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Abstract
Cardinality constrained bin packing or bin packing with cardinality constraints is a basic bin
packing problem. In the online version with the parameter k ≥ 2, items having sizes in (0, 1]
associated with them are presented one by one to be packed into unit capacity bins, such that the
capacities of bins are not exceeded, and no bin receives more than k items. We resolve the online
problem in the sense that we prove a lower bound of 2 on the overall asymptotic competitive
ratio. This closes the long standing open problem of finding the value of the best possible overall
asymptotic competitive ratio, since an algorithm of an absolute competitive ratio 2 for any fixed
value of k is known. Additionally, we significantly improve the known lower bounds on the
asymptotic competitive ratio for every specific value of k. The novelty of our constructions is
based on full adaptivity that creates large gaps between item sizes. Thus, our lower bound inputs
do not follow the common practice for online bin packing problems of having a known in advance
input consisting of batches for which the algorithm needs to be competitive on every prefix of the
input. Last, we show a lower bound strictly larger than 2 on the asymptotic competitive ratio
of the online 2-dimensional vector packing problem, and thus provide for the first time a lower
bound larger than 2 on the asymptotic competitive ratio for the vector packing problem in any
fixed dimension.
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1 Introduction

Bin packing with cardinality constraints (CCBP, also called cardinality constrained bin
packing) is a well-known variant of bin packing [18, 19, 17, 9, 10, 11, 15]. In this problem, a
parameter k is given. Items of indices 1, 2, . . . , n, where item i has a size si ∈ (0, 1] are to be
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10:2 Online Bin Packing with Cardinality Constraints Resolved

split into subsets called bins, such that the total size of items packed into each bin is at most
1, and no bin has more than k items. In the standard bin packing problem, only the first
condition is required.

CCBP is a special case of vector packing (VP) [14]. In VP with dimension d ≥ 2, a set of
items, where every item is a non-zero d-dimensional vector whose components are rational
numbers in [0, 1], are to be split into subsets (called bins in this case as well) such that the
vector sum of every subset does not exceed 1 in any component. Given an input for CCBP,
an input for VP is created as follows. For every item, let the first component be 1

k , the
second component is si, and the remaining components are equal to zero (or to 1

k ).
In this paper we study online algorithms, which receive input items one by one, and pack

each new item irrevocably before the next item is presented, into an empty (new) bin or
non-empty bin. Such algorithms receive an input as a sequence, while offline algorithms
receive an input as a set. By the definition of CCBP, an item i can be packed into a
non-empty bin B if the packing is feasible both with respect to the total size of items already
packed into that bin and with respect to the number of packed items (i.e., the bin contains
items of total size at most 1− si and it contains at most k − 1 items). An optimal offline
algorithm, which uses a minimum number of bins for packing the items, is denoted by OPT .
For an input L and algorithm A, we let A(L) denote the number of bins that A uses to pack
L. We also use OPT (L) to denote the number of bins that OPT uses for a given input L.
The absolute competitive ratio of an algorithm A is the supremum ratio over all inputs L
between the number of its bins A(L) and the number of the bins of OPT , OPT (L). The
asymptotic approximation ratio is the limit of absolute approximation ratios RK when K
tends to infinity and RK takes into account only inputs for which OPT uses at least K bins,
that is the asymptotic competitive ratio of A is

lim
K→∞

sup
OPT (L)≥K

A(L)
OPT (L) .

The term competitive ratio is used for online algorithms instead of approximation ratio and
it is equivalent. In this paper we mostly deal with the asymptotic competitive ratio, and
also refer to it by the term competitive ratio. When we discuss the absolute competitive
ratio, we use this last term explicitly.

In this paper, we resolve the long standing open problem of online CCBP, in the sense
that we find the best overall asymptotic competitive ratio and the best overall absolute
competitive ratio. An algorithm with an asymptotic competitive ratios of 2 has been designed
by Babel et al. [4], and a similar algorithm was shown to have an absolute competitive ratio
of 2 [6] (earlier, it was known that the competitive ratio of a suitable variant of First Fit
is below 2.7 for any k [18]). However, prior to this work, all lower bounds were strictly
smaller than the best lower bounds for standard bin packing [23, 5]. With the exception of
the case k = 2 for which simple algorithms have competitive ratios of 1.5 [18, 10], and a
more sophisticated algorithm has a competitive ratio of at most 1.44721 [4], all lower bounds
on the competitive ratio were implied by partial inputs of ones used to prove lower bounds
for standard bin packing [24, 23, 5] (such lower bounds can be used for k ≥ 1

δ when all
items have sizes no smaller than δ, for a fixed value δ > 0), and modifications of such inputs
[4, 12, 6]. That is, all lower bounds had the form where a number of lists may be presented,
each list has a large number of items of a certain size (the sequence of sizes of the different
lists is increasing, and the numbers of items in the lists are not necessarily equal). The
unknown factor is the number of presented lists, that is, the input can stop after any of the
lists. See Table 1 for values of previously known lower bounds (and note that for k = 3, 4, 5, 6
algorithms with competitive ratios strictly below 2 are known [10]).
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Table 1 Bounds for 2 ≤ k ≤ 10. The middle column contains the previously best known
asymptotic lower bounds on the asymptotic competitive ratio for CCBP with parameter k. The
right column contains our improved lower bounds.

