
Towards an Efficient Tree Automata Based
Technique for Timed Systems∗

S. Akshay1, Paul Gastin2, Shankara Narayanan Krishna3, and
Ilias Sarkar4

1 Dept of CSE, IIT Bombay, India
akshayss@cse.iitb.ac.in

2 LSV, ENS Paris-Saclay, CNRS, France
paul.gastin@lsv.fr

3 Dept of CSE, IIT Bombay, India
krishnas@cse.iitb.ac.in

4 Dept of CSE, IIT Bombay, India
ilias@cse.iitb.ac.in

Abstract
The focus of this paper is the analysis of real-time systems with recursion, through the devel-
opment of good theoretical techniques which are implementable. Time is modeled using clock
variables, and recursion using stacks. Our technique consists of modeling the behaviours of the
timed system as graphs, and interpreting these graphs on tree terms by showing a bound on
their tree-width. We then build a tree automaton that accepts exactly those tree terms that
describe realizable runs of the timed system. The emptiness of the timed system thus boils down
to emptiness of a finite tree automaton that accepts these tree terms. This approach helps us
in obtaining an optimal complexity, not just in theory (as done in earlier work e.g. [4]), but
also in going towards an efficient implementation of our technique. To do this, we make several
improvements in the theory and exploit these to build a first prototype tool that can analyze
timed systems with recursion.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Timed automata, tree automata, pushdown systems, tree-width

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2017.39

1 Introduction

Development of efficient techniques for the verification of real time systems is a practically
relevant problem. Timed automata [6] are a prominent and well accepted abstraction of
timed systems. The development of this model originally began with highly theoretical
results, starting from the PSPACE-decision procedure for the emptiness of timed automata.
But later, this theory has led to the development of state of the art and industrial strength
tools like UPPAAL [7]. Currently, such tools are being adapted to build prototypes that
handle other systems such timed games, stochastic timed systems etc. While this helps in
analysis of certain systems, there are complicated real life examples that require paradigms
like recursion, multi-threaded concurrency and so on.

∗ This work was partly supported by UMI-ReLaX, DST-CEFIPRA project AVeRTS and DST-INSPIRE
faculty award [IFA12-MA-17].

© S. Akshay, Paul Gastin, Shankara Narayanan Krishna, and Ilias Sarkar;
licensed under Creative Commons License CC-BY

28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 39; pp. 39:1–39:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Towards an Efficient Tree Automata Based Technique for Timed Systems

For timed systems with recursion, a popular theoretical framework is the model of timed
pushdown automata (TPDA). In this model, in addition to clock variables as in timed
automata, a stack is used to model recursion. Depending on how clocks and stack operations
are integrated, several variants [8], [1], [14], [12], [9] have been looked at. For many of these
variants, the basic problem of checking emptiness has been shown decidable (and EXPTIME-
complete) using different techniques. The proofs in [8], [1], [14] work by adapting the
technique of region abstraction to untime the stack and obtain a usual untimed pushdown
automaton, while [9] gives a proof by reasoning with sets of timed atoms. Recently, in [4], a
new proof technique was introduced which modeled the behaviours of the TPDA as graphs
with timing constraints and analyzed these infinite collections of time-constrained graphs
using tree automata. This approach follows the template which has been explored in depth
for various untimed systems in [13], [11], [3]. The basic idea can be outlined as follows: (1)
describe behaviours of the underlying system as graphs, (2) show that this class of graphs
has bounded width, (3) either appeal to Courcelle’s theorem [10] by showing that the desired
properties are MSO-defineable or explicitly construct a tree-automaton to capture the class
of graphs that are the desired behaviours. The work in [4] extends this approach to timed
systems, by considering their behaviors as time-constrained words. The main difficulty
here is to obtain a tree automaton that accepts only those time-constrained words that are
realizable via a valid time-stamping.

Despite the amount of theoretical work in this area [8, 13, 11, 4, 1, 9], none of these
algorithms have been implemented to the best of our knowledge. Applying Courcelle’s
theorem is known to involve a blowup in the complexity (depending on the quantifier-
alternation of the MSO formula). The algorithm for checking emptiness in [4] for the timed
setting which directly constructs the tree automaton avoiding the MSO translation also
turns out to be unimplementable even for small examples due to the following reasons:
First, it has a pre-processing step where each transition in the underlying automaton is
broken into several micro transitions, one for each constraint that is checked there, and one
corresponding to each clock that gets reset on that transition. This results in a blowup
in the size of the automaton. Second, the number of states of the tree automaton that
is built to check realizabilty as well as the existence of a run of a system is bounded by
(M ×T)O(K2)2O(K2lgK), where M is one more than the maximal constant used in the given
system, T is the number of transitions, and K = 4|X|+ 6 is the so-called split-width, where
|X| is the number of clocks used. This implies that even for a system that has 1 clock, 5
transitions and uses a maximum constant 5, we have more than 30100 states.

In this paper, we take the first steps towards an efficient implementation. While we
broadly follow the graph and tree-automata based approach (and in particular [4]), our
main contribution is to give an efficient technique for analyzing TPDA. This requires several
fundamental advances: (i) we avoid the preprocessing step, obtaining a direct bound on tree
width for timed automata and TPDA. This is established by playing a split-game which
decomposes the graph representing behaviours of the timed system into tree terms; by
coloring some vertices of the graph and removing certain edges whose endpoints are colored.
The minimum number of colors used in a winning strategy is 1 plus the tree-width of the
graph. (ii) we develop a new algorithm for building the tree automaton for emptiness,
whose complexity is in ETIME, i.e., bounded by (M × T)3|X|+3 with an exponent which
is a linear function of the input size (improved from EXPTIME, where the exponent is
a polynomial function of the input). Thus, if the system has 1 clock, 5 transitions and
uses a maximum constant 5, we have only ∼ 306 states. In particular, our tree-automaton is
strategy-driven, i.e., it manipulates only those tree terms that arise out of a winning strategy
of our split-game. As a result of this strategy-guided approach, the number of states of our

S. Akshay, P. Gastin, S. Krishna, and I. Sarkar 39:3

tree automaton is highly optimized, and an accepting run exactly corresponds to the moves
in a winning strategy of our split-game. (iii) Finally, our algorithm outputs a witness for
realizability (and non-emptiness). As a proof-of-concept, we implemented our algorithm and
despite the worst-case complexity, we discuss optimizations, results and a modeling example
where our implementation performs well.

