language.

The above results prove that the finite satisfiability of a set ϕ of clauses of AA�
Horn can

be reduced to the problem of finding an interval model M of length N that satisfies ϕ on
some [x, y] and is the minimum among the models of length N that satisfy ϕ. Let us call
such a model an N -minimum model (or, simply, minimum model). Now, we want to prove
that every set ϕ of clauses of AA�

Horn is finitely satisfiable if and only if it is satisfiable on a
minimum model of cardinality polynomial in |ϕ|.

For a set ϕ of clauses of AA�
Horn, let L(ϕ) be the literal closure of ϕ, that is, the set of

all the positive literals that occur as subformulas of ϕ. Given a model M we can univocally
identify the literals that are satisfied on each interval [z, t], and we can define the label of
[z, t] as L([z, t]) = {λ ∈ L |M, [z, t]  λ}. Positive literals of the type [A]p (resp., [A]p) are
called A-temporal literals (resp., A-temporal literals). It is easy to observe that any two
intervals [z, t] and [z′, t] that end at the same point should satisfy the same set of A-temporal
literals. Thus, it make sense to define the set of A-requests of a point t in the model M
as the set A(t) of all literals of the type [A]p that occur in labels of intervals that end at t.
Symmetrically, one can define the set of A-requests (denoted A(t)), and, in fact, associate
each point t of M with a unique pair (A(t), A(t)). As we shall see, requests in a minimum
model should behave in a regular way: if M, [x, y]  ϕ, we say that M is standard if and
only if, for each z 6= x, y, A(z) ⊆ A(z + 1) and A(z + 1) ⊆ A(z).

There are two key ingredients to prove that the maximal dimension of a minimum model
is polynomial: first, we show that minimum models are necessarily standard, and, then, that
the length of minimum standard models can be bounded to a polynomial number in |ϕ|.

I Lemma 2. Let ϕ be a set of clauses of AA�
Horn, and let M be a N -minimum model that

satisfies it. Then, M is standard.

Proof. Let ϕ be a set of clauses of AA�
Horn, and let M = 〈I(D), V 〉 be a model that satisfies

it, that is, M, [x, y]  ϕ; we proceed by contradiction, and we prove that if M is not standard,
then it cannot be minimum. Without loss of generality, let z > y be a point in M such
that A(z) 6⊆ A(z + 1). This means that for some [A]p, it is the case that [A]p ∈ A(z) and
[A]p /∈ A(z + 1). We define a new model M ′ = 〈I(D), V ′〉 based on the same domain as M
and such that its valuation V ′, for each propositional letter p, is the union of:
1. {[t, t′] | [t, t′] ∈ V (p) and t, t′ 6= z},
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2. {[t, z] | t < z and [t, z], [t, z + 1] ∈ V (p) for each t < z},
3. {[z, z + 1] | [z, z + 1] ∈ V (p)}, and
4. {[z, t′] | t′ > z + 1 and [z, t′], [z + 1, t′] ∈ V (p) for each t′ > z}.
We claim that M ′, [x, y]  ϕ. Suppose, by way of contradiction, that this is not the case. So,
there exists a clause ϕi of ϕ such that M ′, [x, y] 6 ϕi. Several cases arise:

If ϕi = p for some propositional letter p, then we have a contradiction given that
M, [x, y]  ϕi and M and M ′ agree on the label of [x, y], as per point (1) of the
construction;
If ϕi = [A]p for some propositional letter p, then we have a contradiction given that
M, [x, y]  ϕi and M and M ′ agree on the label of every interval of the type [t, x], as per
point 1 of the construction, because t, x 6= z;
If ϕi = [A]p for some propositional letter p, then, since M, [x, y]  ϕi, we know that,
in M , for each t > y, M, [y, t]  p. By construction (points (1) and (2)), M ′, [y, t]  p,
which implies that M ′, [x, y]  [A]p, leading to a contradiction;
If ϕi = [U ](λ1 ∧ . . . ∧ λn → λ) or ϕi = [U ](λ1 ∧ . . . ∧ λn → ⊥), then, for some [t, t′], we
have that M ′, [t, t′]  λ1 ∧ . . . ∧ λn and M ′, [t, t′] 6 λ. There are several sub-cases:

