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—— Abstract

We introduce a new algorithmic framework for designing dynamic graph algorithms in minor-free
graphs, by exploiting the structure of such graphs and a tool called vertex sparsification, which
is a way to compress large graphs into small ones that well preserve relevant properties among a
subset of vertices and has previously mainly been used in the design of approximation algorithms.

Using this framework, we obtain a Monte Carlo randomized fully dynamic algorithm for (1+¢)-
approximating the energy of electrical flows in n-vertex planar graphs with O(re‘g) worst-case
update time and O((r + \%)&‘_2) worst-case query time, for any r larger than some constant. For
r = n?/3, this gives ON(n2/3€*2) update time and O(n?/3¢=2) query time. We also extend this
algorithm to work for minor-free graphs with similar approximation and running time guarantees.
Furthermore, we illustrate our framework on the all-pairs max flow and shortest path problems
by giving corresponding dynamic algorithms in minor-free graphs with both sublinear update and
query times. To the best of our knowledge, our results are the first to systematically establish
such a connection between dynamic graph algorithms and vertex sparsification.

We also present both upper bound and lower bound for maintaining the energy of electrical
flows in the incremental subgraph model, where updates consist of only vertex activations, which
might be of independent interest.
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1 Introduction

A dynamic graph is a graph that undergoes constant changes over time. Such changes or
updates may correspond to inserting/deleting an edge or activating/deactivating a vertex
from the graph. The goal of a dynamic graph algorithm is to maintain some property
of a graph and support an intermixed sequence of update and query operations that can
be processed quickly. In particular, the algorithm should at least beat the trivial one
that recomputes the solution from scratch after each update. The last three decades have
witnessed a large body of research on dynamic graph algorithms for a number of fundamental

* The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no.
340506.

© Gramoz Goranci, Monika Henzinger, and Pan Peng;
oy

licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 45; pp. 45:1-45:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ESA.2017.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2

The Power of Vertex Sparsifiers in Dynamic Graph Algorithms

properties, including connectivity, minimum spanning tree, shortest path, matching and so
on. Most of these problems have been considered in both general graphs as well as planar
graphs, with quite different techniques and trade-offs between update and query times. In
particular, many dynamic algorithms for planar graphs heavily depend on the duality of
planar graphs [41, 26, 19] and do not seem easily generalizable to a larger class of graphs,
e.g., the family of minor-free graphs.

In this paper, we provide a new algorithmic framework for designing dynamic graph
algorithms in minor-free graphs that are free of a K;-minor for any fixed integer ¢t > 1,
by utilizing a tool called vertex sparsification as well as the structure of minor-free graphs.
Vertex sparsification is a way of compressing large graphs into smaller ones that well preserve
the relevant properties (e.g., cut, flow and distance information) among a subset of vertices
(called terminals) (e.g., [36, 7, 29]). Besides the natural motivation of achieving more space-
efficient storage and obtaining faster algorithms on the reduced graphs, it has also found
applications in the design of approximation algorithms [36], network design and routing [11].
We show that good quality and efficiently constructible vertex sparsifiers can be used to give
efficient dynamic graph algorithms. To the best of our knowledge, our results are the first to
systematically establish such a connection between dynamic graph algorithms and vertex
sparsification.

We illustrate our algorithmic framework on the all-pairs electrical flow, all-pairs maz
flow and all-pairs shortest path problems in minor-free graphs. Previously, there is no known
dynamic algorithms for the first problem (even for special class of graphs), and for the second
problem, we only know dynamic algorithms for planar graphs. Due to space constraints, we
focus on electrical flow in the conference version of the paper and give the results for max
flow and shortest path in the full version.

The electrical flow problem is one of the most fundamental problems in electrical engin-
eering and physics [12], and recently received increasing interest in computer science due to
its close relation to linear equation solvers [40, 28], graph sparsification [39, 38], maximum
flows (and minimum cuts) [10, 31, 33, 22, 34]. Slightly more formally, the s —t electrical flow
problem asks to find the flow (current) that minimizes the energy dissipation of a weighted
graph when one unit of flow is injected at the source s and extracted at the sink ¢.

In the dynamic all-pairs electrical flow problem, our objective is to minimize the update
time and the query time for outputting the exact (or approximate) energy of the s — ¢t
electrical flow (see Section 2 for formal definitions) in the current graph, for any two vertices
s,t. In the following, we will focus on fully dynamic graphs, in which updates consist of both
edge insertions and deletions. Specifically, we allow the following operations:

INSERT(u, v, r): Insert the edge (u,v) with resistance r in G, provided that the new edge

preserves the planarity (or minor-freeness) of G.

DELETE(u, v): Delete the edge (u,v) from G.

ELECTRICALFLOW(s,t): Return the exact (or approximate) energy of the s — ¢ electrical

flow in the current graph G.

For a graph G and two vertices s,t, we let Eg(s,t) denote the energy of the s — t elec-
trical flow. For any a > 1, we say that an algorithm is an a-approximation to Eg(s,t) if
ELECTRICALFLOW(s, t) returns a positive number k such that Eg(s,t) <k < a-Eqx(s,t).