Due to lack of space, we have not included all the proofs here; the full version of the
paper, with proofs of all the results, illustrative examples, details of experimental results
and benchmarks used can be found at [5].

2 Graphs for behaviors of timed systems

We fix an alphabet Σ and use Σε to denote Σ ∪ {ε}, where ε is the silent action. We also
fix a finite set of intervals I with bounds in N ∪ {∞}. For a set S, we use ≤ ⊆ S × S to
denote a partial or total order on S. For any x, y ∈ S, we write x < y if x ≤ y and x 6= y,
and xl y if x < y and there does not exist z ∈ S such that x < z < y.

I Definition 1. A word with timing constraints (TCW) over (Σ, I) is a structure V=(V,→
, λ, (yI)I∈I) where V is a finite set of vertices or positions, λ : V → Σε labels each position,
the reflexive transitive closure ≤ = →∗ is a total order on V and → = l is the successor
relation, while yI ⊆ < connects pairs of positions carrying a timing constraint, given by
an interval in I ∈ I. A TCW V=(V,→, λ, (yI)I∈I) is called realizable if there exists a
timestamp map ts : V → R+ such that ts(i) ≤ ts(j) for all i ≤ j (time is non-decreasing)
and ts(j)− ts(i) ∈ I for all iyI j (timing constraints are satisfied).

An example of a TCW is given in Figure 1 (right), with positions 0, 1, 2, 3 labelled by
Σ = {a, b, c}. Curved edges decorated with intervals connect positions related by yI , while
straight edges define the successor relation →. This TCW is realizable by the sequence of
timestamps 0, 0.9, 2.89, 3.1 but not by 0, 0.9, 2.99, 3.1. We let Real(Σ, I) be the set of TCWs
over (Σ, I) which are realizable.

TPDA and their semantics as TCWs. Dense-timed pushdown automata (TPDA), intro-
duced in [1], are an extension of timed automata, and operate on a finite set of real-valued
clocks and a stack which holds symbols with their ages. The age of a symbol represents
the time elapsed since it was pushed onto the stack. Formally, a TPDA S is a tuple
(S, s0,Σ,Λ,∆, X, F) where S is a finite set of states, s0 ∈ S is the initial state, Σ, Λ,
are respectively finite sets of input, stack symbols, ∆ is a finite set of transitions, X is a
finite set of real-valued variables called clocks, F ⊆ S are final states. A transition t ∈ ∆ is
a tuple (s, γ, a, op, R, s′) where s, s′ ∈ S, a ∈ Σ, γ is a finite conjunction of atomic formulae
of the kind x ∈ I for x ∈ X and I ∈ I, R ⊆ X are the clocks reset, op is one of the following
stack operations:
1. nop does not change the contents of the stack,
2. ↓c, c ∈ Λ is a push operation that adds c on top of the stack, with age 0.
3. ↑Ic , c ∈ Λ is a stack symbol and I ∈ I is an interval, is a pop operation that removes the

top most symbol of the stack provided it is a c with age in the interval I.
Timed automata (TA) can be seen as TPDA using nop operations only. This definition of
TPDA is equivalent to the one in [1], but allows checking conjunctive constraints and stack
operations together. In [9], it is shown that TPDA of [1] are expressively equivalent to timed
automata with an untimed stack. As our technique is oblivious to whether the stack is timed
or not, we focus on the syntactically more succinct model TPDA with a timed stack.

Next, we define the semantics of a TPDA in terms of TCWs.

CONCUR 2017

39:4 Towards an Efficient Tree Automata Based Technique for Timed Systems

Figure 1 A timed automaton and a TCW capturing a run.

I Definition 2. A TCW V = (V,→, λ, (yI)I∈I) is said to be generated or accepted by a
TPDA S if there is an accepting abstract run ρ = (s0, γ1, a1, op1, R1, s1)
(s1, γ2, a2, op2, R2, s2) · · · (sn−1, γn, an, opn, Rn, sn) of S such that, sn ∈ F and

the sequence of push-pop operations is well-nested: in each prefix op1 · · · opk with 1 ≤
k ≤ n, number of pops is at most number of pushes, and in the full sequence op1 · · · opn,
they are equal; and
V = {0, 1, . . . , n} with λ(0) = ε and λ(i) = ai for all 1 ≤ i ≤ n and 0 → 1 → · · · → n

and, for all I ∈ I, the relation yI is the set of pairs (i, j) with 0 ≤ i < j ≤ n such that
either for some x ∈ X we have x ∈ Ri (assuming R0 = X) and x ∈ I is a conjunct of
γj and x /∈ Rk for all i < k < j,
or opi = ↓b is a push and opj = ↑Ib is the matching pop (same number of pushes and
pops in opi+1 · · · opj−1).

We denote by TCW(S) the set of TCWs generated by S. The non-emptiness problem for the
TPDA S amounts to asking whether some TCW generated by S is realizable, i.e., whether
TCW(S) ∩ Real(Σ, I) 6= ∅. The TCW semantics of timed automata (TA) can be obtained
from the above discussion by just ignoring the stack components (using nop operations only).
Figure 1 depicts a simple example of a timed automaton and a TCW generated by it.
I Remark. The classical semantics of timed systems is given in terms of timed words. A
timed word is a sequence w = (a1, t1) · · · (an, tn) with a1, . . . , an ∈ Σ and (ti)1≤i≤n is a
non-decreasing sequence of values in R+. A realization of a TCW V = (V,→, λ, (yI)I∈I) ∈
TCW(S) with V = {0, 1, . . . , n} is a timed word w = (λ(1), ts(1)) . . . (λ(n), ts(n)) where
the timestamp map ts : V → R+ (with ts(0) = 0) is non decreasing and satisfies all timing
constraints of V. For example, the timed word (a, 0.9)(b, 2.89)(c, 3.1) is a realization of the
TCW in Figure 1 while (a, 0.9)(b, 2.99)(c, 3.1) is not. It is not difficult to check that the
language L(S) of timed words accepted by S with the classical semantics is precisely the set
of realizations of TCWs in TCW(S). Therefore, L(S) = ∅ iff TCW(S) ∩ Real(Σ, I) = ∅.

