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Abstract
Local search for combinatorial optimization problems is becoming a dominant algorithmic paradigm,
with several papers using it to resolve long-standing open problems. In this paper, we prove the
following ‘4-local’ version of Hall’s theorem for planar graphs: given a bipartite planar graph
G = (B,R,E) such that |N(B′)| ≥ |B′| for all |B′| ≤ 4, there exists a matching of size at
least |B|4 in G; furthermore this bound is tight. Besides immediately implying improved bounds
for several problems studied in previous papers, we find this variant of Hall’s theorem to be of
independent interest in graph theory.
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1 Introduction

One of the exciting developments in the field of geometric algorithms in recent years has
been the use of local search techniques to resolve several open problems in combinatorial
optimization. Remarkably, all these following NP-hard problems are approximately solved
by the same meta-algorithm:
1. Minimum hitting set problem for pseudo-disks1 [16]. Given a set X of points and a

set D of pseudo-disks in the plane, compute a minimum size subset of X that hits all
pseudo-disks in D.

2. Maximum independent set in the intersection graph of pseudo-disks [1, 8]. Given a set D
of pseudo-disks in the plane, compute a maximum size pairwise disjoint subset of D.

3. Terrain guarding problem [10]. Given a 1.5D terrain2 T and two subsets X,G ⊆ T ,
compute a minimum size subset of G such that every point of X is visible from some
point of G.

∗ This work was supported by the grant ANR SAGA (JCJC-14-CE25-0016-01).
1 A set of geometric objects in the plane are called pseudo-disks if the boundary of every pair of objects

intersect at most twice.
2 A 1.5D terrain T is an x-monotone chain of line segments in R2.
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4. Minimum dominating set in disk intersection graphs [11]. Given a set D of disks in the
plane, compute a minimum size subset D′ ⊆ D such that each D ∈ D is either in D′ or
intersects some disk in D′.

5. Minimum dominating set in pseudo-disk intersection graphs [12]. Given a set D of
pseudo-disks in the plane, compute a minimum size subset D′ of D such that each D ∈ D
is either in D′ or intersects some pseudo-disk in D′.

6. Minimum set-cover problem for disks in the plane [7, 15]. Given a set of points X and a
set of disks D in the plane, compute the minimum sized subset of D that covers all the
points of X. This problem can be reduced to the minimum hitting set problem for disks.

The Meta-Algorithm: Local Search
The meta-algorithm can be parameterized by an integer k representing the search radius.
Abstractly, let X be a set of given base elements, and Π : 2X −→ {0, 1} be a function that
assigns feasibility to each subset of X with respect to the specific problem. Then the goal is
to find a minimum/maximum sized subset of X for which Π(·) is feasible. The local-search
algorithm proceeds as follows: start with any feasible solution S ⊆ X, and iteratively improve
S by changing3 subsets of S of size at most k, as long as the new solution is also feasible.
We restrict the discussion below to instances of minimization problems; the maximization
case is similar.

Local-Search Method With Search Radius k (minimization instance).

Let S ⊆ X be any feasible solution.
while there exists S ′ with π(S ′) feasible and where |S ′ \ S| < |S \ S ′| ≤ k do

set S = S ′.
return S

The analysis of the approximation factor of a local search algorithm, assuming the problem
has some planar features, usually proceeds as follows.

Recall that for a graph G = (V,E) and a subset V ′ of V , NG(V ′) = {v ∈ V : ∃u ∈
V ′, {u, v} ∈ E} denotes the set of neighbors of V ′ in G.

IDefinition 1. Let k ≥ 1 be given. A bipartite graphG = (B,R,E) satisfies a local expansion
property if, for every subset B′ of B of cardinality at most k, we have |NG(B′)| ≥ |B′|. Then
G is called a k-expanding graph. If k = |B| then G is called an expanding graph.

I Lemma 2 ([8, 16]). There is an absolute constant c0 such that any planar bipartite
k-expanding graph G = (B,R,E) satisfies |R| ≥

(
1− c0√

k

)
|B|.

The analysis of local-search algorithm with search radius k proceeds by first constructing
a certain bipartite planar graph G = (S,O, E) on S and O, where S is the local-search
solution with radius k and O is an (unknown) optimal solution, such that G is k-expanding.