1.1 Our Results

We present the first non-trivial fully dynamic algorithm for maintaining a (1+¢)-approximation
to the energy of the s — ¢ electrical flow in planar and minor-free graphs. Our algorithm
achieves both sublinear worst-case query and update times. (Throughout the paper, we



G. Goranci, M. Henzinger, and P. Peng

use O(+) to hide polylogarithmic factors, i.e., O(f(n)) = O(f(n) - polylog f(n)); “with high
probability” refers to “with probability at least 1 — -1, for some ¢ > 07.)

neo

» Theorem 1. Fiz ¢ € (0,1) and integer t > 0. Let r > ¢ for some large constant ¢ > 0.
Given a Ki-minor-free graph G = (V, E, w) with positive edge weights, we can maintain a
(1 + &)-approxzimation to the all-pairs electrical flow problem with high probability. The worst-
case update time per operation is O(”;’T) and the worst-case query time is O((r +n/\/r)e=2),
for any constant £ > 0. Furthermore, if G is planar, then & can be chosen to be 0.

2/3, we obtain a dynamic algorithm for planar graphs with

Note that by setting r = n
worst-case O(n?/3¢=2) update time and O(n?*/3¢=2) query time. One may be tempted to
reduce our problem to dynamically maintaining spectral sparsifiers. Despite the fact that such
sparsifiers approximately preserve electrical flows and that a (1 + €)-spectral sparsifier can
be maintained with amortized update time poly(logn,e~1!) [5], performing query operations
on the sparsifier about the energy of s — ¢ electrical flow still requires (n) time.

We also give a dynamic algorithm for all-pairs electrical flow for minor-free graphs in
the incremental subgraph model, where the updates in the dynamic graph are a sequence
of vertex activation operations. Our algorithm maintains a (1 + ¢)-approximation of the
energy of electrical flows in minor-free graphs with O(re=2) amortized update time and
O((r 4 n/y/r)e~2) worst-case query time, for any r > ¢. For r = n?/3, this gives O(n?/3¢~2)
amortized update and worst-case query time. We complement this result by showing the
following conditional lower bound: there is no incremental algorithm in the subgraph model
that C-approximates the energy of the electrical flows in general graphs with both O(n!~¢)
worst-case update time and O(n?~¢) worst-case query time, for any C' > 0 and constant £ > 0,
unless the online matrixz vector multiplication (oMv) conjecture if false. Our results show
a polynomial gap of dynamic algorithms for subgraph electrical flows between minor-free
graphs and general graphs, conditioned on the oMv conjecture. These results might be of
independent interest and the details are deferred to the full version, due to space constraints.

Our second result from our algorithmic framework is a dynamic algorithm for all-pairs
max flows in minor free graphs. In this problem, the query MAXFLOW(s, t) asks the exact
(or approximate) s — t max flow value in the current graph.

» Theorem 2. Lett > 0 be a fixed integer. Let r > c for some large constant ¢ > 0.
Given a Ki-minor-free graph G = (V, E,w) with positive edge weights, we can maintain
a O(1)-approximation to the all-pairs maz-flows problem. The worst-case update time is
O(nér +13) for any constant &€ > 0, and the worst-case query time is O(r +n/\/r). One can
also maintain a O(log4 n)-approximation to the all-pairs maz-flows problem, with worst-case
update time O(nér + 1), and worst-case query time O(r +n/\/T).

Note that by setting r € (polylogn, 0(n1/3)), we can maintain a O(1)-approximation
to the all-pairs max flows problem in minor free graphs with both sublinear worst-case

2/3 we can obtain O(log* n)-approximation with

update and query times. By setting r =n
worst-case O(néT2/3) update time and O(n?/3) query time.

We remark that Italiano et al. [19] have given a fully dynamic algorithm for ezact all-pairs
max-flow in planar graphs with worst-case O(n?/?) update and O(n?/?) query time. Their
algorithm is based on maintaining an edge decomposition (called r-division) of the planar
graph, which is similar to ours, while there are some substantial differences. First of all, their
algorithm does not seem easily generalizable to minor-free graphs since it depends on the

duality of planar graphs. Second, it is required that the embedding of the graph does not

change throughout the sequence of updates [19], which is not necessary in our algorithm.
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Third, though their algorithm can answer the exact max flow value with the aforementioned
running time guarantee, it does not provide an update/query trade-off as ours.

Our third result is a fully dynamic algorithm for all-pairs shortest paths in minor-free
graphs. In this problem, the query SHORTESTPATH(s,t) asks the exact (or approximate)
shortest path length between s and ¢ in the current graph.

» Theorem 3. Let t,q > 1. Given a Ki-minor-free graph G = (V, E, w) with positive edge

weights, we can maintain a (2q — 1)-approzimation to the all-pair shortest path problem. The
~ ~ 6 3

worst-case expected update time is O(nS/7) and the worst-case query time is O(n7 " 7).