We now identify some important properties satisfied by TCWs generated from a TPDA.
Let V = (V,→, λ, (yI)I∈I) be a TCW. The matching relation (yI)I∈I is used in two
contexts: (i) while connecting a clock reset point (say for clock x) to a point where a guard
of the form x ∈ I is checked, and (ii) while connecting a point where a push was made to its
corresponding pop, where the age of the topmost stack symbol is checked to be in interval I.
We use the notations yx∈I and ys∈I to denote the matching relation yI corresponding to
a clock-reset-check as well as push on stack-check respectively. We say that V is well timed
w.r.t. a set of clocks X and a stack s if for each interval I ∈ I the matching relation yI

can be partitioned as yI = ys∈I]
⊎
x∈X yx∈I where

(T1) the stack relation ys =
⋃
I∈Iys∈I corresponds to the matching push-pop events,

hence it is well-nested: for all iys j and i′ ys j′, if i < i′ < j then j′ < j.
(T2) For each x ∈ X, the clock relation yx =

⋃
I∈Iyx∈I corresponds to the timing

constraints for clock x and respects the last reset condition: for all iyx j and i′ yx j′,
if i < i′, then j ≤ i′. See Figure 1 for example, where 0 yx 2 and 2 yx 3.

S. Akshay, P. Gastin, S. Krishna, and I. Sarkar 39:5

Figure 2 Operations on colored graphs.

It is then easy to check that TCWs defined by a TPDA with set of clocks X are well-timed
for the set of clocks X, i.e., satisfy the properties above. We obtain the same for TA by just
ignoring the stack edges, i.e., (T1) above.

3 Tree-Width for Timed Systems

In this section, we discuss tree-algebra by introducing the basic terms, the operations on
terms, their syntax and semantics. This will help us in analyzing the graphs obtained in the
previous section using tree-terms, and establishing a bound on the tree-width.

We introduce tree terms TTs from Courcelle [10] and their semantics as graphs which
are both vertex-labeled and edge-labeled. Let Σ be a set of vertex labels and let Ξ be a set
of edge labels. Let K ∈ N. The syntax of K-tree terms K-TTs over (Σ,Ξ) is given by

τ ::= (a, i) | (a, i)ξ(b, j) | Forgeti τ | Renamei,j τ | τ ⊕ τ

where i, j ∈ {1, 2, . . . ,K} are colors (i 6= j), a, b ∈ Σ are vertex labels and ξ ∈ Ξ is an edge
label. The semantics of a K-TT τ is a colored graph JτK = (Gτ , χτ) where Gτ = (V,E) is
a graph and χτ : {1, 2, . . . ,K} → V is a partial injective function assigning a color to some
vertices of Gτ . Note that any color in {1, 2, . . . ,K} is assigned to at most one vertex of Gτ .

The atomic term (a, i) is a single vertex colored i and labeled a and the atomic term
(a, i)ξ(b, j) represents a ξ-labeled edge between two vertices colored i, j and labeled a, b

respectively. Given a tree term τ , Forgeti(τ) forgets the color i from a node colored i,
leaving it uncolored. The operation Renamei,j(τ) renames the color i of a node to color j,
provided no nodes are already colored j. Since any color appears at most once in Gτ , the
operations Forgeti(τ) and Renamei,j(τ) are deterministic, when colors i, j, are fixed. Finally,
the operation τ1 ⊕ τ2 (read as combine) combines two terms τ1, τ2 by fusing the nodes of
τ1, τ2 which have the same color. See Figure 2.

The tree-width of a graph G is defined as the least K such that G = Gτ for some TT
τ using K + 1 colors. Let TWK denote the set of all graphs having tree width at most K.
For TCWs, we have successor edges → and matching edges yI where I ∈ I is an interval.
Hence, the set of edge labels is ΞI = {→} ∪ {yI | I ∈ I} and we use TTs over (Σ,ΞI). An
example is given in [5, Appendix A].

TCWs and Games. We find it convenient to prove that TCWs have bounded tree-width
by playing a game, whose game positions are TCWs in which some successor edges may have
been cut, i.e., are missing. Such TCWs, where some successor edges may be missing, are
called split-TCWs. A split-TCW which is a connected graph is called a connected split-TCW,
while a split-TCW which is a disconnected graph, is called a disconnected split-TCW. For
example, is a connected split-TCW, while is a disconnected split-TCW
consisting of two connected split TCWs, namely and .

A TCW is atomic if it is denoted by an atomic term ((a, i) or (a, i)→ (b, j) or (a, i) yI

(b, j)). The split-game is a two player turn based game G = (Pos∃]Pos∀,Moves) where Eve’s

CONCUR 2017

39:6 Towards an Efficient Tree Automata Based Technique for Timed Systems

set of game positions Pos∃ consists of all connected (wrt. →∪y) split-TCWs and Adam’s
set of game positions Pos∀ consists of dis-connected split-TCWs. Eve’s moves consist of
adding colors to the vertices of the split-TCW, and dividing the split-TCW. For example,
if we have the connected split-TCW , and Eve colors two nodes (we use shapes
in place of colors for better visibility) we obtain . This graph can be divided
obtaining the disconnected graph and . As a result, we obtain the connected
parts and and . Now Adam’s choices are on this disconnected split-TCW
and he can choose either of the above three connected split-TCWs to continue the game.
Thus, divide is the reverse of the combine operation ⊕. Adam’s moves amount to choosing
a connected component of the split-TCW. Eve has to continue coloring and dividing on the
connected split-TCW chosen by Adam. Atomic split-TCWs are terminal positions in the
game: neither Eve nor Adam can move from an atomic split-TCW. A play on a split-TCW
V is a path in G starting from V and leading to an atomic split-TCW. The cost of the play
is the maximum width (number of colors-1) of any split-TCW encountered in the path. In
our example above, is already an atomic split-TCW. If Adam chooses any of the other
two, it is easy to see that Eve has a strategy using at most 2 colors in any of the split-TCWs
that will be obtained till termination. The cost of a strategy σ for Eve from a split-TCW V
is the maximal cost of the plays starting from V and following strategy σ. The tree-width
of a (split-)TCW V is the minimal cost of Eve’s (positional) strategies starting from V. Let
TCWK denote the set of TCWs with tree-width bounded by K.

A block in a split-TCW is a maximal set of points of V connected by →. For example,
the split-TCW has one non-trivial block and one trivial block . Points that
are not left or right endpoints of blocks of V are called internal.

The Bound. We show that we can find a K such that all the behaviors of the given timed
system have tree-width bounded by K.

I Theorem 3. Given a timed system S using a set of clocks X, all graphs in its TCW
language have tree-width bounded by K, i.e., TCW(S) ⊆ TCWK , where
1. K = |X|+ 1 if S is a timed automaton,
2. K = 3|X|+ 2 if S is a timed pushdown automaton.