Now setting k = Θ( 1
ε2 ) and applying Lemma 2 to G implies that the local optimum S

has size
(
1 + O(ε)

)
times the optimal size |O|, hence near-optimality. A straightforward

implementation of the local-search algorithm gives a running time of nO( 1
ε2 ), so this is a PTAS

(polynomial-time approximation scheme). Note that as most of the problems listed earlier
are W [1]-hard [13, 14], it is unlikely that algorithms exist that do not have a dependency on
1/ε in the exponent of n.

3 In case of a minimization problem, replace some k elements of S with some k − 1 elements of X; for a
maximization problem replace some k elements of S with some k + 1 elements of X.
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Combinatorics of Local Search: Hall’s Theorem for Planar Graphs

The reader will notice the resemblance between the Local Expansion Property and pre-
conditions of Hall’s theorem – Local Expansion Property is simply the pre-condition of Hall’s
theorem restricted to subsets of size at most k. And indeed, the statement of Lemma 2 can
be re-cast as a ‘local’ version of Hall’s theorem for planar graphs, as follows. One of the
cornerstones of graph theory, Hall’s theorem, can be rephrased as:

I Theorem 3 (Hall’s Theorem). Let G = (B,R,E) be a |B|-expanding bipartite graph. Then
there exists a matching in G of size |B|.

Note that if we restrict the expanding subsets to be of size at most k for some integer k,
then the theorem fails, as one cannot guarantee a matching of size more than k – e.g., take
G to be the complete bipartite graph K|B|,k. Interestingly, Lemma 2 implies that unlike the
general graph case, a ‘local’ version of Hall’s theorem is indeed true for planar graphs. We
first observe that Lemma 2 can be used to get a local variant of Hall’s theorem for planar
graphs:

I Theorem 4 (k-local Hall’s Theorem for Planar Graphs). Let G = (B,R,E) be a k-expanding
bipartite planar graph. Then there exists a matching in G of size at least

(
1− c0√

k

)
|B|.

Proof. Let B′ ⊆ B for any subset of B. Observing that the subgraph of G induced by
B′ ∪ NG(B′) is planar, bipartite and k-expanding, we have |NG(B′)| ≥

(
1 − c0√

k

)
|B′| by

Lemma 2. Let S be a new set of c0|B|√
k

dummy vertices. Construct a bipartite graph
G′ = (B,R ∪ S,E ∪E′), where E′ is the set of all |B| · |S| edges between B and S. Then G′
satisfies the conditions of Hall’s theorem, as for any B′ ⊆ B, we have

|NG′(B′)| = |NG(B′)|+ |S| ≥
(
1− c0√

k

)
|B′|+ c0|B|√

k
≥ |B′|.

Thus there is a matching of size |B| in G′ by Hall’s theorem. Removing the vertices of S
from this matching still leaves a matching of size at least

(
1− c0√

k

)
|B|. J

Note that Theorem 4 is more general than Lemma 2, so it can be interpreted as a
strengthening of Lemma 2. Summarizing this discussion, the above local version of Hall’s
theorem for planar graphs is the key combinatorial reason why local-search works for a wide
variety of geometric optimization problems. The proof of Lemma 2 relies on separators in
planar graphs, and there has been work in generalizing these ideas to classes of non-planar
graphs which still have small separators (see [6, 2, 5]).

Our Results

While local-search with search radius k = Θ( 1
ε2 ) theoretically gives the best possible result

in terms of approximation factors, these problems are far from being solved satisfactorily:
As stated earlier, most of these problems are W [1]-hard [13, 14]: therefore unless W [1] =
FTP , there is no efficient polynomial-time approximation scheme for most of the listed
problems; i.e., algorithms with running time O(nc), where c is a constant independent of
1
ε . This effectively restricts local search to small constant values of k.
Furthermore, local-search is often the only approach known for these problems that yields
good approximations. For example, the best approximation ratio for the hitting set
problem for disks without using local-search is 13.4 [4] via the theory of ε-nets (see the
chapter [17] for details); or O(logn)-approximation for dominating sets in disk intersection

ESA 2017
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graphs [11]. Any effective solution to these problems entails examining closely the limits
of efficiency and quality of local search for small values of k.
While the construction of the graph is specific to the problem at hand, all these algorithms
rely on the same Local Expansion Property of planar graphs, and thus the quantitative
approximation bounds are the same across all the problems. The constants involved in
Theorem 4 unfortunately make this result inefficient even for small values of k; e.g., the
current best work shows that setting k to get a 3-approximation implies a running time
of Ω(n66) for the hitting set problem for disks [9].

