
Local Search Algorithms for the Maximum
Carpool Matching Problem
Gilad Kutiel1 and Dror Rawitz∗2

1 Department of Computer Science, Technion, Haifa, Israel
gkutiel@cs.technion.ac.il

2 Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
dror.rawitz@biu.ac.il

Abstract
The Maximum Carpool Matching problem is a star packing problem in directed graphs.
Formally, given a directed graph G = (V,A), a capacity function c : V → N, and a weight
function w : A → R+, a carpool matching is a subset of arcs, M ⊆ A, such that every v ∈ V
satisfies:
(i) dinM (v) · doutM (v) = 0,
(ii) dinM (v) ≤ c(v), and
(iii) doutM (v) ≤ 1.
A vertex v for which doutM (v) = 1 is a passenger, and a vertex for which doutM (v) = 0 is a driver
who has dinM (v) passengers. In the Maximum Carpool Matching problem the goal is to find
a carpool matching M of maximum total weight. The problem arises when designing an online
carpool service, such as Zimride [4], which tries to connect between users based on a similarity
function. The problem is known to be NP-hard, even in the unweighted and uncapacitated
case. The Maximum Group Carpool Matching problem, is an extension of Maximum
Carpool Matching where each vertex represents an unsplittable group of passengers. Formally,
each vertex u ∈ V has a size s(u) ∈ N, and the constraint dinM (v) ≤ c(v) is replaced with∑

u:(u,v)∈M s(u) ≤ c(v).
We show that Maximum Carpool Matching can be formulated as an unconstrained sub-

modular maximization problem, thus it admits a 1
2 -approximation algorithm. We show that the

same formulation does not work for Maximum Group Carpool Matching, nevertheless, we
present a local search (1

2−ε)-approximation algorithm for Maximum Group Carpool Match-
ing. For the unweighted variant of both problems when the maximum possible capacity, cmax, is
bounded by a constant, we provide a local search (1

2 + 1
2cmax

− ε)-approximation algorithm. We
also show that the problem is APX-hard, even if the maximum degree and cmax are at most 3.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation algorithms, local search, star packing, submodular max-
imization

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.55

1 Introduction

As traveling costs become higher and parking becomes sparse it is only natural to share
rides or to carpool. Originally, carpooling was an arrangement among a group of people
by which they take turns driving the others to and from a designated location. However,

∗ Supported in part by the Israel Science Foundation (grant no. 497/14).

© Gilad Kutiel and Dror Rawitz;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 55; pp. 55:1–55:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.55
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 Local Search Algorithms for the Maximum Carpool Matching Problem

taking turns is not essential, instead passengers can share the cost of the ride with the driver.
Carpooling has social advantages other than reducing the costs: it reduces fuel consumption
and road congestion and frees parking space. While in the past carpooling was usually
a fixed arrangement between friends or neighbors, the emergence of social networks has
made carpooling more dynamic and wide scale. These days applications like Zimride [4],
BlaBlaCar [1], Moovit [2] and even Waze [3] are matching passengers to drivers.

The matching process of passengers to drivers entails more than matching the route.
Passenger satisfaction also needs to be taken into account. Given several riding options
(including taking their own car), passengers have preferences. For example, a passenger may
prefer to ride with a co-worker or a friend. She may have an opinion on a driver that she
rode with in the past. She may prefer a non-smoker, someone who shares her taste in music,
or someone who is recommended by others. Moreover, the matching process may take into
account driver preferences. For instance, we would like to minimize the extra distance that
a driver has to take. Preferences may also be computed using past information. Knapen
et al. [16] described an automatic service to match commuting trips. Users of the service
register their personal profile and a set of periodically recurring trips, and the service advises
registered candidates on how to combine their commuting trips by carpooling. The service
estimates the probability that a person a traveling in person’s b car will be satisfied by the
trip. This is done based on personal information and feedback from users on past rides.

In this paper we assume that potential passenger-driver satisfactions are given as input
and the goal is to compute an assignment of passengers to drivers so as to maximize the global
satisfaction. More formally, we are given a directed graph G = (V,A), where each vertex
v ∈ V corresponds to a user of the service, and an arc (u, v) exists if the user corresponding
to vertex u is willing to commute with the user corresponding to vertex v. We are given a
capacity function c : V → N which bounds the number of passengers each user can drive if
she is selected as a driver. A non-negative weight function w : A→ R+ is used to model the
amount of satisfaction w(u, v) of assigning u to v. If (u, v) ∈ A implies that (v, u) ∈ A and
w(u, v) = w(v, u), the instance is undirected. If w(v, u) = 1, for every (v, u) ∈ A, then the
instance is unweighted. If c(v) = deg(v), for every v, then the instance is uncapacitated.