The following lemma completes the proof of Theorem 3 (2).

I Lemma 4. The tree-width of a well-timed TCW is bounded by 3|X|+ 2.

We prove this by playing the “split game” between Adam and Eve in which Eve has a
strategy to disconnect the word without introducing more than 3|X| + 3 colors. Eve’s
strategy processes the word from right to left. Starting from any TCW, Eve colors the end
points of the TCW, as well as the last reset points (from the right end) corresponding to
each clock. Here she uses at most |X| + 2 colors. On top of this, depending on the last
point, we have different cases, as sketched below (a detailed proof is in [5, Appendix B]).

If the last point is the target of a yx edge for some clock x, then Eve simply removes
the clock edge, since both the source and target points of this edge are colored. We only
discuss in some detail the case when the last point is the target of a ys edge, and the source
of this edge is an internal point in the non-trivial block. Figure 3 illustrates this case.

To keep a bound on the number of colors needed, Eve divides the TCW as follows:
First Eve adds a color to the source of the stack edge
If there are any clock edges crossing this stack edge, Eve adds colors to the corresponding
reset points. Note that this results in adding atmost |X| colors.

S. Akshay, P. Gastin, S. Krishna, and I. Sarkar 39:7

Figure 3 The last point is the target of a ys (top figure). After the split, we obtain the words
V1 (the middle one) and V2 (the bottom one).

Eve disconnects the TCW into two parts, such that the right part V2 consists of one
non-trivial block whose end points are the source and target points of the stack edge,
and also contains to the left of this block, atmost |X| trivial blocks. Each of these trivial
blocks are the reset points of those clock edges which cross over. The left part V1 is
a TCW consisting of all points to the left of the source of the stack edge, and has all
remaining edges other than the clock edges which have crossed over. Adam can now
continue the game choosing V1 or V2. Note that in one of the words so obtained, the
stack edge completely spans the non-trivial block, and can be easily removed.

Invariants and bound on tree-width. We now discuss some invariants on the structure of
the split-TCWs as we play the game using the above strategy.
(I1) We have ≤ |X| colored trivial blocks to the left of the only non-trivial block,
(I2) The last reset node of each clock on the non-trivial block is colored,
(I3) The end points of the non-trivial block are colored.
To maintain the above invariants, we need |X| + 1 extra colors than the at most 2|X| + 2
mentioned above. This proves that the tree-width of a TPDA with set of clocksX is bounded
by 3|X|+2. If the underlying system is a timed automaton, then we have a single non-trivial
block in the game at any point of time. There are no trivial blocks, unlike the TPDA, due
to the absence of stack edges. This results in using only ≤ |X| + 2 colors at any point of
time, where |X| colors are needed to color the last reset points of the clocks in the block,
and the 2 colors are used to color the left, right end points of the block.

4 Tree automata for Validity

In this section, we give one of the most challenging constructions (Theorem 6) of the paper,
namely, the tree automaton that accepts all valid and realizable K-TTs which are “good”.
Good K-TTs are defined below. In this section, we restrict ourselves to closed intervals; that
is, those of the form [a, b] and [a,∞), where a, b ∈ N. Fix K ≥ 2. Not all graphs defined by
K-TTs are realizable TCWs. Indeed, if τ is such a TT, the edge relation → may have cycles
or may be branching, which is not possible in a TCW. Also, the timing constraints given
by yI need not comply with the → relation: for instance, we may have a timing constraint
eyI f with f →+ e (→+ is the transitive closure of →, i.e., e can be reached from f after
taking ≥ 1 successor edges →). Moreover, some terms may define graphs denoting TCWs
which are not realizable. So we use AK,Mvalid to check for validity. Since we have only closed
intervals in timing constraints, integer timestamps suffice for realizability, as can be seen
from the following lemma ([5, Appendix C.1]).

CONCUR 2017

39:8 Towards an Efficient Tree Automata Based Technique for Timed Systems

Table 1 The second row gives tree representations of three good 6-TTs τ1, τ2, τ3. In all these
terms, we ignore vertex labels and we use AddyI

i,j τ as a macro for τ ⊕ i yI j. The third row gives
their semantics JτK = (Gτ , χτ) together with a realization ts, the fourth row gives possible states q
of AK,Mvalid with M = 4 after reading the terms. Here, L is the circled color. The boolean value acc(i)
for each non maximal color i is written between tsm(i) and tsm(i+).

τ1 τ2 τ3

Addy[3,∞]
1,5

Addy[1,3]
3,5

⊕

Addy[2,∞]
1,4

3→ 4

4→ 5

Addy[3,∞]
2,6

Addy[1,3]
4,6

⊕

Addy[0,2]
3,5

4→ 5

5→ 6

Forget5

⊕

τ1 Rename3,4

Rename4,5

Forget5

τ2

χ

ts

1

0

3

5

4

6

5

8

[2, ∞]

[3, ∞]

[1, 3]

χ

ts

2

3

3

6

4

8

5

8

6

11

[3, ∞]

[0, 2] [1, 3]

χ

ts

1

0

2

3

3

5

4

6 8 8

6

11

[2, ∞]

[3, ∞] [3, ∞]

[1, 3] [0, 2] [1, 3]

P
tsm

1

0

3

1

4

2

5

0¬acc acc acc

P
tsm

2

3

3

2

4

0

5

0

6

3acc acc acc acc

P
tsm

1

0

2

3

3

1

4

2

6

3acc acc acc ¬acc

I Lemma 5. Let V = (V,→, λ, (yI)I∈I(M)) be a TCW using only closed intervals in its
timing constraints. Then, V is realizable iff there exists an integer valued timestamp map
satisfying all timing constraints.

Consider a set of colors P ⊆ {1, . . . ,K}. For each i ∈ P we let i+ = min{j ∈ P ∪ {∞} |
i < j} and i− = max{j ∈ P ∪ {0} | j < i}. If P is not clear from the context, then we
write nextP (i) and prevP (i). Given a K-TT τ with semantics JτK = (G,χ), we denote by
Act = dom(χ) the set of active colors in τ , we let Right = max(Act) and Left = min{i ∈
Act | χ(i) →∗ χ(Right)}. If τ is not clear from the context, then we write Actτ , Leftτ and
Rightτ . A K-TT τ is good if

τ ::= (a, i)→ (b, j) | (a, i) yI (b, j) | Forgeti τ | Renamei,j τ | τ ⊕ τ ,
for every subterm of the form (a, i)→ (b, j) or (a, i) yI (b, j) we have i < j,
Renamei,j τ is possible only if i− < j < i+,
τ1 ⊕ τ2 is allowed if Right1 = Left2 and {i ∈ Act2 | Left1 ≤ i ≤ Right1} ⊆ Act1.