Note that for ¢ > 4, both update time and query time of the above algorithm will be
sublinear. We remark that for the special case of planar graphs, the above running time
and approximation guarantee are worse than the result of Abraham et al. [3], who gave a
fully dynamic (1 + ¢)-approximation for planar shortest path problem with worst-case O(\/ﬁ)
update and query time. However, it is unclear how to generalize their algorithm to minor-free
graphs. There are also works on fully dynamic all-pairs shortest path in general graphs (e.g.,
[9, 4]), for which there is no known algorithm with non-trivial worst-case update time that
breaks O(n) barrier.

We want to point it out that all the above results might be generalized to a larger class
of graphs that admit efficiently constructible good separators, while our main focus is to
bring up this new algorithmic framework. Due to space constraints, the proofs of Theorem 2
and 3 are deferred to the full version.

1.2 Our Techniques

Our fully dynamic algorithms in planar and minor-free graphs combine the ideas of maintain-
ing an edge decomposition of the current graph G and approximately preserving the relevant
properties or quantities by smaller “substitutes”, which allow us to operate on a small piece
of the graph during each update (in the amortized sense) and significantly reduce the size
of the query graph that well preserves the property of G. These “substitutes” refer to the
vertex sparsifiers for the corresponding properties.

Such an edge decomposition is called r-division [15]. Given some graph G and a parameter
r, we partition G into a collection of O(n/r) edge disjoint subgraphs (called regions), each
contains at most O(r) vertices. This induces a partitioning of the vertex set into interior
vertices (those that are incident only to vertices within the same region) and boundary
vertices (those that are incident to vertices in different regions). In addition, we ensure that
the total number of boundary vertices is O(n/+/r). Maintaining an r-division has also been
used in some previous dynamic algorithms for planar graphs [41, 26, 16, 19].

Now a key observation is that for any s,t, by removing all the interior vertices from other
regions that do not contain s,t and adding some edges with appropriate weights among
boundary vertices, one can guarantee that the resulting graph exactly preserves the quantities
between s,t (e.g., the energy of s — t electrical flow, the value of s — ¢t max flow). Now let us
elaborate on the electrical flow problem, for which the aforementioned reduction is called
Schur Complement. The problem of performing such a Schur Complement on a region is that
it is very time-consuming as it adds too many edges among boundary vertices. Instead, we
resort to a recent tool called approximate Schur Complement ([13]; see Section 3.1), which
well approximates the pairwise effective resistances among boundary vertices and also gives a
sparse graph (or a substitute) induced by all boundary vertices. Now for an update, we only
recompute a constant number of such substitutes (and we need to periodically rebuild the
data structure); for a query, we take the small graph defined by choosing appropriate regions
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and substitutes, and answer the query according to the s — t effective resistance on this small
graph. Since such a substitute can be computed very fast and is sparse, we are ensured to
obtain sublinear amortized update time and worst-case query time. Using a global rebuilding
technique, we show that one can also achieve worst-case update time.

Our approach differs from the previous dynamic planar graph algorithms in that the
r-division we use does not require that the boundary of each region contains a constant
number of faces or the duality of planar graphs, since we only need to maintain the r-division
and fast compute the approximate Schur Complement.

Such an approximate Schur Complement can be viewed as a vertex spectral/resistance
sparsifier by treating boundary vertices as terminals. To obtain dynamic algorithms for the
all-pairs max flows (resp., shortest paths) problems, we can use vertex cut sparsifiers (resp.,
distance sparsifiers), which well preserve the values of minimum cut separating any subset of
terminals (resp., the distances among all terminal pairs).

1.3 Related Work

In the static setting, the electrical flow problem amounts to solving a system of linear
equations, where the underlying matrix is a Laplacian (see the monograph of Doyle and
Snell [12]). Christiano et al. [10] used the electrical flow computation as a subroutine
within the multiplicative-weights update framework [8], to obtain the breakthrough result of
(1 — e)-approximating the undirected maximum s — ¢ flow (and the minimum s — ¢ cut) in
O(mnl/ 3¢=11/3) time. This has inspired and led to further development of fast algorithms
for approximating s — ¢ maximum flow, which culminated in an O(m) time algorithm for
this problem in undirected graphs [37].

Lipton, Rose and Tarjan [32] consider the problem of designing fast algorithms for ezactly
solving linear systems where the matrix is positive definite and the associated graph is planar.
Their result implies an O(n3/ 2) time algorithm for electrical flow in planar graphs. This was
latter improved to O(n*/?) by Alon and Yuster [6], where w = 2.37.. is the exponent in the
running time of the fastest algorithm for matrix multiplication [42]. Miller and Koutis [27]
consider parallel algorithms for approximately solving planar Laplacian systems. Their
algorithm runs in O(n'/6+¢) parallel time and O(n) work, where c is any positive constant.
We refer the reader to [24] for other useful properties of Laplacians on planar graphs.