Given a directed graph G and a subset M ⊆ A, define dinM (v) , |{u : (u, v) ∈M}| and
doutM (v) , |{u : (v, u) ∈M}|. A feasible carpool matching is a subset of arcs, M ⊆ A, such
that every v ∈ V satisfies: (i) dinM (v) · doutM (v) = 0, (ii) dinM (v) ≤ c(v), and (iii) doutM (v) ≤ 1. A
feasible carpool matching M partitions V as follows:

PM ,
{
v : doutM (v) = 1

}
DM ,

{
v : dinM (v) ≥ 1

}
ZM ,

{
v : doutM (v) = dinM (c) = 0

}
where PM is the set of passengers, DM is the set of active drivers, and ZM is the set of solo
drivers. In the Maximum Carpool Matching problem the goal is to find a matching M
of maximum total weight, namely to maximize w(M) ,

∑
(v,u)∈M w(v, u). In other words,

the Maximum Carpool Matching problem is about finding a set of (directed toward the
center) vertex disjoint stars that maximizes the total weight of the arcs. Figure 1 contains
an example of a Maximum Carpool Matching instance. Note that in the unweighted
case the goal is to find a carpool matching M that maximizes |PM |. Moreover, observe that
if G is undirected, DM ∪ ZM is a dominating set. Hence, in this case, an optimal carpool
matching induces an optimal dominating set and vice versa. Since Minimum Dominating
Set is NP-hard, it follows that Maximum Carpool Matching is NP-hard even if the
instance is undirected, unweigthed, and uncapacitated.

We also consider an extension of Maximum Carpool Matching, called Maximum
Group Carpool Matching, in which each vertex represents a group of passengers, and
each group may have a different size. Such a group may represent a family or two friends

G. Kutiel and D. Rawitz 55:3

2

3

1

2

0

4

3

2

1

4

3

4

5

2

4
6

2

4

4

2

2

2
1

1

33

1

1

(a) An instance containing a directed
graph with capacities on the vertices and
weights on the arcs.

2

0

4

3

1

2

1

3

2 44

5

2

4

6

2

(b) A feasible carpool matching with total weight
of 23. PM is the set of blue vertices, and DM is
the set of red, dashed vertices, and ZM contains
only the dotted, black vertex.

Figure 1 A Maximum Carpool Matching example.

traveling together. Formally, each vertex u ∈ V has a size s(u) ∈ N, and the constraint
dinM (v) ≤ c(v) is replaced with the constraint

∑
u:(u,v)∈M s(u) ≤ c(v). Notice that Knapsack

is the special case where only arcs directed at a single vertex have non-zero (integral) weights.

Related work. Agatz et al. [5] outlined the optimization challenges that arise when devel-
oping technology to support ride-sharing and survey the related operations research models
in the academic literature. Hartman et al. [15] designed several heuristic algorithms for the
Maximum Carpool Matching problem and compared their performance on real data.
Other heuristic algorithms were developed by Knapen et al. [17]. Hartman [14] proved that
the Maximum Carpool Matching problem is NP-hard even in the case where the weight
function is binary and c(v) ≤ 2 for every v ∈ V . In addition, Hartman presented a natural
integer linear program and showed that if the set of drivers is known, then an optimal
assignment of passengers to drivers can be found in polynomial time using a reduction to
Network Flow (see also [18].) Kutiel [18] presented a 1

3 -approximation algorithm for
Maximum Carpool Matching that is based on a Minimum Cost Flow computation and
a local search 1

2 -approximation algorithm for the unweighted variant of Maximum Carpool
Matching. The latter starts with an empty matching and tries to improve the matching by
turning a single passenger into a driver.

Nguyen et al. [19] considered the Spanning Star Forest problem. A star forest is a
graph consisting of vertex-disjoint star graphs. In the Spanning Star Forest problem, we
are given an undirected graph G, and the goal is to find a spanning subgraph which is a star
forest that maximizes the weight of edges that are covered by the star forest. Notice that this
problem is equivalent to Maximum Carpool Matching on undirected and uncapacitated
instances. We also note that if all weights leaving a vertex are the same, then the instance is
referred to as vertex-weighted. Nguyen et al. [19] provided a PTAS for unweighted planner
graphs and a polynomial-time 3

5 -approximation algorithm for unweighted graphs. They gave
an exact optimization algorithm for weighted trees, and used it on a maximum spanning tree
of the input graph to obtain a 1

2 -approximation algorithm for weighted graphs. They also
shows that it is NP-hard to approximate unweighted Spanning Star Forest within a ratio
of 259

260 + ε, for any ε > 0. Chen et al. [13] improved the approximation ratio for unweighted
graphs from 3

5 to 0.71 and gave a 0.64-approximation algorithm for vertex weighted graphs.

ESA 2017

55:4 Local Search Algorithms for the Maximum Carpool Matching Problem

They also showed that the edge- and vertex-weighted problem cannot be approximated to
within a factor of 19

20 +ε, and 31
32 +ε, resp., for any ε > 0, assuming that P 6= NP. Chakrabarty

and Goel [11] improved the lower bounds to 10
11 + ε and 13

14 .
Athanassopoulos et al. [7] improved the ratio for the unweighted case to 193

240 ≈ 0.804.
They considered a natural family of local search algorithms for Spanning Star Forest.
Such an algorithm starts with the solution where all vertices are star centers. Then, it
repeatedly tries to turn t ≤ k from leaves to centers and t+ 1 centers to leaves. A change is
made if it results in a feasible solution, namely if each leave is adjacent to at least one center.
The algorithm terminates when such changes are no longer possible. Athanassopoulos et
al. [7] showed that, for any k and ε ∈ (0, 1

2(k+2)], there exists an instance G and a local
optima whose size is smaller than (1

2 + ε)opt, where opt is the size of the optimal spanning
star forest. We note that, for a given k, the construction of the above result requires that
the maximum degree of G is at least 2(k + 2). Hence, this result does not hold in graphs
with maximum degree ∆.