Examples of good TTs and their semantics are given in Table 1. Note that the semantics
of a K-TT τ is a colored graph JτK = (Gτ , χτ). Below, we provide a direct construction of a
tree automaton, which gives a clear upper bound on the size of AK,Mvalid , since obtaining this
bound gets very technical if we stick to MSO.

I Theorem 6. We can build a tree automaton AK,Mvalid with MO(K) number of states such that
L(AK,Mvalid) is the set of good K-TTs τ such that JτK is a realizable TCW and the endpoints
of JτK are the only colored points.

Proof. The tree automaton AK,Mvalid reads the TT bottom-up and stores in its state a finite
abstraction of the associated graph. The finite abstraction will keep only the colored points
of the graph. We will only accept good terms for which the natural order on the active colors

S. Akshay, P. Gastin, S. Krishna, and I. Sarkar 39:9

Table 2 Transitions of AK,Mvalid . See Table 1 for some intuitions. I.up in row 2 represents upper
bound of interval I.

(a, i)→ (b, j) ⊥ (a,i)→(b,j)−−−−−−−→ q = (P,L, tsm, acc) is a transition if i < j and P = {i, j}, L = i and
acc(j) = ff. The values for tsm(i), tsm(j) and acc(i) are guessed.

(a, i) yI (b, j) ⊥ (a,i)yI (b,j)−−−−−−−−→ q = (P,L, tsm, acc) is a transition if i < j and P = {i, j}, L = j and
acc(j) = ff. Here, i and j are trivial blocks. The values for tsm(i), tsm(j) and acc(i)
are guessed such that (acc(i) = tt and d(i, j) ∈ I) or (acc(i) = ff and I.up =∞).

Renamei,j q = (P,L, tsm, acc)
Renamei,j−−−−−−→ q′ = (P ′, L′, tsm′, acc′) is a transition if i ∈ P and

i− < j < i+. Then, q′ is obtained from q by replacing i by j.

Forgeti q = (P,L, tsm, acc) Forgeti−−−−→ q′ = (P ′, L′, tsm′, acc′) is a transition if L < i < max(P)
(endpoints should stay colored). Then, state q′ is deterministically given by P ′ =
P \ {i}, L′ = L, tsm′ = tsm|P ′ and acc′(i−) = ACC(i−, i+) ∧ (D(i−, i+) < M), the
other values of acc′ are inherited from acc.

⊕ q1, q2
⊕−→ q where q1 = (P1, L1, tsm1, acc1), q2 = (P2, L2, tsm2, acc2) and q =

(P,L, tsm, acc) is a transition if the following hold
R1 = max(P1) = L2 and {i ∈ P2 | L1 ≤ i ≤ R1} ⊆ P1 (we cannot insert a new
point from the second argument in the non-trivial block of the first argument).
P = P1 ∪ P2, L = L1, and tsm|P1 = tsm1 and tsm|P2 = tsm2: these updates are
deterministic. In particular, this implies that tsm1 and tsm2 coincide on P1 ∩ P2.
Finally, acc satisfies acc(max(P)) = ff and
∀i ∈ P1 \ {max(P1)} acc1(i)⇐⇒ ACCq(i, nextP1 (i)) ∧Dq(i, nextP1 (i)) < M

∀i ∈ P2 \ {max(P2)} acc2(i)⇐⇒ ACCq(i, nextP2 (i)) ∧Dq(i, nextP2 (i)) < M .
Notice that these conditions imply
For all i ∈ P1, if nextP (i) = nextP1 (i) (e.g., if L1 ≤ i < R1) then acc(i) = acc1(i).
For all i ∈ P2, if nextP (i) = nextP2 (i) (e.g., if L2 ≤ i) then acc(i) = acc2(i).

coincides with the order of the corresponding vertices in the final TCW. The restriction to
good terms ensures that the graph defined by the TT is a split-TCW.

Moreover, to ensure realizability of the TCW defined by a term, we will guess timestamps
of vertices modulo M . We also guess while reading a subterm whether the time elapsed
between two consecutive active colors is big (≥ M) or small (< M). We see below that
the time elapsed is small iff it can be recovered accurately with the modulo M abstraction.
Then, the automaton has to check that all these guesses are coherent and using these values
it will check that every timing constraint is satisfied.

Formally, states of AK,Mvalid are tuples of the form q = (P,L, tsm, acc), where P ⊆
{1, . . . ,K}, L ∈ P , tsm : P → [M] = {0, . . . ,M − 1} and acc : P → B. acc is a flag
which stands for “accurate”, and is used to check if the time elapse between two points is
accurate or not, based on the time stamps.

Intuitively, when reading bottom-up a K-TT τ with JτK = (V,→, λ, (yI)I∈I , χ), the
automaton AK,Mvalid will reach a state q = (P,L, tsm, acc) such that
(A1) P = Act is the set of active colors in τ , L = Left and max(P) = Right.
(A2) For all i ∈ P , if L ≤ i < max(P) then χ(i)→+ χ(i+) in JτK.
(A3) Let 99K = {(χ(i), χ(i+)) | i ∈ P ∧ i < L}. This extra relation serves at ordering the

blocks of a split-TCW. Then, (JτK, 99K) is an ordered split-TCW, i.e., < = (→∪ 99K)+

is a total order on V , timing constraints in JτK are <-compatible yI ⊆ < for all I, the
direct successor relation of < is l = → ∪ 99K and → ∩ 99K = ∅. Moreover, targets of
timing constraints are in the last block: for all uyI v in (JτK, 99K), we have χ(L)→∗ v.

CONCUR 2017

39:10 Towards an Efficient Tree Automata Based Technique for Timed Systems

(A4) There exists a timestamp map ts : V → N such that
all constraints are satisfied: ts(v)− ts(u) ∈ I for all uyI v in JτK,
time is non-decreasing: ts(u) ≤ ts(v) for all u ≤ v,
(tsm, acc) is the modulo M abstraction of ts: ∀i ∈ P we have tsm(i) = ts(χ(i))[M]
and acc(i) = tt iff i+ 6=∞ and ts(χ(i+))− ts(χ(i)) < M .

We say that the state q is a realizable abstraction of a term τ if it satisfies conditions (A1)–
(A4).