Related data structure concepts dealing with spectral properties of graphs include semi-
streaming and dynamic algorithms for maintaining spectral sparsifiers. Kelner and Levin [23]
give single-pass incremental streaming algorithm using near-linear space and total update
time. This was extended by Kapralov et al. [20] to the dynamic semi-streaming model which
allows both edge insertions and deletions. Recently, Abraham et al. [5] give a fully-dynamic
algorithm for maintaining spectral sparsifiers in poly-logarithmic amortized update time.

There is a line of work on dynamic algorithms for planar graphs that maintains informa-
tion about important measures like reachability, connectivity, shortest path, max-flow etc.
Subramanian [41] shows a fully-dynamic algorithm for maintaining reachability in directed
planar graphs in O(n?/?log n) time per operation. For the connectivity measure, Eppstein
et al. [14] give an algorithm with O(log®n) amortized update time and O(logn) query
time. Dynamic all-pairs shortest path problem in planar graphs was initiated by Klein and
Subramanian [26], who showed how to maintain a (1 + €)-approximation to shortest paths in
O(n*/31og® nlog D) amortized update time and O(n?/3log® nlog D) worst-case query time,
where D denotes the sum of edge lengths. The best known algorithm is due to Abraham,
Chechik and Gavoille [3] and maintains a (1 + ¢)-approximation in O(y/nlog? n/e) worst-case
time per operation. Italiano et al. [19] obtain a fully-dynamic algorithm for ezact s —t
max-flow in planar graphs with O(n%/31og®/3) worst-case time per operation.
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Motivated by the recent developments on proving conditional lower-bounds for dynamic
problems [2, 18], Abboud and Dahlgaard [1] give conditional lower-bounds for a class of
dynamic graph problems restricted to planar graphs. Specifically, under the conjecture that
all-pair-shortest path problem cannot be solved in truly subcubic time, they show that no
algorithm for dynamic shortest path in planar graphs can support both updates and queries
in O(n'/?7¢) amortized time, for & > 0.

2 Preliminaries

We consider a weighted undirected graph G undergoing edge insertions/deletions or vertex
activations/deactivations. Our dynamic algorithms are characterized by two time measures:
query time, which denotes the time needed to answer a query, and update time, which denotes
the time needed to perform an update operation. We say that an algorithm has O(t(n))
worst-case update time, if it takes O(t(n)) time to process each update. We say that an
algorithm has O(t(n)) amortized update time if it takes O(f - t(n)) total update time for
processing f updates (edge insertions/deletions or vertex activations/deactivations).

Basic Definitions. Let G = (V, E, w) be any undirected weighted graph with n vertices and
m edges, where for any edge e, its weight w(e) > 0. Let A denote the weighted adjacency
matrix, let D denote the weighted degree diagonal matrix, and let L = D — A denote the
Laplacian matrix of G. We fix an arbitrary orientation of edges, that is, for any two vertices
u,v connected by an edge, exactly one of (u,v) € E or (v,u) € E holds. Let B € R™*"”
denote the incidence matrix of G such that for any edge e = (u,v) and vertex w € V,
B((u,v),w) =1if u = w, —1 if v = w, and 0 otherwise. We will also think of the weight

w(e) of any edge e as the conductance of e, and its reciprocal w%e), denoted as r(e), as the

resistance of e. Let R € R™*™ denote a diagonal matrix with R(e, e) = r(e), for any edge e.
Note that L = BTR™!B.

For any x € R”, the quadratic form associated with L is given by x” Lx. For any two
different vertices w,v, let x,., € R™ denote the vector such that x,.,(w) = 1if w = «,
—1 if w = v and 0 otherwise. For any two vertices s,t € V, an s —t flow is a mapping
f : E — RT satisfying the following conservation constraint: for any v # s,t, it holds
that >°._, . f(e) = >o._(,,) f(e), where for any edge e = (v,u), f(e) := f(v,u) and
f(u,v) == —f(v,u).

We will let val(f) = >_, ; ,)ep £(s,v) denote the value of an s —t flow. Note that for
an s — t flow with value 1, it holds that BTf = y, ;. Given an s — ¢ flow f, its energy (with
respect to the resistance vector r) is defined as & (f,s,t) = > _r(e)f(e)? = fTRf.

We define the s —t electrical flow in G to be the s — ¢t flow that minimizes the energy
Ee(f, s,t) among all s —t flows with unit flow value. It is known that such a flow is unique [12].

Any s —t flow f in G is an s — t electrical flow with respect to r, iff there exists a vertex
potential function ¢ : V' — R* such that for any e = (u,v) that is oriented from u to v,
f(e) = % It is known that such a vector ¢ satisfies that ¢ = LT, where LT denotes
the (Moore-Penrose) pseudo-inverse of L. In addition, f = R™'BT¢ = R'BT Ly, [12].