Arkin et al. [6] considered the Maximum Capacitated Star Packing problem. In this
problem the input consists of a complete undirected graph with non-negative edge weights
and a capacity vector c = {c1, . . . , cp}, where

∑p
i=1 ci = |V | − p. The goal is to find a set

of vertex-disjoint stars in G of size c1, . . . , cp of maximum total weight. Arkin et al. [6]
provided a local search algorithm whose approximation ratio is 1

3 , and a matching-based
1
2 -approximation algorithm for the case where edge weights satisfy the triangle inequality.

Bar-Noy et al. [8] considered the Minimum 2-Path Partition problem. In this problem
the input is a complete graph on 3k vertices with non-negative edge weights, and the goal
is to partition the graph into disjoint paths of length 2. This problem is the special case
of the undirected carpool matching where c(v) = 2, for every v ∈ V . They presented two
approximation algorithms, one for the weighted case whose ratio is 0.5833, and another for
the unweighted case whose ratio is 3

4 .
Another related problem is k-Set Packing, where one is given a collection of weighted sets,

each containing at most k elements, and the goal is to find a maximum weight subcollection
of disjoint sets. Chandra and Halldórsson [12] presented a 3

2(k+1) -approximation algorithm
for this problem. Maximum Carpool Matching can be seen as a special case of k-Set
Packing with k = cmax + 1. Consider a subset of vertice U of size at most k. Observe
that each subset of vertices has an optimal internal assignment of passenger to drivers. Let
the weight of this assignment be the profit of U , denoted by p(U). If k = O(1), p(U) can
be computed for every U of size at most k in polynomial time. The outcome is a k-Set
Packing instance. This leads to a 3

2(cmax+2) -approximation algorithm when cmax = O(1).

Our contribution. Section 2 contains approximation algorithms for Maximum Carpool
Matching. First, in Section 2.1 we show that Maximum Carpool Matching can
be formulated as an unconstrained submodular maximization problem, thus it has a 1

2 -
approximation algorithm due to [10, 9]. We present a local search algorithm for Maximum
Carpool Matching which repeatedly checks whether the current carpool matching can
be improved by means of a star centered at a vertex, and it terminates when such a step
is not possible. The approximation ratio of this algorithm is 1

2 if weights are polynomially
bounded, and its ratio is 1

2 − ε in general.
In Section 3 we consider Maximum Carpool Matching with bounded maximum

capacity. In Section 3.1 we show that Maximum Carpool Matching is APX-hard even
for undirected and unweighted instances with ∆ ≤ b, for any b ≥ 3. In Section 3.2 we
provide another local search algorithm, whose approximation ratio is 1

2 + 1
2cmax

− ε, for any

G. Kutiel and D. Rawitz 55:5

ε > 0, for unweighted Maximum Carpool Matching, where cmax , maxv∈V c(v). Given
a parameter k, our algorithm starts with the empty carpool matching. Then, it repeatedly
tries to find a better matching by replacing t ≤ k arcs in the current solution by t+ 1 arcs
that are not in the solution. We show that our analysis is tight. We also note that our
algorithm falls within the local search family defined in [7]. However, on undirected and
uncapaciated instances we have that cmax = ∆, and as mentioned above the result from [7]
does not hold in bounded degree graphs.

Finally, Section 4 discusses Maximum Group Carpool Matching. We show that the
unconstrained submodular maximization formulation for Maximum Carpool Matching
does not work for Maximum Group Carpool Matching. We show, however, that this
problem still admits a (1

2 − ε)-approximation algorithm by extending our first local search
algorithm. In addition, we show that the second local search algorithm generalizes to
unweighted Maximum Group Carpool Matching with the same approximation ratio.

2 Approximation Algorithms

We present two algorithms for Maximum Carpool Matching: a 1
2 -approximation algorithm

that is based on formulating the problem as an unconstrained submodular maximization
problem and a local search (1

2 − ε)-approximation algorithm. While the latter does not
improve upon the former, it will be shown (in Section 4) that it can be generalized to
Maximum Group Carpool Matching without decreasing the approximation ratio.

2.1 Submodular Maximization
In this section we show that the Maximum Carpool Matching problem can be formulated
as an unconstrained submodular maximization problem, and thus it has a 1

2 -approximation
algorithm due to Buchbinder et al. [10, 9].

Given a Maximum Carpool Matching instance (G = (V,A), c, w), consider a subset
S ⊆ V . LetM(S) be a maximum weight carpool matching satisfying DM(S) ⊆ S ⊆ V \PM(S),
namely M(S) is the best carpool matching whose drivers belong to S and whose passengers
belong to V \ S. In other words, M(S) is the maximum weight carpool matching that is a
subset of A∩(V \S)×S. Given S, the carpool matchingM(S) can be computed in polynomial
time by computing a maximum b-matching in the bipartite graph B = (V \S, S,A∩(V \S)×S)
which can be done using an algorithm for Minimum Cost Flow as shown in [18].

Consider the function w̄ : 2V → R, where w̄(S) , w(M(S)) =
∑

e∈M(S) w(e). Observe
that w̄(∅) = w̄(V) = 0, and that w̄ is not monotone. In the next lemma we prove that
w̄ is a submodular set function. Recall that a function f is submodular if f(S) + f(T) ≥
f(S ∪ T) + f(S ∩ T) for every two sets S and T in the domain of f .