Indeed, the finite state automaton AK,Mvalid cannot store the timestamp map ts witnessing
realizability. Instead, it stores the modulo M abstraction (tsm, acc). We will see that
AK,Mvalid can check realizability based on the abstraction (tsm, acc) of ts and can maintain this
abstraction while reading the term bottom-up.

We introduce some notations. Let q = (P,L, tsm, acc) be a state and let i, j ∈ P with
i ≤ j. We define d(i, j) = (tsm(j) − tsm(i))[M] and D(i, j) =

∑
k∈P |i≤k<j d(k, k+). We

also define ACC(i, j) =
∧
k∈P |i≤k<j acc(k). If the state is not clear from the context, then

we write dq(i, j), Dq(i, j), ACCq(i, j). For instance, with the state q3 corresponding to the
term τ3 of Table 1, we have ACC(1, 4) = tt, d(1, 4) = 2 and D(1, 4) = 6 = ts(4) − ts(1) is
the accurate value of the time elapsed. Whereas, ACC(3, 6) = ff and d(3, 6) = 2 = D(3, 6)
are both strict modulo-M under-approximations of the time elapsed ts(6)− ts(3) = 6. The
transitions of AK,Mvalid are defined in Table 2.

Accepting condition. The accepting states of AK,Mvalid should correspond to abstractions of
TCWs. Hence the accepting states are of the form ({i, j}, L, tsm, acc) with i, j ∈ {1, . . . ,K},
i < j, L = i and acc(j) = ff. The correctness of this construction is in [5, Appendix C.2], and
is obtained by proving (i) the transitions of AK,Mvalid indeed preserve the conditions (A1)–(A4),
(ii) (A1)–(A4) ensure among other things, that the boolean values acc(i), ACC(i, j) for i < j

indeed defines when the elapse of time is accurately captured by the modulo M abstraction:
that is, ACC(i, j) is true iff the actual time elapse between i and j is captured using the
modulo M abstraction D(i, j). J

5 Tree automata for timed systems

The goal of this section is to build a tree automaton which accepts tree terms denoting
TCWs accepted by a TPDA. The existence of a tree automaton can be proved by showing
the MSO definability of the runs of the TPDA S on a TCW. However, as seen in section 4,
we directly construct a tree automaton for better complexity. Given the timed system S, let
K be the bound on tree-width given by Theorem 3 and letM be one more than the maximal
constant occurring in the guards of S. The automaton AK,MS will accept good K-TTs with
the additional restriction that a timing constraint is immediately combined with an existing
term. That is, restricted K-TTs are good K-TTs restricted to the following syntax:

τ ::= (a, i)→ (b, j) | τ ⊕ [(a, i) yI (b, j)] | Forgeti τ | Renamei,j τ | τ ⊕ τ

I Theorem 7. Let S be a TPDA of size |S| (constants encoded in unary) with set of
clocks X and using constants less than M . Let K be the bound on tree-width given by
Theorem 3. Then, we can build a tree automaton AK,MS with |S|O(K)·KO(|X|) states such that
AK,MS accepts the set of restricted K-TTs τ such that JτK ∈ TCW(S). Further, TCW(S) =
JL(AK,MS)K = {JτK | τ ∈ L(AK,MS)}.

S. Akshay, P. Gastin, S. Krishna, and I. Sarkar 39:11

Proof (Sketch). A state of AK,MS is a tuple q = (P,L, δ,Push,Pop, G, Z) where,
P is the set of active colors, and L = Left ∈ P is the left-most point that is connected to
the right-end-point R = Right = max(P) by successor edges on the non-trivial block.
δ is a map that assigns to each color k ∈ P the transition δ(k) guessed at the leaf
corresponding to color k,
Push and Pop are two boolean variables: Push = 1 iff a push-pop edge has been added
to L and Pop = 1 iff a push-pop edge has been added to R,
G = (Gx)x∈X is a boolean vector of size |X|: for each clock x ∈ X, Gx = 1 iff some
constraint on x has already been checked at R,
Z = (Zx)x∈X assigns to each clock x either the color i ∈ P with i < L of the unique
point on the left of the non-trivial block which is the source of a timing constraint iyI j

for clock x, or ⊥ if no such points exist.
For j ∈ P , let Reset(j) be the set of clocks that are reset in the transition δ(j). We describe
here the most involved kind of transition q′⊕ q′′ for states q′, q′′. The remaining transitions
as well as the full proof are in [5, Appendix D]. Let q′ = (P ′, L′, δ′,Push′,Pop′, G′, Z ′),
q′′ = (P ′′, L′′, δ′′,Push′′,Pop′′, G′′, Z ′′) and q = (P,L, δ,Push,Pop, G, Z). Then q′, q′′ ⊕−→ q is
a transition if the following hold:

C1: R′ = max(P ′) = L′′ and {i ∈ P ′′ | L′ ≤ i ≤ R′} ⊆ P ′ (we cannot insert a new point
from the second argument in the non-trivial block of the first argument). Note that
according to C1, the points , and in P ′′ lying between L′, R′ are already points in
the non-trivial block connecting L′ to R′.

C2: ∀i ∈ P ′∩P ′′, δ′(i) = δ′′(i) (the guessed transitions match). By C2, the transitions δ′, δ′′
of , and must match.

C3: if there is a Push operation in δ′′(L′′) then Push′′ = 1 and if there is a pop operation in
δ′(R′) then Pop′ = 1 (the push-pop edges corresponding to the merging point have been
added, if they exist). By C3, if δ(R′) = δ(L′′) contains a pop (resp. push) operation then
R′ = L′′ is the target (resp. source) of a push-pop edge.

C4: if some guard x ∈ I is in δ(R′), then G′x = 1 (before we merge, we ensure that the clock
guard for x in the transition guessed at R′, if any, has been checked). After the merge,
R′ = L′′ becomes an internal point; hence by C4, any guard x ∈ I in δ′(R′) must be
checked already, i.e., G′x = 1. After the merge, it is no more possible to add an edge yI

leading into R′.
C5: if Z ′x 6= ⊥, then ∀j ∈ P ′′, Z ′x < j < L′ implies x 6∈ Reset′′(j) (If a matching edge

starting at Z ′x < L′ had been seen earlier in run leading to q′, then x should not have
been reset in q′′ between Z ′x and L′, else it would violate the consistency of clocks). By
C5, if Z ′x is (resp.), i.e., (resp.) is the source of a timing constraint yI for clock
x whose target is in the L′–R′ block, then clock x cannot be reset at and (resp.).