The effective s — t resistance Rg(r,s,t) of G with respect to the resistances r is the
potential difference between s,t when we send one unit of electrical flow from s to ¢. That
is, Rg(r,s,t) = &(s) — o(t) = XZtLTxM, where ¢ is the vector of vertex potentials induced
by the s — ¢ electrical flow of value 1. We will often denote Rg(r,s,t) by Rg(s,t) when r is
clear from the context. It is known that the effective s — ¢ resistance is equal to the energy
of the s — t electrical flow of value 1, that is Rg(r, s, t) = & (f, s, t).
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Graph r-Divisions. Let G = (V, E) be a graph. Let F' C E be a subset of edges. We call
the subgraph G induced by all edges in F' a region. For a subgraph P of G, any vertex
that is incident to vertices not in P is called a boundary vertex. The vertex boundary of P,
denoted by 9g(P) is the set of boundary vertices belonging to P. All other vertices in P will
be called interior vertices of P.

» Definition 4. Let ¢1,ce > 0 be some constant. For any r € (1,n), a weak r-division (with
respect to ¢1, ¢2) of an n-vertex graph G is an edge partition of it into regions P = { P, ..., Py},
where £ < ¢ - 7 such that

Each edge belongs to exactly one region.

Each region P; contains r vertices.

The total number of all boundary vertices, i.e., U;0¢(F;), is at most can/+/r.

It is known that such an r-division (even with the stronger guarantee that each region has
O(y/r) boundary vertices) for planar graphs can be constructed in linear time [17, 25, 15].

» Lemma 5 ([25]). Let ¢ > 0 be some constant. There is an algorithm that takes as input
an n-vertex planar graph G and for any r > ¢, outputs an r-division of G in O(n) time.

We will need the following property on the boundary vertices of the r-division output by
the above algorithm (see Section 3.3 in [25]).

» Lemma 6 ([25]). For an n-vertex planar graph G, let P = {Py,...,Pi}, £ = O(n/r) be
the r-division by the algorithm in Lemma 5. Then it holds that Zle |0c(P;)] = O(n/+/T).

Graph Sparsification. Graph Sparsification aims at compressing large graphs into smaller
ones while (approximately) preserving some characteristics of the original graph. We present
two notions of sparsification. The first requires that the quadratic form of the large and
sparsified graph are close. The second requires that all-pairs effective resistances of the
corresponding graphs are close.

» Definition 7 (Spectral Sparsifier). Let G = (V, E, w) be a weighted graph and ¢ € (0,1).

A (1 £ ¢)-spectral sparsifier for G is a subgraph H = (V, Ey,wp) such that for all x €
R", (1 —e)xTLx < xTLx < (1 + ¢)x?Lx, where L and L are the Laplacians of G and H,
respectively.

» Definition 8 (Resistance Sparsifier). Let G = (V, E, w) be a weighted graph and ¢ € (0,1).

A (1 & e)-resistance sparsifier for G is a subgraph H = (V, Eg,wp) such that for all
u,v €V, (1—¢)Ru(u,v) < Rg(u,v) < (1+&)Ry(u,v), where Rg(u,v) and Ry (u,v) denote
the effective u — v resistance in G and H, respectively.

We remark that Definition 7 implies approximations for the pseudoinverse Laplacians, that is

1 ~ 1
xTLfx < xTLtx < xTLTx,

ER" A5 -9

Since by definition, the effective resistance between any two nodes u and v is the quadratic
form defined by the pseudo-inverse of the Laplacian computed at the vector x,, ., it follows
that the effective resistances between any two nodes in G and H are the same up to a (1 £¢)
factor. By our definitions for resistance and spectral sparsifiers, we have the following fact.

» Fact 9. Let ¢ € (0,1) and let G be a graph. Then every (1 + €)-spectral sparsifier of G is
a (1 %+ ¢)-resistance sparsifier of G.
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The following lemma says that given a graph, by decomposing the graph into several
pieces, and computing a good sparsifier for each piece, then one can obtain a good sparsifier
for the original graph which is the union of the sparsifiers for all pieces. The proof is deferred
to the full version of the paper.

» Lemma 10 (Decomposability). Let G = (V, E,w) be a weighted graph whose set of edges
is partitioned into Ey, ..., Ee. Let H; be a (1 £ ¢)-spectral sparsifier of G; = (V, E;), where
1=1,...,0. Then H = Ule H; is a (1 %+ €)-spectral sparsifier of G.

3 A Dynamic Algorithm for Electrical Flow in Minor-Free Graphs

In order to present our dynamic algorithm for electrical flows, we first introduce the notion
of approximate Schur Complement.

3.1 Schur Complement as Vertex Resistance Sparsifier

In the previous section we introduced graph sparsification for reducing the number of edges.
For our application, it will be useful to define sparsifiers that apart from reducing the number
of edges, they also reduce the number of vertices. More precisely, given a weighted graph
G = (V, E,w) with terminal set K C V, we are looking for a graph H = (Vy, Egy, wg) with
K C Vg and as few vertices and edges as possible while preserving some important feature
among terminals vertices. Graph H is usually referred to as a vertexr sparsifier of G.