Assume, first, that t, t′ < z, and consider the generic antecedent λj . If it is a
propositional letter p, then M ′, [t, t′]  λj implies that M, [t, t′]  λj . On the other
hand, if λj = [A]p for some propositional letter p, then M ′, [t, t′]  λj implies that,
for each t′′ > t′ (including t′′ = z), M ′, [t′, t′′]  p, which in turn, by point (1) and
(2) of the construction, implies that M, [t′, t′′]  p for each t′′ > t′. If λj = [A]p
for some propositional letter p, then M ′, [t, t′]  λj means that, for each t′′ < t,
M ′, [t′′, t]  p, which implies, by point (1), that M, [t′′, t]  p for each t′′ < t. Either
way, if M ′, [t, t′]  λ1 ∧ . . .∧λn, then M, [t, t′]  λ1 ∧ . . .∧λn. If λ = ⊥, this is already
a contradiction. If λ = p for some propositional letter p, then the contradiction is,
again, immediate thanks to point (1) of the construction. Now, if λ = [A]p for some
propositional letter p, then we have that M ′, [t′, t′′] 6 p for some t′′ > t′; if t′′ 6= z, then
the label of [t′, t′′] is preserved from M to M ′, which means that M, [t′, t′′] 6 p, leading
to a contradiction, and, if t′′ = z, then we have a contradiction with the fact that the
label of [t′, z] in M ′ is the intersection of the labels of [t′, z] and [t′, z + 1] in M , due
to point (2) of the construction. If, finally, λ = [A]p for some propositional letter p,
then we have that M ′, [t′′, t′] 6 p for some t′′ < t′, which is a contradiction again with
the fact that the label of each interval of the type [t′′, t′] (t′ < z) is preserved from M

to M ′;
Suppose, now, that t′ = z and t < t′. If λj = p for some propositional letter p, then
M ′, [t, z]  p implies, by point (2), that M, [t, z]  p and M, [t, z + 1]  p. If λj = [A]p
for some propositional letter p, thenM ′, [t, z]  [A]p implies thatM ′, [z, t′]  p for each
t′ > z. But, this implies, by points (3) and (4), thatM, [z, t′]  p and, if t′ > z+1, also
thatM, [z+1, t′]  p, which, in turn, implies thatM, [t, z]  [A]p andM, [t, z+1]  [A]p.
Finally, if λj = [A]p for some propositional letter p,M ′, [t, z]  [A]p immediately implies
thatM, [t, z]  [A]p andM, [t, z+1]  [A]p. Therefore, M ′, [t, z]  λ1∧ . . .∧λn implies
that M, [t, z]  λ1 ∧ . . . ∧ λn and M, [t, z + 1]  λ1 ∧ . . . ∧ λn. If λ = ⊥, this is already
a contradiction. Otherwise, we have that M, [t, z]  λ and M, [t, z + 1]  λ. If λ = p

for some propositional letter p, then M ′, [t, z] 6 p is a contradiction, since the label
of [t, z] in M ′ is the intersection of the labels of [t, z] and [t, z + 1] in M . If λ = [A]p
for some propositional letter p, that is, if M ′, [z, t′′] 6 p for some t′′ > z, we have
a contradiction with the fact that, for each t′′ > z, the label of [z, t′′] in M ′ is the
intersection of the labels of [z, t′′] and [z + 1, t′′] in M . If, finally, λ = [A]p for some
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propositional letter p, then we have that M ′, [t′′, t]  ¬p for some t′′ < t, which is a
contradiction with the fact that the label of each interval of the type [t′′, t] (t < z) is
preserved from M to M ′;
If t < z and t′ ≥ z + 1, then the contradiction is immediate, as the labels of every
interval that may possibly be involved is preserved from M to M ′;
Suppose, now, that t = z and t′ ≥ z + 1. If λj = p for some propositional letter p,
then M ′, [z, t′]  p implies that M, [z, t′]  p and (if t′ > z + 1) M, [z + 1, t′]  p. If
λj = [A]p for some propositional letter p, M ′, [z, t′]  [A]p immediately implies that
M, [z, t′]  [A]p and (if t′ > z + 1) M, [z + 1, t′]  [A]p, since the labels of intervals
that start at t′ ≥ z + 1 are preserved from M to M ′. Finally, if λj = [A]p for some
propositional letter p, M ′, [z, t′]  [A]p implies that M ′, [t′′, z]  p for each t′′ < z; this,
in turn, implies that for each t′′ < z we have that M, [t′′, z]  p and M, [t′′, z + 1]  p,
that is, that M, [z, t′]  [A]p and (if t′ > z + 1) M, [z + 1, t′]  [A]p. Therefore,
M ′, [z, t′]  λ1 ∧ . . . ∧ λn implies that M, [z, t′]  λ1 ∧ . . . ∧ λn and (if t′ > z + 1)
M, [z + 1, t′]  λ1 ∧ . . . ∧ λn. If λ = ⊥, this is already a contradiction. Otherwise,
we have that M, [z, t′]  λ and (if t′ > z + 1) M, [z + 1, t′]  λ. If λ = p for some
propositional letter p, then M ′, [z, t′] 6 p is a contradiction, since the label of [z, t′] in
M ′ is preserved from M if t′ = z + 1 and it is the intersection of the labels of [z, t′]
and [z + 1, t′] in M otherwise. If λ = [A]p for some propositional letter p, that is, if
M ′, [z, t′] 6 p for some t′ > z, we have a contradiction with the fact that, for each
t′′ > t′, the label of [t′′, t′] is preserved from M to M ′. If, finally, λ = [A]p for some
propositional letter p, then we have that, in M ′, M ′, [t′′, z]  ¬p for some t′′ < z, that
is M, [t′′, z]  ¬p or (if t > z + 1) M, [t′′, z + 1]  ¬p, which is in contradiction with
the fact that both M, [z, t]  [A]p and (if t > z + 1) M, [z + 1, t]  [A]p;
If t ≥ z + 1, then the contradiction is immediate, as the labels of every interval that
may possibly be involved are preserved from M to M ′.