I Lemma 1. w̄ is submodular.

Proof. Consider any two subsets S, T ⊆ V . We show that w̄(S)+w̄(T) ≥ w̄(S∪T)+w̄(S∩T).
Let M(S ∪ T) and M(S ∩ T) be optimal carpool matchings with respect to S ∪ T and S ∩ T .
To prove the lemma we construct two feasible carpool matchings MS and MT such that
MS ⊆ (V \ S)× S, MT ⊆ (V \ T)× T , and MS ∪MT = M(S ∪ T) ∪M(S ∩ T). The lemma
follows, since w̄(S) ≥ w(MS) and w̄(T) ≥ w(MT).

First, add all the edges in M(S ∪ T) entering S \ T to MS . Similarly, add all the edges
in M(S ∪ T) entering T \ S to MT . Observe that dinMS

(v) = dinM(S∪T)(v) ≤ c(v), for every
v ∈ S \ T and that dinMT

(v) = dinM(S∪T)(v) ≤ c(v), for every v ∈ T \ S. Next, add the edges
in M(S ∩ T) leaving T \ S to S and add the edges in M(S ∩ T) leaving S \ T to T . It

ESA 2017

55:6 Local Search Algorithms for the Maximum Carpool Matching Problem

remains to distribute the edges leaving V \ (S ∪ T) and entering S ∩ T in both M(S ∪ T)
and M(S ∩ T). Note that there may exist edges (v, u), where v 6∈ S ∪ T , and u ∈ S ∩ T
such that (v, u) ∈M(S ∪ T) and M(S ∩ T). We refer to this edges as duplicate edges. We
add all edges leaving V \ (S ∪ T) and entering S ∩ T in M(S ∩ T) to MS . Notice that this
is possible, since after this addition we have that dinMS

(v) ≤ dinM(S∩T)(v) ≤ c(v), for every
vertex v ∈ S ∩T . Then we add all duplicate edges in M(S ∪T) to MT . The remaining edges
are distributed between MS and MT without violating capacities. This can be done, since
dinM(S∪T)(v) + dinM(S∩T)(v) ≤ 2c(v), for every v ∈ S ∩ T . J

Buchbinder et al. [10, 9] presented a general 1
2 -approximation algorithm for unconstrained

submodular maximization, thus we have the following theorem.

I Theorem 2. There exists a polynomial time 1
2 -approximation algorithm for Maximum

Carpool Matching.

2.2 A Star Improvement Algorithm
In this section we give a local search (1

2−ε)-approximation algorithm for Maximum Carpool
Matching. This algorithm repeatedly checks whether the current carpool matching M
can be improved by means of a star centered at a vertex v. The profit from this star is the
total weight of the arcs in the star, and the cost is the total weight of lost arcs (e.g., arcs
from passengers to drivers that became passengers of v). If the profit is larger than the cost,
then an improvement step is performed. The algorithm terminates when such a step is not
possible. We remind the reader that this algorithm will be extended to Maximum Group
Carpool Matching in Section 4.

We need a few definitions before presenting our algorithm. Given a directed graphs
G = (V,A), define N in , {u : (u, v) ∈ A} and Nout , {u : (v, u) ∈ A}. Let M be a feasible
carpool matching. The weight wM (v) of a vertex v with respect to M is the sum of the
weights of the arcs in M that are incident on v, namely

wM (v) , w(M ∩N in) + w(M ∩Nout) =
∑

(u,v)∈M w(u, v) +
∑

(v,u)∈M w(v, u) .

For a subset of vertices U ⊆ V we define wM (U) ,
∑

v∈U wM (v).
We now argue that, with respect to any carpool matching M , the total weight of all the

vertices is equal to twice the weight of the matching.

I Observation 3. wM (V) = 2w(M).

Proof.
∑
v∈V

wM (v) =
∑
v∈V

∑
(u,v)∈M

w(u, v) +
∑
v∈V

∑
(v,u)∈M

w(v, u) = 2
∑
e∈M

w(e). J

Denote by δ(u, v) the difference between the weight of the arc and the weight of its
source vertex, that is: δM (u, v) , w(u, v) − wM (u). For a subset S ⊆ A of arcs define
δ(S) ,

∑
(u,v)∈S δ(u, v).

A subset Sv of arcs entering a vertex v, whose size is not greater than the capacity of v,
is called an improvement to vertex v if δ(Sv) is greater than the value of v. More formally,

I Definition 4. A subset Sv ⊆ A ∩ (V × {v}) is an improvement with respect to a carpool
matchingM , if |Sv| ≤ c(v) and δM (Sv) > wM (v). Furthermore, if there exists an improvement
for a vertex v, we say that vertex v can be improved.

G. Kutiel and D. Rawitz 55:7

1 2 3

4 5

65

2 2

28

Figure 2 In this example M is the set of the blue, dashed arcs. In this case wM (2) = 7, wM (5) = 2,
and wM (6) = 0. Also, δM (2, 3) = 1 and δM (6, 3) = 2. The set {(2, 3), (6, 3)} is an improvement to
vertex 3 and Γ(2, 3) = {(1, 2), (4, 2), (3, 5), (6, 3)}.