Exact Schur Complement. We first review a folklore result [35] on constructing vertex
sparsifiers that preserve effective resistances among terminal pairs. For sake of simplicity, we
first work with Laplcians of graphs. For a given connected graph G as above, let N =V \ K
be the set of non-terminal vertices in GG. The partition of V' into N and K naturally induces
the following partition of the Laplacian L of G into blocks:

I — Ly Ly
LT Lk

We remark that since G is connected and N and K are non-empty, Ly is invertible. We
next define the Schur complement of L, which can be viewed as an equivalent to L only on
the terminal vertices.

» Definition 11 (Schur Complement). The Schur complement of a graph Laplacian L with
respect to a terminal set K is Lg = Lg — L%}L;VILM.

It is known that the matrix LE is a Laplacian matrix for some graph G’ [30]. We can think
of Schur Complement as performing Gaussian elimination on the non-terminals V' \ K. This
process recursively eliminates a vertex v € V' \ K by deleting v and adding a clique with
appropriate edge weights on the neighbors of v in the current graph (see, e.g. [30]). The
following lemma shows that the quadratic form of the pseudo-inverse of the Laplacian L will
be preserved by taking the quadratic form of the pseudo-inverse of its Schur Complement,
for vectors supported on the terminals. See the full version for the proof.

» Lemma 12. Let d be a vector of a graph G whose vertices are partitioned into terminals
K, and non-terminals N and only terminals have non-zero entries in d. Let dx be the
restriction of d on the terminals and let LE be the Schur complement of the Laplacian L of
G with respect to K. Then dTLd = d% (LE)Td.
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Using interchangeability between graphs and their Laplacians, we can interpret the above
result in terms of graphs as well. We first present the following notion of sparsification.

» Definition 13 (Vertex Resistance Sparsifier). Let G = (V, E, w) be a weighted graph with
K Cc V and a > 1. An a-vertex resistance sparsifier of G with respect to K is a graph
H = (K, Eg,wy) such that for all s,¢t € K, Ry(s,t) < Ra(s,t) < a-Rp(s,t).

The lemma below relates the Schur Complement and resistance sparsifiers.

» Lemma 14. Let G = (V, E,w) be a weighted graph with K C V', Laplacian matriz L and
Schur Complement LE (with respect to the terminal set K ). Then the graph H = (K, Exr, W)
associated with the Laplacian Lfg( is a 1-vertex resistance sparsifier of G with respect to K.

Proof. Fix some terminal pair (s,t) and consider the vectors X ; and xj , of dimension n and

k, respectively. Lemma 12, the definition of effective resistance and the fact that x,; and x;t

are valid vectors for L and LY give: Rg(s,t) = xT Lix,, = X,sT,tLgTX/s,t = Ry (s,t). <

Approximate Schur Complement. We need the following lemma due to Durfee et al. [13].

» Lemma 15 ([13]). Fize € (0,1/2) and § € (0,1). Let G = (V, E,w) be a weighted graph
with n vertices, m edges. Let K C V with |K| = k. Let L be the Laplacian of G and
Lg be the corresponding Schur complement with respect to K. Then there is an algorithm
APPROXSCHUR(G, K, ¢,0) that returns a Laplacian matriz f,fg( with associated graph H on
the terminals K such that the following statements hold with probability at least 1 — §:

1. The graph H has O(ke~2log(n/d)) edges.

2. LY and I:fg( are spectrally close, that is

vx e RF (1 —e)xTLEx <x"LEx < (14 ¢)x"LEx.
The total running time for producing H is O((n + m)e~2log*(n/é)).

In the following, we call the Laplacian ig{ (or equivalently, the graph H ) satisfying the above
two conditions an approxzimate Schur Complement of G with respect to K. Note that by
definition, the graph Hisa (1 & e)-spectral sparsifier of the graph H that is associated with
graph L? , which in turn is a 1-vertex resistance sparsifier of G with respect to K. Therefore,
H is a (1 + O(e))-vertex resistance sparsifier of G with respect to K (see Section 2).

3.2 Proof of Theorem 1

We now present a fully dynamic algorithm for maintaining the energy of electrical flows up
to a (14 ¢) factor in minor-free graphs and prove Theorem 1. We start with the special case
of planar graphs.

Data Structure. In our dynamic algorithm, we will maintain an r-division P = {Py,--- , Py}
of G with £ = O(n/r) and for each region P;, we compute a graph H; by invoking the algorithm
APPROXSCHUR in Lemma 15 with parameters P;, K = dg(P;), e = ¢ and 0 = 1/n3.

Let D(G) denote such a data structure for G, and let Tp(y denote the time to compute
D(G). Note that by Lemma 5 and 15, Tp(g) = O(n + 2 - re=2) = O(ne~2). Furthermore,
note that there are at most O(n/r) regions, and for each such a region P;, the corresponding
graph ﬁl is not an approximate Schur Complement of P; with respect to its boundary dg(P;)

with probability at most 1/n3. Therefore, bX the union bound, with probability at least

1
nZs

1—n- % =1- for any ¢ < ¢, the graph H; is an approximate Schur Complement of P,
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with respect to 0g(F;), and thus a (1 & §)-spectral sparsifier of H;, where H; denotes the
exact Schur complement of P; with respect to dg(P;). In the following, we will condition on
this event. This data structure D(G) will be recomputed every Tg;, := O(n/r) operations.