C6: if Z ′′x 6= ⊥, then ∀j ∈ P ′, Z ′′x < j < L′′ implies x 6∈ Reset′(j) (If a matching edge
starting at Z ′′x < L′′ had been seen earlier in run leading to q′′, then x should not have
been reset in q′ between Z ′′x and L′′). By C6, if Z ′′x is , then x cannot be reset at , ,
, or . Likewise, if Z ′′x was , then clock x cannot be reset at , , or .

CONCUR 2017

39:12 Towards an Efficient Tree Automata Based Technique for Timed Systems

C7: P = P ′ ∪ P ′′, L = L′, δ = δ′ ∪ δ′′, Push = Push′, Pop = Pop′′, G = G′′ and
for all x ∈ X we have Zx = Z ′′x if Z ′′x < L′, else Zx = Z ′x. C7 says that on merging,
we obtain the third split-TCW. After the merge, if Zx is defined, it must be on the left
of L′, i.e., one of , , , . Notice that the above three conditions ensure the well-
nestedness of clocks. By C5 and C6 we cannot have both Z ′x ∈ { , } and Z ′′x ∈ { , }.
So if Z ′′x ∈ { , } then Zx = Z ′′x and otherwise Zx = Z ′x (including when Z ′′x ∈ { , }
and Z ′x = ⊥).

Accepting Condition. A state q = (P,L, δ,Push,Pop, G, Z) is accepting if L = min(P),
δ(L) is some dummy ε-transition resetting all clocks and leading to the initial state,
target(δ(R)) is a final state and if δ(R) has a pop operation then Pop = 1, if it has a
constraint/guard for clock x, then Gx = 1. Note that the above automaton only accepts
restricted K-TTs; this is sufficient for emptiness checking since Eve’s winning strategy in
Section 3 captures all behaviours of the TCW(S) while generating only restrictedK-TTs. J

As a corollary we obtain (see [5, Appendix D.2]),

I Theorem 8. Let S be a TPDA. We have L(S) 6= ∅ iff L(AK,Mvalid ∩ A
K,M
S) 6= ∅.

If the underlying system is a timed automaton, we can restrict the state space to storing
just the tuple (P, δ,G) as the other components are not required and L is always min(P).

Possible Extensions. We now briefly explain how to extend our technique in the presence
of diagonal guards: these are guards of the form x−y ∈ I or x−pop ∈ I or pop−x ∈ I where
x, y are clocks, and I is a time interval. The former is a guard that checks the difference
between two clock values, while the latter checks the difference between the value of a clock
and the age of the topmost stack symbol at the time of the pop. To handle a constraint of
the form x− y ∈ I, it is enough to check the difference between the guessed time stamps at
the last reset points of clocks y, x to be in I. Likewise, to check x− pop ∈ I or pop− x ∈ I,
we check the difference between the guessed time stamps at the points where the top symbol
was pushed on the stack and the last reset of clock x. Note that the last reset points of x, y
will not be forgotten until the automaton decides to accept; likewise, the push point will
not be forgotten until the pop transition is encountered. Given this, our construction of the
tree automaton can be extended with the above checks to handle diagonal guards as well.

6 Implementation and a case-study

We have implemented the emptiness checking procedure for TPDA using our tree-automata
based approach, and describe some results here. Despite the EXPTIME-completeness of this
problem for general TPDA, we present some good performance results for certain interesting
subclasses of TPDA. As a concrete subclass, the complexity significantly improves when
there is no extra clock other than the timing constraints associated with the stack; while
popping a symbol, we simply check the time elapsed since the push. Note that this can
be used to model systems where timing constraints are well-nested: clock resets correspond
to push and checking guards corresponds to checking the age of the topmost stack symbol.
Thus, this gives a technique for reducing the number of clocks for a timed system with nested
timing constraints. For this subclass, the exact number of states of the tree automaton can
be improved to 2×(M × T)2, whereM is 1 plus the maximum constant, and T is the number
of transitions. This idea can be extended further to incorporate clocks whose constraints

S. Akshay, P. Gastin, S. Krishna, and I. Sarkar 39:13

Figure 4 A simple maze. Every junction, dead end, entry point or exit point is called a place,
numbered from 1 to 7. 6 is the entry, 2 the exit, 1, 7 and 4 are dead ends. Time intervals denote the
time taken between adjacent places; e.g., between 1 and 2 time units must elapse between places 3
and 7. On the right, is the TPDA model of the maze.

are well-nested with respect to the stack. We can also handle clocks which are reset and
checked in consecutive transitions.

For the general model (one stack + any number of clocks), we can use optimizations to
reduce the number of states of the tree automaton to (M × T)2|X|+2×22|X|+1, where |X| is
the number of clocks,M is 1 plus the maximum constant and T is the number of transitions.
To see this, consider the worst case scenario, where a state of the tree automaton has |X|
hanging points and |X| reset points. In total there can be 2|X|+ 2 active points including
the left and right end-points of the non-trivial block. After a combine operation, we can
forget a point i of the new state, if it is the case that every clock x reset at the transition
(guessed) at point i is also reset at some transition at a point after i. Following this strategy,
if we aggressively forget as many points as we can, we will have at most |X| internal (reset)
active points between the left and right end-points of the non-trivial block. Thus, we reduce
the number of active points from 3|X|+ 2 to 2|X|+ 2.

As a proof of concept, we have implemented our approach with these optimizations.
We will now describe some examples we modelled and their experimental results. These
experiments were run on a 3.5 GHz i5 PC with 8GB RAM, with number of cores=4.

A Modeling Example : Maze with Constraints
As an interesting example, we model a situation of a robot successfully traversing a maze
respecting multiple constraints (see Figure 4). These constraints may include logical con-
straints: the robot must visit location 1 before exit, or the robot must load something at a
certain place i and unload it at place j (so number of visits to i must equal visits to j). We
may also have local and global time constraints which check whether adjacent places are
visited within a time bound, or the total time taken in the maze is within a given duration.
We show below, via an illustrative example, that certain classes of such constraints can be
converted into a 1-clock TPDA.