Thus the natural way forward is to explore the limits of local search for small values
of k. In this paper, we will consider the combinatorial aspect, and evaluate the quality of
local-search – alternatively, the precise statement of local Hall’s theorem for planar graphs:

k = 1,2. The local Hall’s theorem fails (and so does local search) for the same reason as
for general graphs – K|B|,2 is a 2-expanding planar graph, but with a matching of size
only 2.
k = 3. An optimal local Hall’s theorem was shown in [3] by a short argument: any planar
bipartite 3-expanding graph has a matching of size |B|8 and this is tight.

The next fundamental case of local search that is open is for k = 4; the previous-best
bound was |B|5 and the resolution of the optimal bound was the main problem left open in [3].
In this paper we settle this question by presenting an optimal bound for local Hall’s theorem
for 4-expanding planar graphs.

I Theorem 5 (Main Theorem). Let G =
(
B,R,E

)
be a bipartite planar graph on vertex sets

R and B, such that G is 4-expanding; i.e., for all B′ ⊆ B with |B′| ≤ 4, |NG(B′)| ≥ |B′|.
Then there exists a matching in G of size at least |B|4 . Furthermore, this bound is tight up to
lower-order terms.

I Corollary 6. The local search algorithm with parameter k = 4 gives a 4-approximation to
these problems in geometric combinatorial optimization:
1. Minimum hitting set problem for pseudo-disks in the plane.
2. Maximum independent set problem in the intersection graph of pseudo-disks.
3. Terrain guarding problem.
4. Minimum dominating set in the pseudo-disk intersection graphs.
5. Minimum set-cover problem for disks in the plane.

Tightness

The optimality of the bound follows from the example shown in Figure 1, where R consists
of n vertices of a

√
n×
√
n grid, and each ‘grid cell’ contains 4 vertices of B connected to the

four red vertices of that cell. It is easy to verify that there is no matching of size greater than
|B|
4 +O(

√
|B|) (this is trivial, as |B| = 4n−O(

√
n)), and the graph is planar and bipartite.

Finally, the fact that it is 4-expanding follows from the observation that, except at the
grid boundary, any set of two vertices of B of degree 3 or any set of three vertices of B of
degree 2 has at least 4 neighbors in R.

The proof of the upper-bound relies on the following key lemma, presented in Section 2:

I Lemma 7. Let G =
(
B,R,E

)
be a bipartite planar graph on vertex sets R and B, such

that G is 4-expanding. Then |R| ≥ |B|4 .

Lemma 7 can be seen as a version of Lemma 2 for k = 4 and c0 = 3
2 , leading to the Main

Theorem via an argument identical to the proof of Theorem 4.
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Figure 1 A lower-bound construction for 4-expanding bipartite planar graphs.
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Figure 2 A bipartite planar graph G(B, R, E) and its corresponding graph H(R, E).

2 Proof of Lemma 7

The proof, at its core, uses the discharging method [18] of combinatorial geometry. Henceforth,
a graph satisfying 4-expanding property is said to satisfy 4L.

First note that no vertex in B can have degree zero, as otherwise the neighborhood of
such a vertex would violate 4L. Moreover, it can be assumed that every vertex in B has
degree at least two, since it is always possible to add edges to all vertices of B which have
degree one in G while maintaining the planarity and bipartiteness of the graph (as any such
vertex v must lie in a face which has at least two vertices of R, at least one of which is not
adjacent to v).

Let B=i ⊆ B be the subset of vertices of B of degree exactly i, and B≥i ⊆ B the set of
vertices of degree at least i.

For the remainder of the proof, we fix a planar embedding of G.
Let H(R,E) be a planar graph on R constructed from G as follows: two vertices r1 ∈ R

and r2 ∈ R are adjacent in H iff there is at least one vertex b ∈ B=2 which is adjacent to
both r1 and r2 in G. Note that H is planar since G is planar, and the edges between r1 and
r2 can be routed via one such vertex b. Note also that vertices in B=3 lie in the interior of
faces of H. Vertices of R will be called the red vertices, and vertices of B the blue vertices.