Algorithm 1: StarImprove(G, c)
1 M ← ∅
2 repeat
3 done← True
4 for v ∈ V do
5 if there exists an improvement Sv then
6 M ←M \ Γ(Sv) ∪ Sv

7 done← False

8 until done;

Given an arc (u, v) ∈ A, let Γ(u, v) be the set of arcs that incident (u, v), namely define
Γ(u, v) , (N in(u)×{u})∪ ({v}×Nout(v)). If S is a set of arcs, then Γ(S) ,

⋃
(u,v)∈S Γ(u, v).

Figure 2 depicts all the above definitions.
We are now ready to describe our local search algorithm, which is called StarImprove

(Algorithm 1). It starts with an empty carpool matching M , and in every iteration it looks
for a vertex that can be improved. If there exists such a vertex v, then the algorithm removes
the arcs that are incident on it from M , and adds the arcs in Sv. The algorithm terminates
when no vertex can be improved. Figure 3 depicts an improvement step.

We proceed to bound the approximation ratio of the algorithm, assuming termination.
For a vertex v and a set S of edges entering v, let N in

S (v) = {u : (u, v) ∈ S} be the set
in-neighbors corresponding to S.

I Lemma 5. Let M be a matching computed by StarImprove. Let v be a vertex with no
improvement, and let S ⊆ N in

M (v), such that |S| ≤ c(v), then w(S) ≤ wM (v) + wM (N in
S (v)).

Proof. If no improvement exists, then we have that
w(S)− wM (N in

S (v)) =
∑

(u,v)∈S(w(u, v)− wM (u)) = δM (S) ≤ wM (v) . J

To bound the approximation ratio of the algorithm, we use a charging scheme argument.

I Lemma 6. If StarImprove terminates, then the computed solution is 1
2 -approximate.

Proof. Let M be the matching produced by the algorithm, and let M∗ be an optimal
matching. We load every vertex v with an amount of money equal to wM (v), and then we
show that this is enough to pay for every arc in the optimal matching. Due to Observation 3
the total amount of money that we use is exactly twice the weight of M .

Consider a driver v ∈ DM∗ , and let S = (V × {v}) ∩M∗. By lemma 5 we know that
w(S) ≤ wM (v) + wM (N in

S (v)), thus we can pay for S, using the money on v and on N−S (v).
Clearly, these vertices will not be charged again. J

ESA 2017

55:8 Local Search Algorithms for the Maximum Carpool Matching Problem

1 2 3

4 5

6

5

2 2

2

8

(a) A matching that can be improved.

1 2 3

4 5

6

5

2 2

2

8

(b) The matching after improving vertex 3.

Figure 3 An improvement example.

1 1 12 2 · · · 1

Figure 4 Consider a path with 2n+1 arcs, and alternating arc weights (2 and 1), if StarImprove
selects all arcs of weight 1, then no further improvement can be done and the value of the matching
is n+ 1, while the optimal matching has value of 2n.

We show that our analysis is tight using in Figure 4.
It remains to consider the running time of the algorithm.

I Theorem 7. Algorithm StarImprove is a 1
2 -approximation algorithm for Maximum

Carpool Matching, if edge weights are integral and polynomially bounded.

Proof. First, observe that determining if a vertex v can be improved can be done efficiently
by considering the incoming arcs to v in a non-increasing order of their δM s, and only ones
with positive values. A vertex v can be improved, then, if the δs of the first c(v) (or less) arcs
sum up to more than wM (v). It follows that the running time of an iteration of the for-loop
is polynomial. Since the edge weights are integral and polynomially bounded, the weight of
an optimal carpool matching is polynomially bounded. The algorithm runs in polynomial
time, because in each iteration the algorithm improves the weight of the matching by at least
one or otherwise it terminates. J

It remains to consider the case of general weights. It can be shown that one can use
standard scaling and rounding to ensure a polynomial running time in the cost of a (1 + ε)
factor in the approximation ratio. The proof is omitted for lack of space.

I Theorem 8. There exists a (1
2 − ε)-approximation algorithm for Maximum Carpool

Matching, for every ε ∈ (0, 1
2).

3 Constant Maximum Capacity

In this section we study the Maximum Carpool Matching problem when the maximum
capacity is constant, i.e., when cmax = O(1). We show that this variant of the problem is
APX-hard even for unweighted and undirected instances. We also describe and analyze a
local search algorithm for the unweighted variant of the problem, and show that the algorithm
achieves a 1

2 + 1
2cmax

− ε approximation ratio, for any ε > 0.

G. Kutiel and D. Rawitz 55:9

3.1 Hardness
As we mentioned earlier, Spanning Star Forest has a lower bound of 10

11 + ε for any ε > 0,
unless P=NP [11], and this bound applies to Maximum Carpool Matching. The result,
however, does not hold for the case where ∆ = O(1) (and cmax = O(1)). In this section we
show that the problem remains APX-hard even in this case.

Formally, the (unweighted) Minimum Dominating Set problem is defined as follows.
The input is an undirected graph G = (V,E), and a feasible solution, or a dominating
set, is a subset D ⊆ V that dominates V namely such that D ∪

⋃
v∈D N(v) = V , where

N(v) is the neighborhood of v. The goal is to find a minimum cardinality dominating set.
Minimum Dominating Set-b is the special case of Minimum Dominating Set in which
the maximum degree of a vertex in the input graph G is bounded by b. The problem was
shown to be APX-hard, for b ≥ 3, by Papadimitriou and Yannakakis [20].