Thus, M ′, [x, y]  ϕ. Now, observe that by hypothesis, inM , [A]p ∈ A(z) and [A]p /∈ A(z+1)
for some propositional letter p. Then M ′ <N M , since, at the very least, p is true in every
interval of M starting at z while in M ′ it is false for some interval starting at z (because in
M it is false at some interval starting at z + 1). Therefore, M cannot be N -minimum, as we
wanted to show. The case in which z < y (recall that z 6= x), as well as the case in which
M is not standard because of some literal of the type [A]p, can be treated in a very similar
way. J

Given a standard model, we say that each [A]p ∈ A(z + 1) \ A(z) (resp., [A]p ∈ A(z) \
A(z + 1)), for a generic point z, is a blocking temporal literal.

I Lemma 3. Let ϕ be a set of clauses of AA�
Horn, and let M be the N -minimum standard

model that satisfies it. If N ≥ 6 · |ϕ|+ 3, then there exists a minimum standard model M ′ of
length N ′ < N that satisfies ϕ.

Proof. Let ϕ be a set of clauses of AA�
Horn, and let M = 〈I(D), V 〉 be the N -minimum

model that satisfies it. Suppose that, for some z such that z, z + 1 6= x, y, it is the case
that (A(z), A(z)) = (A(z + 1), A(z + 1)). Consider the model M ′ = 〈I(D′), V ′〉 obtained
eliminating the point z + 1, along with every interval that starts or ends at z + 1. Such an
elimination implicitly defines a function ˆ( · ) from points of M to points of M ′, which is the
identical function for every point smaller than z included, and it is the function “−1” for
every other point. We can define V ′, for each propositional letter p, as the union of:
1. {[t̂, t̂′] | [t, t′] ∈ V (p) and t, t′ 6= z},
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Algorithm 1 Satisfiability Checker for AA�
Horn

1: function AA�
Horn-Check(ϕ)

2: for N ← 2, . . . , 6 · |ϕ|+ 2 do
3: let D be a linear domain s.t. |D| = N

4: for [x, y] ∈ I(D) do
5: if Saturate(D, x, y, ϕ) then return True
6: return False

2. {[t̂, ẑ] | t < z and [t, z], [t, z + 1] ∈ V (p) for each t < z}, and
3. {[ẑ, t̂′] | t′ > z + 1 and [z, t′], [z + 1, t′] ∈ V (p) for each t′ > z + 1}.
Unlike Lemma 2, it is straightforward to see that M ′, [x̂, ŷ]  ϕ, as the sets of requests at z
are preserved from M to M ′ It is clear that |D′| < |D|; moreover, M ′ is a minimum model,
as its valuation, for each propositional letter, has been obtained by copying or intersecting
different components of the valuation of M (which was minimum to begin with). It remains
to be shown that, if N ≥ 6 · |ϕ| + 3, there must exist some z such that z, z + 1 6= x, y