Note that for a fixed pair {r1, r2} ⊆ R, there cannot be three distinct vertices b1, b2,
b3 ∈ B=2 adjacent to both r1 and r2, since in this case the neighborhood of set {b1, b2, b3} is
of size two and the graph G would violate 4L. Therefore, each edge of H corresponds to one
or two vertices in B=2. Edges corresponding to a single vertex in B=2 are called single edges
and the set of all such edges is denoted by E1, while edges mapped to two vertices in B=2
are called double edges and its set is denoted by E2. In Figure 2, {r1, r2} is a single edge
and {r2, r3} is a double edge. In later figures, the numbers 1 and 2 will be used to indicate
whether an edge is single or double. When referring to a particular face f , ∂f will denote its
set of edges while Ef1 and Ef2 will denote the set of single and double edges of f , respectively.

ESA 2017
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For the rest of the proof, fix an embedding of H as well as the counter-clockwise ordering
on ∂V f for each f ∈ F , where ∂V f denotes the vertices of f . Let Fi be the set of faces of H
with exactly i edges on its boundary, and let F be the set of all faces of H. A face in F3
will be called a triangular face and a face in F4 a rectangular face. If ∂f is a cycle then f is
called a face cycle. An edge e on the boundary of two different faces is called a boundary
edge; it is called a cut edge otherwise.

In proceeding with the proof, we now encounter a technical difficulty: H need not be
2-connected, and so the structure of the faces can be arbitrarily complex. We first prove, in
the next subsection, Lemma 7 for the case when H is 2-connected. Then we show how to
handle the general case by reducing it to the 2-connected case.

2.1 Case: H(R, E) is 2-connected
If H is 2-connected then all its faces are face cycles; in particular, each edge of H is a
boundary edge, and there are no cut edges.

2.1.1 Structural properties of H

I Claim 8. For i ≥ 4, let f ∈ Fi. Then |Ef2 | ≤ b
i

2c. A triangular face has no double edges.

Proof. Let f be a triangular face with vertices {r1, r2, r3}, and with, say, {r1, r2} ∈ Ef2 .
Recall that edges of H are associated with vertices of B=2. Thus the two single edges and
one double edge of f correspond to a set B′ ⊆ B of four vertices, with N(B′) = {r1, r2, r3},
violating 4L. For i ≥ 4, if a face f ∈ Fi has |Ef2 | > b

i

2c, then there must exist two double
edges incident to the same vertex of f and 4L is again violated. J

For a face f ∈ Fi, f is called a full face if |Ef2 | = b
i

2c. Let Bf=3 denote the set of B=3

vertices lying in the interior of f . Note that due to planarity, for a fixed face f in the
embedding of H, each vertex v ∈ Bf=3 can be written uniquely (up to rotation) as an ordered
triple v = (r1, r2, r3), where r1, r2, r3 ∈ R are vertices of f in counter-clockwise order with
{v, ri} ∈ E(G) for i = 1, 2, 3.

I Claim 9. For i ≥ 4, let f ∈ Fi. Then |Bf=3| ≤ (i− 2).

Proof. Note that we can assume that |Ef2 | = 0, as a double edge can only make it harder to
‘pack’ more vertices of B=3 into f . Define a chain τ of f to be a consecutive set of vertices
of ∂V f . The size |τ | of a chain is equal to its number of vertices, and define Bτ=3, in the
natural way, as the set of vertices of Bf=3 with edges only to vertices of τ . We show that for a
chain τ of size n, |Bτ=3| ≤ n− 2. The proof will be by induction on the size of τ . For |τ | = 2,
|Bτ=3| = 0, trivially. For |τ | = j, any fixed v ∈ Bτ=3 divides τ into three distinct sub-chains,
τ1, τ2, τ3, with |τ1|+ |τ2|+ |τ3| = j + 3. Applying the induction hypothesis on each sub-chain,

|Bτ=3| ≤ (|τ1| − 2) + (|τ2| − 2) + (|τ3| − 2) + 1 = j + 3− 6 + 1 = j − 2. J

For the next steps, we will need the list of ‘forbidden’ substructures in graphs satisfying 4L.

I Claim 10. H satisfies 4L if and only if it does not contain the structures shown in Figure 3.