Value of k previous lower bound new lower bound

2 1.42764 [12] 10
7 ≈ 1.42857

3 3
2 = 1.5 [4] 1.55642

4 3
2 = 1.5 [12] 1.63330

5 3
2 = 1.5 [6] 1.69776

6 3
2 = 1.5 [24] 1.74093

7 217
143 ≈ 1.51748 [6] 1.77223

8 32
21 ≈ 1.52381 [6] 1.79634

9 189
124 ≈ 1.524194 [6] 1.81563

10 235
154 ≈ 1.52597 [6] 1.83148

200000 1.54037 [5] 1.99999
k →∞ 248

161 ≈ 1.54037 [5] 2

In this work, we take a different approach for proving lower bounds, where many of the
item sizes are based on the complete and precise action of the algorithm up to the time it is
presented. While some ingredients of our approach were used for the very limited special
case of k = 2 in the past [7, 4, 12], it was unclear how and if it could be used for k > 2. In a
nutshell, in these lower bound sequences for k = 2, sub-inputs were constructed such that
items packed in certain ways (for example, as the second item of a bin) had much larger sizes
than items of the same sub-input packed in other ways. Here, we generalize the approach
for larger values of k by defining careful constructions where sufficiently large multiplicative
gaps are created. This requires much more delicate procedures where item sizes are defined.

Additionally, we improve the lower bounds for all values of k, and in particular, prove
lower bounds above the best known lower bound on the competitive ratio for standard online
bin packing, 1.54037 [5] for k ≥ 3. Already for k = 3 our lower bound is above 1.55, and
already for k = 4, our lower bound is above the competitive ratio of many algorithms for
standard online bin packing (see for example [21, 22]).

Our result for CCBP provides, in particular, a lower bound of 2 for the asymptotic
competitive ratio of VP in two dimensions. The previously known lower bounds for VP are
as follows. The best results for constant dimensions are fairly low, and tending to 2 as the
dimension d grows to infinity [13, 8, 7], while a lower bound of Ω(d1−ε) was given by Azar et
al. [2] for the case where both d and the optimal cost are functions of a common parameter
n that grow to infinity when n grows to infinity, and thus this result does not give any lower
bound on the competitive ratio for constant values of d (see also [1, 3] for results on vectors
with small components). In particular, the best lower bound for d = 2 prior to this work was
1.67117 [13, 8, 7]. An upper bound of d+ 0.7 on the competitive ratio is known [14]. We
conclude this work by establishing a lower bound strictly larger than 2 on the competitive
ratio of 2-dimensional VP, and thus we show here for the first time that the 2-dimensional
VP is provably harder for online algorithms than its special case of CCBP.

Note that the offline CCBP problem is NP-hard in the strong sense, and approximation
schemes are known for it [9, 11, 15]. We note that for online CCBP, it is sometimes the
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10:4 Online Bin Packing with Cardinality Constraints Resolved

case that the competitive ratio for some specific algorithms for CCBP is larger by 1 with
comparison to that of the corresponding algorithms for standard bin packing [18, 16, 20, 10].
Interestingly, this is not the case with respect to the results shown in this paper.

1.1 Paper outline
We discuss general properties in Section 2, and we define procedures for constructing sub-
inputs in Section 3. Our main result, an overall lower bound of 2 on the competitive ratio of
any online algorithm for CCBP is proved in Section 4, and improved lower bounds for fixed
values of k are given in Section 5. Our result for VP is established in Section 6. Omitted
proofs appear in the full version of this work.

2 Preliminaries

The analysis of the lower bounds on the asymptotic competitive ratio of online algorithms
will be based on the following lemma that basically allows us to disregard a constant number
of bins in the costs of the optimal solution and the solution returned by the algorithm.

I Lemma 1. Consider an algorithm ALG, such that the asymptotic competitive ratio of the
algorithm ALG is at most R, where R ≥ 1 is a fixed value, and let f(n) denote a positive
function such that f(n) = o(n) and for any input, ALG(I) ≤ R ·OPT (I) + f(OPT (I)). Let
Ca ≥ 0, Cb ≥ 0 be constants. Assume that for a given integer N0, for any integer n ≥ N0
there is an input In for which OPT (In) = Ω(n), then we have

R ≥ lim sup
n→∞

ALG(In) + Ca
OPT (In)− Cb

.