Handling Edge Insertions/Deletions. We now describe the INSERT operation. Whenever we
compute an approximate Schur Complement, we assume that the procedure APPROXSCHUR
from Lemma 15 is invoked on the corresponding region and its boundary vertex set, with
e = g and error probability § = 1/n3. Let us consider inserting an edge e = (z,y).

If both z, y belong to the same region, say P;, then we add the edge e to P;, and recompute

an approximate Schur Complement H; of the region P; (with respect to its boundary

vertex set) from scratch.

If x and y do not belong to the same region, we do the following.

If = is an interior vertex of some region P, then adding an edge (z,y) will make x a
boundary vertex. We then recompute an approximate Schur Complement I?m of P,.
If y is an interior vertex of some region, then we handle it in the same way as we did
for the interior vertex x.
We treat the edge (x,y) as a new region containing only this edge.
Observe that for each insertion, the number of vertices in any region is always at most r,
and we perform only a constant number of calls to APPROXSCHUR, Lemma 15 implies that
the time to handle an edge insertion is O(re’Q). Furthermore, since each edge insertion may
increase by a constant the number of boundary nodes and the total number of regions.

We now describe the DELETE operation. If we delete some edge e = (z,y), let P; be
the region such that both x,y € P;. We remove the edge from P;, and then recompute an
approximate Schur Complement PNIz of P; with respect to its boundary. By Lemma 15, the
cost of this resparsification step is bounded by O(re2).

Since we recompute the data structure every ©(n/r) operations, the amortized update
time is O ("572 + r8_2) = O(re?).

n/r

Handing Queries. In order to return a (1+¢)-approximation of the energy of s —¢ electrical
flow for an ELECTRICALFLOW(s,t) query, it suffices to return a (1 — §)-approximation of the
effective s — ¢ resistance, for which we first need to review the static algorithm for computing
effective resistance. The following result is due to Durfee et al. [13] (which builds and/or
improves upon [10, 28, 39]).

» Theorem 16 ([13]). Fiz ¢ € (0,1/2) and let G = (V, E,w) be a weighted graph with n
vertices and m edges. There is an algorithm EFFECTIVERESISTANCE that computes a value
¥ such that (1 —)Rg(s,t) < < (1+¢€)Ra(s,t), in time O(m + Zz) with high probability.

To answer the query ELECTRICALFLOW(s,t), we will form a smaller auxiliary graph
that is the union of the regions containing s,¢ and the approximate Schur Complements
of the remaining regions with respect to their boundaries, and output the approximate
effective s — t resistance of the smaller graph. More precisely, let P; and P; be two regions
that contain s and t, respectively. Let J denote the index set of all the remaining regions,
ic., J ={i: P e P\{P,P}}. For cach region P; such that i € 7, as before, let H;
be the approximate Schur Complement of P; that we have maintained. Now we form an
auxiliary graph H by taking the union over the regions P; and P, and all the approximate
Schur Complements of the remaining regions, i.e., H = P, U P; U Uiej ITII We then run the
algorithm EFFECTIVERESISTANCE on H with € = § to obtain an estimator ¢ and return
cr(s,t) := (1 — ¢)v. Next we show that the returned value is a good approximation to the
actual effective resistance.
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> Lemma 17. Fize € (0,1). Let G = (V, E,w) be some current graph and s,t € V.. Further,
let H=P,UP,U Uiej H; be defined as above and let ¢y (s,t) be the value returned as above
by invoking EFFECTIVERESISTANCE on H. Then, with high probability, we get

(1= 2)Bo(s,t) < eu(s.1) < (1= D) Ro(s, 1),

Proof. For the sake of analysis, we divide the sequence of updates into intervals each
consisting of Tg;y, = O(n/r) operations. Let I be the interval in which the query is made. Let
G denote the graph at the beginning of I. We compute the data structure D(G(?)) of G(),
which contains an r-division P(®) and the corresponding approximate Schur Complements
I;Ti(o). As mentioned before, with probability at least 1 — #, each of the graphs fli(o) will be
a (1 & §)-spectral sparsifier of the exact Schur Complement H, i(o)

with respect to its boundary vertex set.

Let G be the current graph when the query is made, which is formed from G(©) after some
updates in I. Let P = {P;};, H;,1 < i < O(n/r) be the r-division and the approximate Schur
Complements in the current data structure, respectively. Let H; denote the exact Schur
Complement of the region P; with respect to its boundary vertex set. Since the total number
of updates in I is ©(n/r), and each update only involves a constant number of invocations
of APPROXSCHUR with error probability 1/n3 that recomputes the approximate Schur
Complements of some regions, we have that with probability at least 1 —O(n/r)- % >1-— %,
these recomputed approximate Schur Complements are (1 + g)-spectral sparsifiers of the
corresponding exact Schur Complements. Therefore, for the current graph G and its data
structure, with probability 1 — 2 - % =1- %, for all 7, the graph fNIZ is a (1 £ §)-spectral
sparsifier of H;. In the following, we will condition on this event.