For the next claim, we will need the following independent property for planar graphs.
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Figure 3 Forbidden structures for a graph H satisfying 4L.
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Figure 4 The vertex v0 divides the graph in
two regions.
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Figure 5 An odd full face. There exist two
consecutive single edges.

I Claim 11. Let G be a planar graph consisting of one (external) cycle C = 〈r1, . . . , ri〉
of i vertices and a set V of internal vertices, such that each vertex of V has exactly three
neighbors, all in C, with these three neighbors not being consecutive vertices of C. Then
|V | ≤ i− 4.

Proof. The proof is inductive. For i = 4, we have |V | = 0 = i − 4, as there cannot exist
a vertex not adjacent to three consecutive vertices of C. Consider the case where i ≥ 5.
By an extremal argument, there must exist a vertex v0 ∈ V , say connected to {ri1 , ri2 , ri3}
where we can assume without loss of generality that 1 = i1 < i2 < i3, such that the two
regions – one with boundary vertices 〈v0, ri1 , ri1+1, . . . , ri2〉 and the other with boundary
vertices 〈v0, ri2 , ri2+1, . . . , ri3〉 – are both empty of vertices of V (see Figure 4). Furthermore,
by the assumption that v does not have edges to three consecutive vertices of C, we have
(i3 − i1) ≥ 3. If there exists a vertex, other than v0, in V with edges to both ri1 and ri3 , call
it v1 (note that due to planarity, there can exist only one such vertex). Consider a new cycle
C ′ = 〈r1, ri3 , ri3+1, . . . , ri〉 of size i− (i3 − i1) + 1 ≤ (i− 2), and set V ′ = V \ {v0, v1} to be
a subset of vertices lying inside C ′. It is easy to see that no vertex of V ′ can have edges to
three consecutive vertices of C ′, and thus by induction, we have |V ′| ≤ |C ′| − 4 ≤ (i− 2)− 4,
and thus |V | ≤ |V ′|+ 2 ≤ (i− 4). J

I Claim 12. For i ≥ 4, let f ∈ Fi be a full face. If i is even then |Bf=3| ≤ (i − 4). If i is
odd then |Bf=3| ≤ (i− 3).

ESA 2017
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Proof. Let f ∈ Fi and |Ef=2| = b
i

2c. Label the vertices of ∂V f as 〈r1, . . . , ri〉 in the assumed
counter-clockwise ordering.

i is even: Note that as f is full, the edges around f alternate between single and double
edges. Therefore 4L implies that there does not exist a v ∈ Bf=3 with edges to three
consecutive vertices of ∂V f . Claim 11 applied to f shows that |Bf=3| ≤ i− 4.

i is odd: For i ≥ 5, as f is a full face, the edges around f alternate between single and
double edges – with one exception where two adjacent edges are both single. Say these
adjacent single edges are {r1, r2} and {r2, r3} (see Figure 5). 4L implies that there does not
exist a v ∈ Bf=3 with edges to three consecutive vertices of ∂V f , except possibly there could
exist a single vertex v123 ∈ Bf=3 with edges to {r1, r2, r3}. Claim 11 applied to f shows that
|Bf=3 \ {v123}| ≤ i− 4, and thus |Bf=3| ≤ i− 3. J

2.1.2 Bounding |B|
We first observe that to bound the size of B, it suffices to bound the number of vertices of
degree 2 and 3 in B. We will need the following fact on planar graphs.

I Fact 13. Let G = (V,E) be a simple, connected, planar bipartite graph. Then |E| ≤ 2|V |−4.

I Claim 14. |B| ≤ |B=2|+
|B=3|

2 + |R|.

Proof. We count the number of edges in G in two ways – first by summing up the degrees of
the vertices in B (recall that G is a bipartite graph), and secondly by using the upper-bound
on the number of edges of planar bipartite graphs from Fact 13:

2 · |B=2|+ 3 · |B=3|+
∑
i=4

i · |B=i| = |E(G)| ≤ 2
(
|R|+ |B|

)
− 4.

Simplifying,

2 · |B=2|+ 3 · |B=3|+
∑
i=4

i · |B=i| ≤ 2 ·
(
|R|+ |B=2|+ |B=3|+

∑
i=4
|B=i|

)
.