and (A(z), A(z)) = (A(z + 1), A(z + 1)). Let [A]p1, [A]p2, . . . (resp., [A]p1, [A]p2, . . .) be
an arbitrary enumeration of A-temporal (resp., A-temporal) literals, and let us focus our
attention to points greater than y. If (A(y + 1), A(y + 1)) 6= (A(y + 2), A(y + 2)), then
there must be some blocking temporal literal that witnesses such a difference; without loss
of generality, let us assume that [A]p1 is a blocking temporal literal. Since M is standard,
[A]p1 ∈ A(y + r) cannot be blocking for any r ≥ 2. By iterating this argument, we may
conclude that A(y+|ϕ|) = A(y+|ϕ|+1). Now, if A(y+|ϕ|+1) 6= A(y+|ϕ|+2), we may assume
that [A]p1 is blocking for y+ |ϕ|+ 1. Since M is standard, we can iterate the same argument
as before and conclude that (A(y+2 · |ϕ|), A(y+2 · |ϕ|)) = (A(y+2 · |ϕ|+1), A(y+2 · |ϕ|+1)).
Therefore, in order to guarantee the existence of at least one pair of successive points with
precisely the same temporal requests, we need to account for at least 2 · |ϕ| points after y,
2 · |ϕ| points between x and y, 2 · |ϕ| points before x, plus one, besides x and y themselves. J

The above result gives us immediately an NP algorithm for checking the satisfiability of a
set of clauses of AA�

Horn. We show now that the problem is indeed in P by devising a simple
deterministic polynomial algorithm. The decision procedure checks all possible minimal
models, and for each one of them, all possible starting intervals. For each combination, a
saturation procedure iteratively builds a structure (I(D), Hi, Lo) that represents a candidate
model for the formula, where D is the underlying domain, Hi labels each interval in I(D)
with the set of formulas ‘to be further analyzed’ and Lo labels each interval in I(D) with the
set of formulas in L(ϕ) that holds on it. We first prove that if Saturate terminates with
success, then the current structure indeed represents a model for ϕ on the current starting
interval [x, y].

I Lemma 4. Let ϕ be a set of clauses of AA�
Horn, D a linear domain of length N , and let

[x, y] be an interval in I(D). If Saturate(D, x, y, ϕ) returns True, then there exists a model
M built on D that satisfies ϕ on [x, y].

Proof. Assume that Saturate(D, x, y, ϕ) returns True, and consider the structure (I(D), Hi,
Lo) obtained at the end of the procedure. We define a model M = 〈I(D), V 〉 such that, for
every p ∈ AP, V (p) = {[z, t] ∈ I(D) | p ∈ Lo([z, t])}. We first prove that M respects the
following property:

M, [z, t]  ψ for every [z, t] ∈ I(D) and ψ ∈ Lo([z, t]) (3)
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Algorithm 2 Saturation
1: function Saturate(D, x, y, ϕ)
2: for [z, t] ∈ I(D) do
3: Hi([z, t])← {(λ1 ∧ . . . ∧ λn → λ) | [U ](λ1 ∧ . . . ∧ λn → λ) ∈ ϕ}
4: Lo([z, t])← {>}
5: Hi([x, y])← Hi([x, y]) ∪ {λ | λ ∈ ϕ}
6: while something changes do
7: let [z, t] ∈ I(D), ψ ∈ Hi([z, t])
8: if ψ = p then
9: Hi([z, t])← Hi([z, t]) \ {p}
10: Lo([z, t])← Lo([z, t]) ∪ {p}
11: else if ψ = [A]p then
12: Hi([z, t])← Hi([z, t]) \ {[A]p}
13: Lo([z, t])← Lo([z, t]) ∪ {[A]p}
14: for t′ > t do
15: Lo([t, t′])← Lo([t, t′]) ∪ {p}
16: else if ψ = [A]p then
17: Hi([z, t])← Hi([z, t]) \ {[A]p}
18: Lo([z, t])← Lo([z, t]) ∪ {[A]p}
19: for z′ < z do
20: Lo([z′, z])← Lo([z′, z]) ∪ {p}
21: else if ψ = λ1 ∧ . . . ∧ λn → λ, λ 6= ⊥ then
22: if {λ1, . . . , λn} ⊆ Lo([z, t]) then
23: Hi([z, t])← (Hi([z, t]) ∪ {λ}) \ {ψ}
24: Lo([z, t])← Lo([z, t]) ∪ {ψ}
25: else if ψ = λ1 ∧ . . . ∧ λn → ⊥ then
26: if {λ1, . . . , λn} ⊆ Lo([z, t]) then
27: return False
28: for z ∈ D do
29: for [A]p ∈ L(ϕ) do
30: if ∀t > z(p ∈ Lo([z, t])) then
31: for z′ < z do
32: Lo([z′, z])← Lo([z′, z]) ∪ {[A]p}
33: for [A]p ∈ L(ϕ) do
34: if ∀z′ < z(p ∈ Lo([z′, z])) then
35: for t > z do
36: Lo([z, t])← Lo([z, t]) ∪ {[A]p}
37: return True