Proof. We have

ALG(In) + Ca
n

≤ R · OPT (In)− Cb
n

+ Ca +R · Cb
n

+ f(OPT (In))
n

for any n ≥ N0.
Since ALG(In) + Ca ≥ OPT (In)− Cb and OPT (In)− Cb = Ω(n) while Ca + R · Cb +

f(OPT (In)) = o(n), letting n grow to infinity implies that

R ≥ lim sup
n→∞

ALG(In) + Ca
OPT (In)− Cb

. J

In what follows, we will use Lemma 1 as follows. We construct inputs whose size depends
on a parameter N , so that the costs of optimal solutions increase with the input size. We
will compare the cost of a fixed online algorithm ALG plus a suitable non-negative constant
to the optimal cost minus a suitable non-negative constant by considering their ratio.

3 Constructions of sub-inputs

In this section we introduce the core of our lower bound constructions. In such constructions,
we adaptively present inputs that are based on the behavior of the algorithm. More specifically,
we define several procedures that construct sub-inputs according to certain conditions.
Similarly to [4, 12, 7] (and other work on online problems), a new input item is presented
at each time, where its size is based on the action of the algorithm on previous items. For
example, if the previous item was packed into an empty bin, the size of the next item is



J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin 10:5

different from the size that would be used if the previous item is added to a non-empty bin.
In order to ensure that the properties are satisfied, we will define invariants, and we will
prove the specific properties that we need in the sequel via induction. The constructions
use k as a parameter since they are defined to be used for CCBP. However, they can be
used for any packing problem of items into bins and the property that k is the cardinality
constraint is not used in the constructions of sub-inputs (it is used later in the analysis of
inputs constructed using these sub-inputs). Thus, if the constructions are used for other
problems like we do for VP, the parameter k should be specified.

In the first procedure, the most important property is that there will be a gap between
two types of items constructed by applying the procedure, in the sense that the procedure
creates items that will be called small and items that will be called large, any large item is
larger than any small item, and there is a requirement on the size ratio that will be satisfied
(a multiplicative gap between the size of the smallest large item and the largest small item).
Such constructions differ from previous work [4, 12, 7] where only an additive gap was created.
The gap was always positive, but it could be arbitrarily small. In particular, one limitation
was that it was unknown how such an approach could be used for CCBP with parameter
k > 2.

We will also use this method to construct sub-inputs with large items, such that there
is a multiplicative gap in the differences between 1 and the items sizes. This new method
will allow us to provide a tight overall result for CCBP, new and significantly improved
lower bounds on the asymptotic competitive ratio for CCBP with fixed values of k, and our
improved lower bound for VP.

3.1 Procedure SMALL
In this first procedure called SMALL, a rational value 0 < ε ≤ 1, and an integer upper bound
N on the number of items to be presented are given. The goal is to present (at most) N
items of sizes in (0, ε], such that every item will be seen as either a small item or a large
item, and such that any large item is more than k times larger than any small item. In fact,
a stronger requirement on the item sizes will hold. Moreover, all item sizes will be rational.
Given two logical conditions, C1 and C2 specified for each construction (such that for every
packed item, exactly one of them holds), a new item will be defined as small if C1 holds and
it will be defined as large if C2 holds. There is a third condition C3 that is based on the
packing of the prefix of items introduced so far, and the sub-input is stopped if C3 holds.

Let N be an upper bound on the number of items that will be created by the procedure.
Let N ′ ≤ N be the actual number of items (where N is known in advance and used for
the sequence construction, while N ′ is not necessarily known in advance and it becomes
known when C3 holds for the first time). The item sizes a1, a2, . . . , aN ′ will be defined based
on another sequence x1, x2, . . . , xN ′ , such that ai = ε · k−xi for 1 ≤ i ≤ N ′. The values xi
will be integral in order to ensure that the values ai will be rational. There will also be
two sequences of values τ1, . . . , τN ′ and ρ1, . . . , ρN ′ , representing thresholds on item sizes of
further items.

Let τ0 = 2N+2, ρ0 = 2N+3, and i = 1. The process is defined as follows for any given
value of i (such that 1 ≤ i ≤ N ′). Let xi = τi−1+ρi−1

2 (we will show that these values are
integers). After the algorithm packs item i, if C1 holds, let τi = τi−1 and ρi = xi and if C2
holds, let τi = xi and ρi = ρi−1. If C3 holds or i = N , stop and otherwise increase i by 1.

Intuitively, the process is as follows. The interval (τi, ρi) contains the xj values of all
further items (with j > i), and for j ≤ i, all items satisfying C1 have xj values in [ρi, ρ0) and
all items satisfying C2 have xj values in (τ0, τi]. In each iteration i, the new values τi, ρi are
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defined such that these requirements are satisfied. In particular, the xi values of any item
satisfying C1 are larger than those of items satisfying C2. Next, we establish the invariants
of this procedure.