We now consider the unweighted and undirected special case of the Maximum Carpool
Matching problem. In this case, the input consists of an undirected graph G and a capacity
function c, and the goal is to find a carpool matching M that maximizes |PM |.

Given an undirected graph G, letD∗ be a minimum cardinality dominating set, and letM∗
be an optimal carpool matching with respect to G and the capacity function: c(v) = deg(v),
for every v ∈ V .

I Observation 9. |PM∗ |+ |D∗| = |V |

Proof. Given a carpool matching M , observe that DM ∪ ZM is a dominating set. In the
other direction, a dominating set D induces a carpool matching of size |V \D|. J

We use this duality to obtain a hardness result for Maximum Carpool Matching.

I Theorem 10. The Maximum Carpool Matching problem is APX-hard, even for
undirected and unweighted instances with maximum degree bounded by b, for b ≥ 3.

Proof. We prove the theorem by presenting an L-reduction from Minimum Dominating
Set-b. (For details on L-reductions the reader is referred to [20].) We define a function f
from Minimum Dominating Set-b instances to Maximum Carpool Matching instances
as follows: f(G) = (G, c), where c(v) = deg(v), for every v ∈ V . Next, we define a function g
that given a carpool matching computes a dominating set as follows: g(M) = V \ PM . Both
f and g can be computed in polynomial time.

Let D∗ be an optimal dominating set with respect to G, and letM∗ be an optimal carpool
matching with respect to G and c. Since |D∗| ≥ |V |

b+1 , it follows that |PM∗ | ≤ b |D∗|, In
addition, ifM is a carpool matching, we have that |DM ∪ ZM |−|D∗| = (|V |−|PM |)−|D∗| =
|PM∗ | − |PM |. Hence, there is an L-reduction from Minimum Dominating Set-b to
unweighted and undirected Maximum Carpool Matching with bounded capacity b. J

3.2 Local Search
In this section we present a local search (1

2 + 1
2cmax

−ε)-approximation algoithm for unweighted
Maximum Carpool Matching whose running time is polynomial if cmax = O(1).

Let k be a constant integer to be determined later. Algorithm EdgeSwap (Algorithm 2)
maintains a feasible matching M throughout its execution and operates in iterative manner
where in each iteration it tries to find a better solution by replacing a subset of at most k
edges in the current solution with another (larger) subset of edges not in the solution. The
algorithm halts when no improvement can be done.

ESA 2017

55:10 Local Search Algorithms for the Maximum Carpool Matching Problem

Algorithm 2: EdgeSwap(G, c, k)
1 M ← ∅
2 repeat
3 done← true
4 forall M ′ ⊆M : |M ′| ≤ k do
5 forall A′ ⊆ A \M : |A′| = |M ′|+ 1 do
6 if M \M ′ ∪A′ is feasible then
7 M ←M \M ′ ∪A′
8 done← false

9 until done;
10 return M

a

b

c d

e

f

hi j kl

(a)M∗ is depicted by the dashed red edges, and
M is depicted by the solid green edges. The
optimal stars are outlined.

(b) The star graph: each vertex corresponds to a
star in G. The upper left vertex corresponds to the
star that contains the vertices a,b,c.

Figure 5 An example of a star graph.

Algorithm EdgeSwap terminates in polynomial time, since in every non-final iteration
it improves the value of the solution by one. Thus, after at most n iterations the algorithm
terminates. In every iteration the algorithm examines all subsets of edges of a fixed size and
tests for feasibility, both these operations can be done in polynomial time.

Observe that a vertex v ∈ DM ∪ ZM is the center of a directed star whose leaves are the
passengers in the set PM (v) = {u : (u, v) ∈M} (PM (v) = ∅, for v ∈ ZM). Given a carpool
matching M , we define S(M) to be the set of stars that are induced by M . Denote by V (S)
the set of vertices of a star, i.e., if v is the center of S, then V (S) = {v} ∪ PM (v). Also, let
A(S) be the arcs of S. For T ⊆ S(M), define V (T) ,

⋃
S∈T V (S) and A(T) ,

⋃
S∈T A(S).

It remains to analyze the approximation ratio of EdgeSwap. Let M∗ be an optimal
matching, and let M be the matching computed by EdgeSwap. Given both matchings
we build the star graph in which each vertex represents a star from the optimal solution,
namely from S(M∗), and an edge exists between two vertices if there is a star in S(M) that
intersects the two corresponding stars of the optimal solution. Formally H = (S(M∗), E)
where E =

{
(S∗i , S∗j) : ∃S ∈ S(M), V (S) ∩ V (S∗i) 6= ∅ ∧ V (S) ∩ V (S∗j) 6= ∅

}
. Figure 5 de-

picts a star graph.

I Lemma 11. The maximum degree of H is cmax(cmax + 1).

Proof. Each star in S(M∗) contains at most cmax + 1 vertices and each such vertex can
belong to a star in S(M) containing additional cmax vertices, each of which is located in a
different star in S(M∗). J

G. Kutiel and D. Rawitz 55:11

In what follows we compare |M | and |M∗| in maximal connected components of the star
graph H. Intuitively, we show that M is optimal on small maximal components, and that
the approximation ratio on medium (non-necessarily) components can be bounded due to
the termination condition of EdgeSwap. Large maximal components will be partitioned
into medium components.