We proceed by structural induction on ψ. Consider an interval [z, t] ∈ I(D) and a formula
ψ ∈ Lo([z, t]):

if ψ = > then the property trivially holds;
if ψ = p for some p ∈ AP, then the property follows from the definition of M ;
if ψ = [A]p (the case for [A]p is symmetrical), we first observe that after the initialization
of Saturate (lines 2–5), Lo([z, t]) contains only >. Hence, at some point during the
execution of Saturate, one of two things may happen: either lines 11–15 move ψ from
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Hi([z, t]) to Lo([z, t]) and add p to Lo([t, t′]) for each t′ > t, or lines 28–36 put ψ in
Lo([z, t]) because p is in Lo([t, t′]) for each t′ > t. Either way, by inductive hypothesis,
we have that M, [t, t′]  p for every t′ > t, and thus that M, [z, t]  [A]p;
if ψ = λ1∧· · ·∧λn → λ and λ 6= ⊥, then at some point during the execution of Saturate,
lines 21–24 move ψ from Hi([z, t]) to Lo([z, t]) and add λ to Hi([z, t]). Some successive
iteration of the while loop eventually moves λ from Hi([z, t]) to Lo([z, t]). By inductive
hypothesis, we have that M, [z, t]  λ and thus that M, [z, t]  ψ;
if ψ = λ1 ∧ · · · ∧ λn → ⊥, then notice that no instruction of Saturate moves ψ from
Hi([z, t]) to Lo([z, t]). Hence, this case cannot occur.

We can now use (3) to conclude. Suppose by contradiction that M, [x, y] 6 ϕ: then there
exists a formula ϕi ∈ ϕ such that M, [x, y] 6 ψ. Two cases may arise:

ϕi is a literal. Then after initialization ψ ∈ Hi([x, y]) (line 5). Since Saturate
eventually moves every literal from Hi to Lo, from (3) we can conclude that M, [x, y]  ψ,
a contradiction.
ϕi = [U ](λ1 ∧ · · · ∧ λn → λ) is a global clause. Since M, [x, y] 6 ψ, we can find an
interval [z, t] such that M, [z, t] 6 λ1 ∧ · · · ∧ λn → λ, that is, M, [z, t]  λ1 ∧ · · · ∧ λn
but M, [z, t] 6 λ. We first observe that the initialization of Saturate (lines 2–5) puts
λ1 ∧ · · · ∧λn → λ in Hi([z, t]). Now, let λi be some literal in the body of the clause; since
M, [z, t]  λi, the following cases arise:

if λi = p then by definition of M we have that p ∈ Lo([z, t]);
if λi = [A]p, from M, [z, t]  [A]p we have that M, [t, t′]  p for every t′ > t. By
definition of M we have that p ∈ Lo([t, t′]). Hence, at some iteration of the while
loop, lines 28–36, put [A]p in Lo([z, t]);
if λi = [A]p, we can prove that [A]p ∈ Lo([z, t]) as above.

In all cases λi ∈ Lo([z, t]) and thus we have that {λ1, . . . , λn} ⊆ Lo([z, t]). Hence, in the
case λ 6= ⊥, lines 21–24 eventually move λ1 ∧ · · · ∧ λn → λ from Hi([z, t]) to Lo([z, t]).
By (3) we have that M, [z, t]  λ1 ∧ · · · ∧ λn → λ, and a contradiction is found. Finally,
whenever λ = ⊥, lines 25–27 imply that Saturate returns False, a contradiction.

Since in all cases we reached a contradiction, we have proved that M, [x, y]  ϕ. J

Now we prove that if Saturate fails then ϕ has no models of a given length with [x, y] as
starting interval.