Re-arranging the terms,∑
i=4

(i− 2) · |B=i| ≤ 2|R| − |B=3| =⇒ 2
∑
i=4
|B=i| ≤ 2|R| − |B=3|

|B≥4| ≤ |R| −
|B=3|

2 . (1)

Now one can get an upper-bound on |B| from inequality (1):

|B| = |B=2|+ |B=3|+ |B≥4| ≤ |B=2|+ |B=3|+ |R| −
|B=3|

2 = |B=2|+
|B=3|

2 + |R|. J

Thus it remains to bound |B=2|+ |B=3|
2 . Towards this, a charging intuition leads one to

classify the contribution of a face f ∈ F as 2 · |Ef2 |+ |E
f
1 |+

|Bf=3|
2 . It turns out that the right

discharging function is slightly different; define the weight of a face f ∈ F to be

w(f) = |Ef2 |+
|Ef1 |

2 + |B
f
=3|
2 ,
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and the weight of the graph H to be

w(H) = |B=2|+
|B=3|

2 .

Note that as each edge is part of the boundary of precisely two faces and each vertex of B=3
lies in precisely one face, we have

∑
f∈F

w(f) =
∑
f∈F

(
|Ef2 |+

|Ef1 |
2 + |B

f
=3|
2

)
= 2·|E2|+|E1|+

|B=3|
2 = |B=2|+

|B=3|
2 = w(H). (2)

I Claim 15. w(H) ≤ 1
4
∑
i≥3

(
5i− 6

)
|Fi| −

1
4
∑

i is odd
|Fi| −

1
2 |F4| −

1
2 |F3|.

Proof. Let If ∈ {0, 1} be an indicator variable such that If = 1 if and only if f is a full face.
For f ∈ Fi and i an even number, by applying the upper bounds in Claims 8, 9 and 12,

w(f) = |Ef2 |+
|Ef1 |

2 + |B
f
=3|
2 ≤

( i
2 − 1 + If

)
+
i−
(
i
2 − 1 + If

)
2 + (i− 2)− 2If

2

= 5i− 6− 2If
4 ≤ 5i− 6

4 .

For i = 4, a better bound is possible. For a face f ∈ F4, let αf = |Ef2 |. Then

w(f) ≤ αf + 4− αf

2 + (4− 2)− αf

2 = 4 · 4− 4
4 = 5 · 4− 6

4 − 1
2 = 5i− 6

4 − 1
2 . (3)

For i an odd number,

w(f) ≤
( i− 1

2 − 1 + If

)
+
i−
(
i−1

2 − 1 + If

)
2 + (i− 2)− If

2 = 5i− 7
4 . (4)

For i = 3, note that for a face f ∈ F3, |Ef2 | = 0, |Ef1 | = 3 and |Bf=3| = 0, since f
cannot have neither a B=3 vertex in its interior nor a double edge, as otherwise the forbidden
structures Γ3 or Γ2 would be present. Then,

w(f) = |Ef2 |+
1
2 |E

f
1 |+

|Bf=3|
2 = 3

2 = 5i− 7
4 − 1

2 . (5)

By Equations (2)–(5),

w(H) =
∑
f∈F

w(f) =
∑

f∈F3

w(f) +
∑

f∈F4

w(f) +
∑
i≥5

i is odd

∑
f∈Fi

w(f) +
∑
i≥6

i is even

∑
f∈Fi

w(f)

≤
(5 · 3− 7

4 − 1
2

)
|F3|+

(5 · 4− 6
4 − 1

2

)
|F4|+

∑
i≥5

i is odd

(5i− 7
4

)
|Fi|+

∑
i≥6

i is even

(5i− 6
4

)
|Fi|

= 1
4
∑
i≥3

i is odd

(
5i− 7

)
|Fi|+

1
4
∑
i≥4

i is even

(
5i− 6

)
|Fi| −

1
2 |F4| −

1
2 |F3|

= 1
4
∑
i≥3

(
5i− 6

)
|Fi| −

1
4
∑

i is odd

|Fi| −
1
2 |F4| −

1
2 |F3|. J

Finally we can bound the number of vertices of B of degree 2 and 3.
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I Lemma 16. w(H) = |B=2|+
|B=3|

2 ≤ 3|R|.