Recall that P; and P; are two regions that contain s and ¢, respectively. Consider the
graph G’ = P; U Py UJ;c; H;. We have the following lemma whose proof is deferred to the

full version of the paper.

of the corresponding region

» Lemma 18. For any two vertices u,v € V(G'), it holds that Rg(u,v) = Rg/(u,v).

It follows from the above lemma that Rg(s,t) = Rg(s,t). We next argue that H is a
(14 §)-resistance sparsifier to G" with high probability. First, note that each of the subgraphs
P, P,, H; and H;, i € J can be treated as graphs defined on the same vertex set V(G') with
appropriate isolated vertices. Second, since for each i € 7, I;Ti is (1+ g)-spectral sparsifier of
H;, and P, P; are sparsifiers of itself, we know that by Lemma 10 about the decomposability
of sparsifiers, H is a (1 & §)-spectral sparsifier of G'. Since every (1 & §)-spectral sparsifier
is a (1 £ g)-resistance sparsifier, it holds that

1- %)RH(s,t) < Rer(s,t) < (1+ %)RH(s,t). (1)

Since by definition we have cg(s,t) := (1 — §)1, Theorem 16 implies that

(1= 2)Ru(s,t) < (1 2 < (1= )1+ 2)Ru(s,1), (2)
6 6 6 6
with high probability. Combining (1) and (2) we get
(1-¢2)? 5 €
_— ’ < - = < - /
) R0 < (= Qv < (14 ORa (5.,

which in turn along with Rg(s,t) = R/ (s,t) imply that,

(1= 5)Rals,t) < (1= D) < (14 5)Rals, ).
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Therefore, with high probability, the algorithm outputs a (1 — §)-approximation to the
effective s — ¢ resistance. <

To bound the query time, we need to bound the size of the H = P, U P, U Uiej fIZ'. As
in the proof of Lemma 17, we let G(?) denote the graph right after the last rebuilding of
the data structure. Let P(9) denote the corresponding r-division. By definition, for each
P c PO |P| <r and the size of all the boundary vertices is con/y/r. By Lemma 6, we have
that Y pcpo) [Ogo (P)| < O(n//T), i.e., the sum of the numbers of boundary vertices over
all regions of G is at most O(n//7).

Note that there will be at most Ty;, = O(n/r) updates between G(©) and G, the graph
to which the query is performed, and each update can only increase the number of boundary
vertices and the total number of regions by a constant. These facts imply that the size of
all boundary nodes is O(n/+/r). Therefore, we have that |V (H)| < O(r +n/+/T), and that
the sum of the numbers of boundary vertices of the regions of G is at most O(n/+/r), i.e.,

> [V(H;)| < O(n/ V). N N
On the other hand, by Lemma 15, for each i, |E(H;)| = O(|V(H;)| - e~21logn). Thus,

B(H)| < [B(P)|+ [B(P)] + Y [E(H)| < O() + Y [V (H)| - O™ log)

= O((r+n/vr)e?logn).

By Theorem 16, it follows that the worst-case query time is O((r +n/y/r)e2).

To achieve asymptotically the same worst-case update time, we use a standard global
rebuilding technique (see the full version for details), which then finishes the proof of
Theorem 1 when the input graph is planar.

Extension to Minor-Free Graphs. In the following, we briefly discuss how one can adapt
the previous dynamic algorithms for planar graphs to minor-free graphs.

The key observation is that since the approximate Schur Complement can be constructed
in nearly-linear time for any graph, it suffices for us to efficiently maintain an r-division
of any minor-free graph, i.e., we need fast algorithms for computing a separator of order
v/n in such graphs. (A separator is a subset S of vertices whose deletion will partition the
graph into connected components, each of size at most %") Kawarabayashi and Reed [21]
showed that for any K;-minor-free graph G, one can construct in O(n'*¢) time a separator
of size O(y/n) for G, for any constant £ > 0 and constant ¢. (The O(-) notation for the
running time hides huge dependency on t.) Applying this separator construction recursively
as in Frederickson’s algorithm [15], we can maintain an r-division of any K;-minor-free G in
O(n'*¢) time. Furthermore, by analysis in [15], it holds that the total sum of the sizes of
all boundary vertex sets is also bounded by O(%) as guaranteed by Lemma 6 for planar
graphs.

Now we can dynamically maintain the data structure for electrical flows in minor-free
graphs almost the same as we did for planar graphs, except that we use the above O(n“’g)
time algorithm to compute the r-divisions. Thus, the time to compute the data structure for
any minor-free graph is then O(n1+5 +ne~2), for arbitrarily small constant ¢ > 0. Then from
previous analysis, the worst-case update time is O(ngre_z) update time, and the worst-case
query time is O((r 4+ n/y/r)e~2). This completes the proof of Theorem 1.
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