I Lemma 5. Let ϕ be a set of clauses of AA�
Horn, D a linear domain of length N , and let

[x, y] be an interval in I(D). If Saturate(D, x, y, ϕ) returns False, then M, [x, y] 6 ϕ for
each model M on D.

Proof. Suppose by contradiction that Saturate(D, x, y, ϕ) returns False, but there exists a
model M on D that satisfies ϕ on [x, y]. We prove that Saturate respects the following
invariant:

For every [z, t] ∈ I(D) and ψ ∈ Hi([z, t]) ∪ Lo([z, t]), we have that M, [z, t]  ψ. (4)

After initialization (lines 2–5) we have that for Hi([z, t]) contains the scope of every global
clause in ϕ, Lo([z, t]) contains > and that Hi([x, y]) contains every initial clause in ϕ. Hence,
(4) follows directly from the fact that M, [x, y]  ϕ.

Now, suppose that (4) holds at the k-th iteration of the while loop, and consider the
(k + 1)-th iteration. Let [z, t] and ψ be respectively the interval and the formula selected by
line 7. Since ψ ∈ Hi([z, t]) we know by inductive hypothesis that M, [z, t]  ψ. The following
cases may arise.
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ψ = p. Then lines 8–10 move ψ from Hi([z, t]) to Lo([z, t]), and (4) is still respected.
ψ = [A]p. Then lines 11–15 move ψ from Hi([z, t]) to Lo([z, t]), and add p to Lo([t, t′])
for every t′ > t. Since, by inductive hypothesis, M, [z, t]  [A]p, we have thatM, [t, t′]  p
and thus (4) is respected.
ψ = [A]p. As above.
ψ = λ1 ∧ · · · ∧ λn → λ with λ 6= ⊥. If {λ1, . . . , λn} 6⊆ Lo([z, t]) then Hi and Lo do not
change and thus (4) is respected. If, otherwise, {λ1, . . . , λn} ⊆ Lo([z, t]) then lines 21–24
move ψ from Hi([z, t]) to Lo([z, t]) and add λ to Lo([z, t]). Since for every λi we have
that λi ∈ Lo([z, t]), by inductive hypothesis, M, [z, t]  λi. This implies that M, [z, t]  λ
and hence (4) is respected.
ψ = λ1 ∧ · · · ∧ λn → ⊥. If {λ1, . . . , λn} 6⊆ Lo([z, t]) then Hi and Lo do not change and
thus (4) is respected. If, otherwise, {λ1, . . . , λn} ⊆ Lo([z, t]) then line 27 terminates the
execution of Saturate by returning False. Since for every λi we have that λi ∈ Lo([z, t]),
by inductive hypothesis, M, [z, t]  λi. Since M, [z, t]  ψ, we have a contradiction, and
thus line 27 is never executed.

To conclude, we have to show that (4) is respected also after the execution of lines 28–36.
Let z ∈ D and p ∈ AP be such that p ∈ Lo([z, t]) for every t > z. Then, lines 30–32 are
eventually executed on z and p, adding [A]p to Lo([z′, z]) for every z′ < z. By inductive
hypothesis we have that M, [z, t]  p for every t > z and thus that M, [z′, z]  [A]p for every
z′ < z. This shows that (4) is respected. By the same argument we can also show that for
every z ∈ D and p ∈ AP, if p ∈ Lo([z′, z]) for every z′ < z then the structure Lo is updated
in a way that respects the invariant.

Now, observe that we have proved that line 27 cannot be executed, in contradiction with
the hypothesis that Saturate returned False. Hence, M cannot satisfy ϕ on [x, y]. J

Lemma 4 and 5 show that Saturate is correct and complete, and allow us to prove
that Algorithm 1 is a deterministic polynomial time solution to the satisfiability problem for
AA�

Horn.

I Theorem 6. Let ϕ be a set of clauses of AA�
Horn. Then AA�

Horn-Check(ϕ) returns True
if and only if ϕ is satisfiable. Moreover, the time complexity of the procedure is polynomial.

Proof. Let ϕ be a satisfiable set of clauses of AA�
Horn. By Lemma 3, we know that there

exists an N -minimum standard model M that satisfies ϕ on some interval [x, y], with
N ≤ 6 · |ϕ| + 2. Since AA�

Horn-Check(ϕ) tries to satisfy ϕ for all model lengths from 2
to 6 · |ϕ| + 2 and over all intervals [z, t], we have that Saturate is eventually called on
the starting interval [x, y] of a linear domain D such that |D| = N , returning True (by
Lemma 5). Conversely, suppose that AA�

Horn-Check(ϕ) returns True. This means that
a call to Saturate(D, x, y, ϕ) returns True for some linear domain D and initial interval
[x, y] ∈ I(D). Then, by Lemma 4, we know that ϕ is satisfiable.