Proof. Let F odd be the set of faces of H with an odd number of edges. By Claim 15,

w(H) ≤ 1
4
∑
i≥3

(
5i− 6

)
|Fi| −

1
4
∑

i is odd
|Fi| −

1
2 |F4| −

1
2 |F3|

= 5
4
∑
i≥3

i|Fi| −
3
2
∑
i≥3
|Fi| −

1
4
∑

i is odd
|Fi| −

1
2 |F4| −

1
2 |F3|

= 5
2 |E| −

3
2 |F | −

1
4 |F

odd| − 1
2 |F4| −

1
2 |F3| = ŵ(H). (6)

Now note that the last quantity – ŵ(H) as defined in Equation (6) – is maximized when H
is a triangulation. To see this, consider an index i and a face f ∈ Fi of H. Then decompose
f into a face f ′ ∈ Fi−1 and a triangular face, resulting in a graph H ′. Then comparing the
bounds of Equation (6) for H and H ′:

Case i = 4: ŵ(H ′) ≥ ŵ(H) + 1− 2
4 + 1

2 −
2
2 = ŵ(H).

Case i ≥ 5 and i is odd: ŵ(H ′) ≥ ŵ(H) + 1− 1
2 −

1
2 = ŵ(H).

Case i ≥ 6 and i is even: ŵ(H ′) ≥ ŵ(H) + 1− 2
4 −

1
2 = ŵ(H).

Consider any triangulation H ′ of H. Then,

w(H) ≤ ŵ(H) ≤ ŵ(H ′) = 5
2 |EH

′ | − 3
2 |FH

′ | − 1
4 |FH

′ | − 1
2 |FH

′ | = 5
2 |EH

′ | − 9
4 |FH

′ |

= 5
2 |EH

′ | − 9
4 ·

2
3 |EH

′ | = 5
2 |EH

′ | − 3
2 |EH

′ | = |EH′ |.

By using Euler’s formula for planar graphs,

|R| − |EH′ |+ 2
3 |EH

′ | = 2 =⇒ |R| = 2 + 1
3 |EH

′ |.

Therefore,

w(H)
|R|

≤ |EH′ |
2 + 1

3 |EH′ |
≤ 3,

implying that w(H) ≤ 3|R| and we’re done. J

Now, Claim 14 and Lemma 16 imply the proof of the required Lemma 7.

2.2 Case: H(R, E) is not 2-connected
Now we deal with the case when H is not 2-connected. The general idea will be to transform
each such planar graph H to a 2-connected planar graph H ′ while respecting the 4L property
as well as planarity. Consider a straight-line embedding of H in the plane. If H is not
2-connected, there exists a cut edge e, say e = {ri1 , r}. Let I = {ri1 , ri2 , . . .} be the vertices
in the connected component of ri1 once e is removed. These vertices are called the inner
vertices. Let O = {r, ro1 , ro2 , . . . , rom} be the vertices in the connected component of r.
These vertices are called the outer vertices. Further assume that ro1 ∈ O is the first vertex
after ri1 , in the clockwise order, that is adjacent to r (see Figure 6).

Our goal is to connect an inner vertex in I to an outer vertex in O iteratively until H
becomes 2-connected. In order to achieve that, we will apply the following transformation:
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e

ro1

ri1

ri2

ri3

ro2

ro3

r

Figure 6 Inner vertices component and outer
vertices component connected by cut edge e.

p1
p2

Figure 7 Gadget used for the clustering op-
eration.

Clustering operation on {p1, p2}, where p1 is an inner vertex and p2 is an outer vertex:
Add a set Q of two new red vertices to H. Furthermore, add sets B′′2 of 5 new degree-2 and
B′′3 of 2 new degree-3 blue vertices. Connect these vertices as shown in Figure 7. Note that
p1 and p2 are not adjacent in H.

We are going to argue that it is always possible to execute this while respecting planarity
and 4L.

First we show that upper-bounding w(·) after a clustering operation gives an upper-bound
for the original problem.

I Claim 17. Let H ′(B′, R′, E′) be the graph resulting from an application of the clustering
operation on a graph H(B,R,E). If w(H ′) ≤ 3|R′| then w(H) ≤ 3|R|.