One can go from place p to some of its adjacent place q if there is an arrow from place
p to place q. In addition, the following types of constraints must be respected.
1. Logical constraints specify certain order between visiting places, the number of times

(upper/lower bounds) to visit a place or places, and so on. The logical constraints we
have in our example are (a) place 1 must be visited exactly once, (b) from the time we
enter the maze, to visiting place 1, one must visit place 7 (load) and place 4 (unload)
equal number of times, and at any point of time, the number of visits to place 7 is not
less than number of visits to place 4. (c) from visiting place 1 to exiting the maze, one

CONCUR 2017

39:14 Towards an Efficient Tree Automata Based Technique for Timed Systems

must visit place 7 and place 4 equal number of times and, at any point during time,
number of visits to place 7 is not less than number of visits to place 4.

2. Local time constraints specify time intervals which must be respected while going from
a place to its adjacent place. The time taken from some place i to an adjacent place
j is given as a closed interval [a, b] along with the arrow. One cannot spend any time
between a pair of adjacent places other than the ones specified in the maze. For example,
the time bound for going from place 7 to 3 is given, while the time taken from place 3
to place 7 and place 6 to place 1 is zero ([0,0]), since it is not mentioned. Further, one
cannot stay in any place for non-zero duration.

3. Global time constraints specify total time that can elapse between visiting two places.
From entering the maze to visiting of place 1, time taken should be exactly m units
(a parameter). From visiting place 1 to exit, time should be exactly n units (another
parameter).

A maze respecting multiple constraints as above is converted into a 1-clock TPDA. While
the details of this conversion are given in [5, Appendix E], the main idea is to encode local
time bounds with the clock which is reset on all transitions. A logical constraint specifying
equal number of visits to places p1, p2 is modelled by pushing symbols while at p1, and
popping them at p2. Likewise, if there is a global time constraint that requires a time elapse
in [a, b] between the entry and some place p, then push on the stack at entry, and check its
age while at p. Note that these are well-nested properties.

To check the existence of a legitimate path in the maze respecting the constraints, our tool
checks the existence of a run in the TPDA. By running our tool on the TPDA constructed
(and fixing the parameters to be m = 7, n = 8), we obtain the following run: (described as
a sequence of pairs the form : State, Entry time stamp in the state) (6, 0.0) → (3, 0.0) →
(7, 0.0) → (3, 1.0) → (7, 1.0) → (3, 2.0) → (5, 5.0) → (4, 5.0) → (5, 6.0) → (4, 6.0) →
(5, 7.0) → (6, 7.0) → (1, 7.0) → (6, 7.0) → (3, 7.0) → (7, 7.0) → (3, 9.0) → (7, 9.0) →
(3, 10.0)→ (5, 13.0)→ (4, 13.0)→ (5, 14.0)→ (4, 14.0)→ (5, 15.0)→ (6, 15.0)→ (2, 15.0).

The scalability is assessed by instanti-
ating the maze for various choices of
maximum constants used, as well as
number of transitions. The running
times with respect to various choices
for the maximum constant are plotted
on the right. More examples can be
found in [5, Appendix E].

7 Conclusion

We have obtained a new construction for the emptiness checking of TPDA, using tree-
width. The earlier approaches [1], [2] which handle dense time and discrete time push
down systems respectively use an adaptation of the well-known idea of timed regions. The
technique in [2] does not extend to dense time systems, and it is not clear whether the
approach in [1] will work for say, multi stack push down automata even with bounded
scope/phase restrictions. Unlike this, our approach is uniform : all our proofs except the
tree automaton for realizability already work even if we have open guards. Our realizability
proof has to be adapted for open guards and this is work under progress; in this paper,
we focussed on closed guards to obtain an efficient tool based on our theory. Likewise,

S. Akshay, P. Gastin, S. Krishna, and I. Sarkar 39:15

our proofs can be extended to bounded phase/scope/rounds multi stack timed push down
automata : we need to show a bound on the tree-width, and then adapt the tree automaton
construction for the system automaton. The tree automaton checking realizability requires
no change. With the theoretical improvements in this paper, we implement our approach
and examine its performance on real examples. To the best of our knowledge, this is the
first tool implementing timed push down systems. We plan to optimize our implementation
to get a more robust and scalable tool. For the subclasses we have, it would be good to
have a characterization and automatic translation (currently done by hand) that replaces
well-nested clock constraints by stack edges, thus leading to better implementability.

Acknowledgments. The authors thank Vincent Jugé for insightful discussions on the MSO
definability of realizability of TC words.

References
1 P. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown automata. In LICS

Proceedings, pages 35–44, 2012.
2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. The minimal cost reach-

ability problem in priced timed pushdown systems. In Language and Automata Theory and
Applications - 6th International Conference, LATA 2012, A Coruña, Spain, March 5-9,
2012. Proceedings, pages 58–69, 2012.

3 C. Aiswarya and P. Gastin. Reasoning about distributed systems: WYSIWYG (invited
talk). In FSTTCS Proceedings, pages 11–30, 2014.

4 S. Akshay, P. Gastin, and S. Krishna. Analyzing timed systems using tree automata. In
CONCUR Proceedings, 2016.

5 S. Akshay, P. Gastin, S. N. Krishna, and I. Sarkar. Towards an efficient tree automata
based technique for timed systems. CoRR, abs/1707.02297, 2017. URL: http://arxiv.
org/abs/1707.02297.

6 R. Alur and D. Dill. A theory of timed automata. In TCS, 126(2):183–235, 1994.
7 G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In International School

on Formal Methods for the Design of Computer, Communication and Software Systems,
pages 200–236, 2004.

8 A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification of systems with
continuous variables and unbounded discrete data structures. In Hybrid Systems II, pages
64–85, 1994.

9 L. Clemente and S. Lasota. Timed pushdown automata revisited. In LICS Proceedings,
pages 738–749, 2015.

10 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applic-
ations. CUP, 2012.

11 A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown systems
via split-width. In CONCUR Proceedings, pages 547–561, 2012.

12 Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, and Shoji Yuen. Nested timed automata.
In Formal Modeling and Analysis of Timed Systems - 11th International Conference,
FORMATS 2013, Buenos Aires, Argentina, August 29-31, 2013. Proceedings, pages 168–
182, 2013.

13 P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL Proceedings,
pages 283–294, 2011.

14 Ashutosh Trivedi and Dominik Wojtczak. Recursive timed automata. In ATVA Proceedings,
pages 306–324, 2010.

CONCUR 2017

http://arxiv.org/abs/1707.02297
http://arxiv.org/abs/1707.02297

	Introduction
	Graphs for behaviors of timed systems
	Tree-Width for Timed Systems
	Tree automata for Validity
	Tree automata for timed systems
	Implementation and a case-study
	Conclusion