To prove that the time complexity is polynomial, we start from the complexity of a single
call to Saturate. Every iteration of the while loop may move the formula ψ from Hi to
Lo and add some new formulas to Lo. Since the number of subformulas of ϕ is linear in |ϕ|
and the number of intervals is quadratic in |D|, after a polynomial number of iterations no
new formulas are moved nor added to Lo, and Saturate terminates. Since the number of
intervals in a domain of length N is N(N−1)

2 , we have that the number of calls to Saturate
in the nested loops of AA�

Horn-Check(ϕ) is given by
∑6·|ϕ|+2
N=2

N(N−1)
2 , that is a polynomial

quantity. Hence, the overall time complexity of AA�
Horn-Check is polynomial. J
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The above theorem shows that the satisfiability problem for AA�
Hornis in P. P-hardness

follows form the P-completeness of propositional Horn satisfiability.

I Corollary 7. The satisfiability problem for AA�
Hornis P-complete.

4 Intractability

In this section we prove that AA�
Horn cannot be extended with modalities from the HS

machinery preserving its computational good behaviour, at least in most cases. We prove
that the finite satisfiability AB�

Horn becomes hard for PSpace; then, we extend the result
for the fragments obtained by any combination of [A] or [A] with any of [B], [E], [O] and
their inverses.

To prove that the finite satisfiability problem for AB�
Horn is PSpace-hard, we encode

the halting problem of a Turing machine with polynomial tape T = (Q,Γ, δ, q0, qf ) in it,
where Q is the set of states, q0 is the initial state, qf is the final accepting state, δ is the
transition function, and Γ is the alphabet that contains 0, 1,t (the latter represents the
“blank”). Given n = |T |, we assume that T can use at most p(n) different tape cells, for
some polynomial function p(·); under such conditions, the halting problem is PSpace-hard.
Let T = (Q,Γ, δ, q0, qf ) be a Turing machine, and let us define (by abusing of the notation)
the following set of propositional variables:

L = {cj | c ∈ Γ, 0 ≤ j ≤ p(n)} ∪ {hj | 0 ≤ j ≤ p(n)} ∪Q.

The literal [B]⊥ uniquely identifies unit intervals, that is, intervals of length 1. We use units
to encode configurations of T ; this is possible since we only have polynomially many different
pairs symbol/position, and we can denote each one of them with a different proposition from
L. Moreover, the position of the reading head can be easily encoded in a similar way; for
example, hj denotes that the head is reading the j-th tape symbol. Consider the following
formulas to set the initial configurations and the symbols for tape elements, reading head,
and current state:

φ1 = q0 ∧ (
∧
j=0,...,p(n) tj) ∧ h0 initial configuration

φ2 = [U ](u→ [B]⊥) ∧ [U ]([B]⊥ → u) labeling units
φ3 =

∧
l∈L[U ](l→ u)

φ4 =
∧
q 6=q′,cj 6=c′j

[U ](q → ¬q′) ∧ [U ](cj → ¬c′j)
φ5 =

∧
j 6=k[U ](hj → ¬hk)

 tape/state/head propositions

As far as transitions are concerned, we separate between the actual transitions and the head
movement. The transitions are taken care of as follows:

φ6 =
∧δ(q,c)=(q′,c′,L/R)
c,c′,j [U ](((q ∧ cj ∧ hj)→ [A]Pq′) ∧ ((Pq′ ∧ u)→ q′))

φ7 =
∧δ(q,c)=(q′,c′,L/R)
c,c′,j [U ](((q ∧ cj ∧ hj)→ [A]Pc′

j
) ∧ ((Pc′

j
∧ u)→ c′j))

}
under head

φ8 =
∧δ(q,c)=(q′,c′,L/R)
c,j,k 6=j [U ](((ck ∧ hj)→ [A]Pck

) ∧ ((Pck
∧ u)→ ck)) far from head

The reading head movement is managed as follows:

φ9 =
∧δ(q,c)=(q′,c′,R)
j 6=p(n) [U ]((hj → [A]Phj+1) ∧ ((Phj+1 ∧ u)→ hj+1))