Proof. More generally, assume we add b2 new degree-two vertices to H ′, b3 degree-three
vertices and r red vertices. Then from assumption, we have

w(H ′) = |B=2|+ b2 + |B=3|
2 + b3

2 ≤ 3(|R|+ r),

which implies that

w(H) = |B=2|+
|B=3|

2 ≤ 3|R|+ 3r − b2 −
b3
2 ≤ 3|R|,

assuming 3r ≤ b2 + b3
2 . This condition is satisfied for the clustering operation, where r = 2,

b2 = 5 and b3 = 2. J

Next we show that a clustering operation does not violate the 4L condition.

I Claim 18. The clustering operation preserves the 4L property.

Proof. Let p1 be any inner and p2 be any outer vertex. Then add a set Q of two red vertices,
a set B′′2 of 5 blue degree-2 vertices and a set B′′3 of 2 blue degree-3 vertices (see Figure 8).
Let B′ ∪B′′ be any subset of size at most 4, where B′ ⊆ B and B′′ ⊆ B′′2 ∪B′′3 . We need to
show that then |N(B′ ∪B′′)| ≥ |B′ ∪B′′|.
1. |B′′| = 0. Then |N(B′ ∪B′′)| = |N(B′)| ≥ |B′|, as H satisfies 4L.
2. |B′′| = 1. As any vertex of B′′ has at least one neighbor in Q, we have |N(B′ ∪B′′)| ≥
|N(B′)|+ 1 ≥ |B′|+ 1 = |B′ ∪B′′|.

3. |B′′| = 2, 3. As any two vertices of B′′ have at least three neighbors in Q ∪ {p1, p2}, and
any vertex of B′ must have at least one neighbor not in Q ∪ {p1, p2} (recall that p1 and
p2 are not adjacent in H!), we get that |N(B′ ∪B′′)| ≥ |N(B′′)|+ 1 ≥ 4.

4. |B′′| = 4. It can be verified that any set of 4 vertices of B′′ have the set Q ∪ {p1, p2} of
size 4 as its neighbor. J
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e

ro1

ri1

p1

p2

r

Figure 8 Clustering operation on p1 and p2.

e

ro1

ri1

ri?

ro?
r

· · ·
w1 wk

wk+1

Figure 9 A planar path between ri? to ro? .

Finally, we show that there exists an inner and an outer vertex which can be connected
via a clustering operation while maintaining planarity.

I Claim 19. It is always possible to find an inner vertex ri? and an outer vertex ro? such
that there exists a path that connects them without violating planarity.

Proof. Denote by Br=3 the set of degree-3 vertices adjacent to vertex r. If Br=3 is empty,
then clearly there exists a path from the inner vertex ri1 to the outer vertex ro1 . Similarly, if
there exists a vertex w ∈ Br=3 with one edge to an inner vertex and one to an outer vertex
(other than the edge to r), then there exists a planar path between these inner and outer
vertices by following the path along the edges of w.

Otherwise, sort the vertices in Br=3 clockwise by the order of their edges around r, say
labeled w1, . . . , wt. If w1 has both edges (other than to r) to outer vertices, then clearly
there is a planar path from ri1 to one of these outer vertices (see Figure 9). Similarly, if wt
has both edges (other than to r) to inner vertices, then there is a planar path from ro1 to
one of these inner vertices. Now by a parity argument, there must exist two vertices, say wk
and wk+1, such that wk has both neighbors to inner vertices, and wk+1 has both neighbors
to outer vertices. Then there exists a path from one of inner vertices adjacent to wk to one
of the outer vertices adjacent to wk+1. J

I Lemma 20. Let H be a 1-connected planar graph. Then w(H) ≤ 3|R|.

Proof. Claim 19 implies that – as long as the current graph H is not 2-connected – it is
always possible to do a clustering operation between an inner vertex and an outer vertex
while maintaining planarity. By Claim 18, the resulting graph H ′ still satisfies the condition
4L. Crucially, note that each new edge introduced by the clustering operation is not a cut
edge in the derived graph H ′, and further, the edge e which was a cut edge in H is no longer
a cut edge in H ′. Thus the clustering operation reduces the total number of cut edges, and
so the process terminates after a finite number of steps. Apply this iteratively to get a
2-connected graph H ′, which, by Lemma 16, satisfies w(H ′) ≤ 3|R′|. Then w(H) ≤ 3|R|
follows by Claim 17. J
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