We first show that large connected graphs (or maximal connected components) can be
partitioned into medium size components. The proof is omitted for lack of space.

I Lemma 12. An undirected connected graph G = (V,E) with maximum degree ∆, can be
decomposed into connected components of size at least ` and at most ∆`, if ` ≤ |V |.

Define degM (v) , dinM (v) + doutM (v). For a subset U ⊆ V of vertices define degM (U) ,∑
v∈U degM (u). Observe that |M | = 1

2 degM (V).
In the next lemma we bound the degree ratio in a component that contains stars with at

most k arcs.

I Lemma 13. Let T ⊆ S(M∗) that induces a connected subgraph of H. If |A(T)| ≤ k, then

degM (V (T))
degM∗(V (T)) ≥

1
2 + 1

2cmax
− 1

2cmax |T |
.

Proof. Consider the solution M ′ obtained from M by removing all the edges from M that
intersect V (T) and adding all the edges from M∗ that intersect V (T). Observe that if an
edge (u, v) in M∗ intersects V (T), then {u, v} ∈ V (T) by the definition of the graph H.
Hence, M ′ is feasible carpool matching.

Since T induces a connected subgraph of H, the removal of edges in M that intersect
V (T) decreased |M | by at most degM (V (T))− |T |+ 1. On the other hand, the increase in
size is exactly 1

2 degM∗(V (T)) ≤ cmax |T |. Since |A(T)| ≤ k, we know that this difference
can not be positive, or else, EdgeSwap would not have terminated. Thus 1

2 degM∗(V (T)) ≤
degM (V (T))− |T |+ 1, and so

degM (V (T))
degM∗(V (T)) ≥

1
2 + |T | − 1

degM∗(V (T)) ≥
1
2 + |T | − 1

2cmax |T |
= 1

2 + 1
2cmax

− 1
2cmax |T |

,

as required. J

It remains to bound the approximation ratio of EdgeSwap.

I Lemma 14. If k ≥ cmax, then |M | ≥ (1
2 + 1

2cmax
− cmax(cmax+1)

2k) · |M∗|.

Proof. Consider a maximal (with respect to set inclusion) connected component of H induced
by the vertices in T ⊆ S(M∗). If |M ∩A(T)| ≤ k, then it must be that |M ∩A(T)| =
|M∗ ∩A(T)|, since otherwise M ∩A(T) could be improved.

It remains to consider a maximal component T such that If |M ∩A(T)| > k. Since
the number of edges in S ∈ S(M∗) is at most cmax, it must be that |V (T)| > k

cmax
. Due

to Lemma 12 (with ` = k
c2

max(cmax+1)) we can partition T into connected components each
of which contains between k

c2
max(cmax+1) and k

cmax
vertices. Since each such vertex set X is

connected and contains at most k
cmax

stars, it follows that |A(X)| ≤ k. Due to Lemma 13 we
have that degM (V (X))

degM∗ (V (X)) ≥
1
2 + 1

2cmax
− cmax(cmax+1)

2k . Since degM∗(V (T)) =
∑
X degM∗(V (X))

and degM (V (T)) =
∑
X degM (V (X)), it follows that degM (V (T))

degM∗ (V (T)) ≥
1
2 + 1

2cmax
− cmax(cmax+1)

2k ,

and thus |M ∩A(T)| ≥
(

1
2 + 1

2cmax
− cmax(cmax+1)

2k

)
|M∗ ∩A(T)|. J

ESA 2017

55:12 Local Search Algorithms for the Maximum Carpool Matching Problem

21 1

2

A B

Figure 6 An unweighted Maximum Carpool Matching instance. Capacities are written
inside vertices, and arcs are labeled with their size. We have that w̄(A) + w̄(B) = 2 < 3 =
w̄(A ∪B) + w̄(A ∩B).

By setting k = dcmax(cmax + 1)/2εe, we get the following result.

I Corollary 15. There exists a (1
2 + 1

2cmax
− ε)-approximation algorithm for unweighted

Maximum Carpool Matching, for every ε > 0.

4 Group Carpool

We now consider Maximum Group Carpool Matching which a variant of Maximum
Carpool Matching in which we are given a size function s : V → N, and the constraint
dinM (v) ≤ c(v) is replaced with the constraint

∑
u:(u,v)∈M s(u) ≤ c(v).

We start by showing that this variant of the problem does not fit the submodular
maximization formulation as defined for Maximum Carpool Matching. Recall the
submodular maximization formulation given in Section 2.1, namely w̄ : 2V → R, where
w̄(S) , w(M(S)) andM(S) is the maximum weight carpool matching that satisfies DM(S) ⊆
S ⊆ V \ PM(S). Figure 6 contains an instance that shows that the function w̄ is not
submodular anymore.

We show that Maximum Group Carpool Matching has a (1
2 − ε)-approximation

algorithm by extending the algorithm from Section 2.2. The main concern when trying to
adopt the algorithm to Maximum Group Carpool Matching is how to determine if a
vertex can be improved. With Maximum Carpool Matching, if weights are polynomially-
bounded, it was enough to consider the incoming arcs to a vertex v in a non-increasing
order of δM (see proof of Theorem 7). This does not work anymore, since in the Maximum
Group Carpool Matching we have sizes. In fact, given v, finding the best star with
respect to δM is a Knapsack instance where the size of the knapsack is c(v). If weights
are polynomially-bounded, then δM (e) is bounded for every arc e ∈ A, and therefore this
instance of Knapsack can be solved in polynomial time using dynamic programming.