φ10 =
∧δ(q,c)=(q′,c′,R)[U ]((hp(n) → [A]Php(n)) ∧ ((Php(n) ∧ u)→ hp(n)))

}
right

φ11 =
∧δ(q,c)=(q′,c′,L)
j 6=0 [U ]((hj → [A]Phj−1) ∧ ((Phj−1 ∧ u)→ hj−1))

φ12 =
∧δ(q,c)=(q′,c′,L)[U ]((h0 → [A]Ph0) ∧ ((Ph0 ∧ u)→ h0))

}
left
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yi. . . yi−1 yi+1 . . .

u, c0, . . . , cj , . . . cp(n), q, hj

Pc0,hj , . . . Pcj ,hj , . . . , Pcp(n),hj

Pq,cj ,hj

Pc0,hj
, . . . Pc′

j
,hj

, . . . , Pcp(n),hj

u, c0, . . . , c
′
j , . . . , cp(n), q

′, hj+1

Pq′,cj+1,hj+1

configuration next configuration

δ(q, c) = (q′, c′, R)

u u . . .. . .
yi−1 yi yi+1

Figure 3 Configurations’ structure.

Finally, we make sure that the model is long enough:

φ13 =
∧
q 6=qf

[U ](q → ¬[A]q)

Let T be a deterministic Turing Machine of size n = |T |, and whose tape is limited by
some polynomial function p(n). Then, it is possible to show that T converges on empty
input if and only if the formula:

Halts = φ1 ∧ . . . ∧ φ13

is finitely satisfiable. Moreover, since our construction is essentially based on the assumption
that the underlying linear order is discrete, it can be easily adapted to obtain an analogous
formula for the case of natural numbers, the integers, and the class of all discrete linear ordered
sets. An intuitive explanation on the structure of the model obtained in our construction is
shown in Fig. 3.

The above construction can be immediately adapted to obtain the same result for any
fragment of HS�

Horn that includes any combination of [A] or [A] with any of [B], [E]. For
the fragments that include [O] or [O], the following considerations are necessary. Consider,
for example, the fragment AO�

Horn. While on infinite discrete linear orders the formula
[O]⊥ behaves as expected, on finite orders of length N it characterizes unit intervals (as
expected) and intervals of the type [x, yN−1], where yN−1 is the last point of the domain.
This does not affect the construction: given a configuration holding on [x, x+ 1], we may
encode the information of the next one in the interval [x+ 1, x+ 2] (as desired) as well as
in the interval [x + 1, yN−1], which in turn, having no A-successors, does not erroneously
transmit its information to any other configuration.

I Theorem 8. The satisfiability problem for any fragment of HS�
Horn that features any

combination of [A] or [A] with any of [B], [E], [O] and their inverses, interpreted in any class
of (finite) discrete linearly ordered sets, is PSpace-hard.
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Figure 4 Sub-propositional fragments of AA.

5 Conclusions

In this paper we studied the well-behaved fragments of HS known as AA under the Horn
restriction without diamonds (AA�

Horn); we proved that its finite satisfiability problem is
P-complete (in sharp constrast with the same problem for AA without restrictions, which
is NExpTime-complete), and that almost every extension of AA�

Horn obtained by adding
modal operators to it is already intractable. The problems that remain open include the
status of AAHorn, as well as extending our results to the discrete infinite case (e.g., N or Z).

There are very natural motivations for this work; let us hint to some of them. First, Horn
propositional logic is the basis for logic programming, which, in turn, is at the core of many
Artificial Intelligence applications; although some attempts to extend logical (programming)
languages to include time has been done (see, e.g. [3]), further research in this direction is
necessary, expecially in the case of interval-based time. Second, in a different context, consider
a generic data classification problem, the most common techniques to solve it being decision
trees (see, e.g., [21]) and rule extraction algorithms (see, e.g., [19]): from a purely formal
point of view, the result of the application of such common algorithms is a set of propositional
logic rules, and, although the temporal data classification problem is not nearly as common
as its classical counterpart, its development may undoubtedly benefit from studying the
syntax, the semantics, and the properties of (interval) temporal rules. Third, it is well known
that temporal databases use intervals to represent time [24], and that HS is their the natural
logical counterpart, which raises the need of tractable fragments of it. Finally, the recent
effort of extending description logics with interval temporal capabilities with the introduction
of reflexive HS [6] raises the natural question of whether similar extensions may be possible
with good-behaved fragments of HS.
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