I Theorem 16. Algorithm StarImprove is a 1
2 -approximation algorithm for Maximum

Group Carpool Matching, if edge weights are integral and polynomially bounded.

Using standard scaling and rounding we obtain the following result.

I Theorem 17. There exists a (1
2 − ε)-approximation algorithm for Maximum Group

Carpool Matching, for every ε ∈ (0, 1
2).

Finally, we show that a variant of Algorithm EdgeSwap from Section 3.2 can be used
to solve Maximum Group Carpool Matching while keeping the same approximation
guarantees. The only difference is that when checking feasibility of a set of arcs we do not
compare the number of passengers to the capacity of a driver, but rather compare the total
size of the passengers to the capacity.

G. Kutiel and D. Rawitz 55:13

I Theorem 18. There exists a (1
2 + 1

2cmax
− ε)-approximation algorithm for unweighted

Maximum Group Carpool Matching, for every ε > 0.

Acknowledgements. We thank David Adjiashvili and Reuven Bar-Yehuda for helpful
discussions.

References
1 Blablacar. https://www.blablacar.com.
2 Moovit carpool. https://moovitapp.com/.
3 Waze. https://www.waze.com/.
4 Zimride by enterprise. https://zimride.com/.
5 Niels A. H. Agatz, Alan L. Erera, Martin W. P. Savelsbergh, and Xing Wang. Optimization

for dynamic ride-sharing: A review. European Journal of Operational Research, 223(2):295–
303, 2012.

6 Esther M. Arkin, Refael Hassin, Shlomi Rubinstein, and Maxim Sviridenko. Approxima-
tions for maximum transportation with permutable supply vector and other capacitated
star packing problems. Algorithmica, 39(2):175–187, 2004.

7 Stavros Athanassopoulos, Ioannis Caragiannis, Christos Kaklamanis, and Maria Kyro-
poulou. An improved approximation bound for spanning star forest and color saving. In
34th International Symposium on Mathematical Foundations of Computer Science, pages
90–101, 2009.

8 Amotz Bar-Noy, David Peleg, George Rabanca, and Ivo Vigan. Improved approximation
algorithms for weighted 2-path partitions. In 23rd Annual European Symposium on Al-
gorithms, volume 9294 of LNCS, pages 953–964, 2015.

9 Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximiz-
ation problems. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
392–403, 2016.

10 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5):1384–
1402, 2015.

11 Deeparnab Chakrabarty and Gagan Goel. On the approximability of budgeted allocations
and improved lower bounds for submodular welfare maximization and GAP. SIAM J.
Comput., 39(6):2189–2211, 2010.

12 Barun Chandra and Magnús M. Halldórsson. Greedy local improvement and weighted set
packing approximation. J. Algorithms, 39(2):223–240, 2001.

13 Ning Chen, Roee Engelberg, C. Thach Nguyen, Prasad Raghavendra, Atri Rudra, and
Gyanit Singh. Improved approximation algorithms for the spanning star forest problem.
Algorithmica, 65(3):498–516, 2013.

14 Irith Ben-Arroyo Hartman. Optimal assignment for carpooling. submitted.
15 Irith Ben-Arroyo Hartman, Daniel Keren, Abed Abu Dbai, Elad Cohen, Luk Knapen,

Ansar-Ul-Haque Yasar, and Davy Janssens. Theory and practice in large carpooling prob-
lems. In 5th International Conference on Ambient Systems, Networks and Technologies,
pages 339–347, 2014.

16 Luk Knapen, Daniel Keren, Ansar-Ul-Haque Yasar, Sungjin Cho, Tom Bellemans, Davy
Janssens, and Geert Wets. Estimating scalability issues while finding an optimal assign-
ment for carpooling. In 4th International Conference on Ambient Systems, Networks and
Technologies, pages 372–379, 2013.

17 Luk Knapen, Ansar-Ul-Haque Yasar, Sungjin Cho, Daniel Keren, Abed Abu Dbai, Tom
Bellemans, Davy Janssens, Geert Wets, Assaf Schuster, Izchak Sharfman, and Kanishka

ESA 2017

https://www.blablacar.com
https://moovitapp.com/
https://www.waze.com/
https://zimride.com/

55:14 Local Search Algorithms for the Maximum Carpool Matching Problem

Bhaduri. Exploiting graph-theoretic tools for matching in carpooling applications. J. Am-
bient Intelligence and Humanized Computing, 5(3):393–407, 2014.

18 Gilad Kutiel. Approximation algorithms for the maximum carpool matching problem. In
12th International Computer Science Symposium in Russia, volume 10304 of LNCS, pages
206–216, 2017.

19 C. Thach Nguyen, Jian Shen, Minmei Hou, Li Sheng, Webb Miller, and Louxin Zhang.
Approximating the spanning star forest problem and its application to genomic sequence
alignment. SIAM J. Comput., 38(3):946–962, 2008.

20 Christos Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and com-
plexity classes. In 12th Annual ACM Symposium on Theory of Computing, pages 229–234,
1988.

	Introduction
	Approximation Algorithms
	Submodular Maximization
	A Star Improvement Algorithm

	Constant Maximum Capacity
	Hardness
	Local Search

	Group Carpool