I Lemma 2. Let N ′ be the number of items. For any i such that 1 ≤ i ≤ N ′, ρi ≤ ρi−1
and τi ≥ τi−1. Additionally, we have ρi − τi = 2N+2−i, all xi values are integral, if item i

satisfies C1, xi ≥ ρN ′ and otherwise xi ≤ τN ′ .

Proof. We start with showing that the xi values as well as ρi and τi are integral and
ρi − τi = 2N+2−i. We prove this by induction. Indeed ρ0 = 2N+3 that is integral, τ0 = 2N+2

that is an integer as well. Furthermore, ρ0 − τ0 = 2N+2, and x1 = 3 · 2N+1 that is an integer,
and no matter if the first item satisfies C1 or C2, we have that both ρ1 and τ1 are integers,
and ρ1 − τ1 = 2N+1. Thus, the cases i = 0 and i = 1 for the induction claim hold. Assume
that ρi−1 − τi−1 = 2N+3−i holds for some i where 1 ≤ i ≤ N ′ − 1. Then,

xi = τi−1 + ρi−1

2 = τi−1 + ρi−1 − τi−1

2 = τi−1 + 2N+3−i ,

which is an integer for 1 ≤ i ≤ N , since τi−1 is an integer. Moreover, if τi = τi−1 and
ρi = xi, then ρi − τi = xi − τi−1 = ρi−1−τi−1

2 , and otherwise τi = xi and ρi = ρi−1, then
ρi − τi = ρi−1 − xi = ρi−1−τi−1

2 . In both cases, ρi − τi = 2N+2−i and both τi and ρi are
integers. Since, in particular, for any i, ρi > τi holds and xi+1 is their average, we find
τi < xi+1 < ρi. Thus, ρi ≤ ρi−1 and τi ≥ τi−1 holds for any i.

Finally, since in the case that item i satisfies C1, we let ρi = xi, and in the case that
item i satisfies C2, we let τi = xi, we get xi = ρi ≥ ρi+1 ≥ . . . ≥ ρN ′ in the first case, and
xi = τi ≤ τi+1 ≤ . . . ≤ τN ′ in the second case. J

I Corollary 3. For any item i, ai ∈
(
ε · k−2N+3

, ε · k−2N+2
)
, and in particular ai ≤ 1

k4 . For
any item i1 satisfying C1 and any item i2 satisfying C2, it holds that

ai2
ai1

> k.

Note that it is possible that the constructed input is such that there are only items
satisfying C1 or only items satisfying C2.

Proof. The first claim holds by definition. Since we have xi1 ≥ ρN ′ and xi2 ≤ τN ′ , we get
ai2
ai1

> kρN′−τN′ , Using ρN ′ − τN ′ = 2N+2−N ′ ≥ 4 as N ′ ≤ N , we find ai2
ai1
≥ k4 > k. J

3.2 Procedure LARGE
The second type of input is such that all items have sizes in (1− ε, 1) for a given value ε > 0.
The construction is the same as before, but the size of the ith item is bi = 1− ai. The terms
“small” and “large” refer to the difference between the size of the item and 1.

I Corollary 4. All bi for 1 ≤ i ≤ N are in (1− ε · k−2N+2
, 1− ε · k−2N+3). The sizes of any

small item is and any large item il satisfy 1− bil > k · (1− bis).

3.3 Procedure SMALLandLARGE
We will also use a procedure where the conditions C1 and C2 are not fixed, and they are
based on additional properties of the packing and the input that has been presented so
far. Moreover, in this case the size of each item is based on ai, but it is fixed for each
item separately (it will be either ai or 1 − ai). In this construction the sub-input will be
decomposed into parts where for an item of an odd indexed part the size of the item will
be 1− ai, whereas for an item of an even indexed part the size of the item will be ai. The
definitions of C1 and C2 will also depend on the parity of the index of the part containing
the item. This procedure is called SMALLandLARGE.
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4 A lower bound of 2 for CCBP

The general structure of inputs constructed in this section is as follows. There are a large
number of very small items, such that the first item packed into a bin by the algorithm is
significantly larger than small items packed as a second item or later. Afterwards, there
are two cases. In the first case there are very large items (of sizes almost 1) that can be
combined with k − 1 items that arrived earlier, but only with those that are smaller. Thus,
an optimal solution can pack all items densely except for those items that are first in their
bins (for the algorithm). The algorithm cannot use its previously packed bins again to pack
new items, and therefore the best approach is to pack a large number of items into each bin
(otherwise the percentage of larger small items is larger, which makes the optimal packing
more sparse, but the algorithm has an even larger number of bins, and the effect of the last
property is more significant). Another option is that instead of the very large items, items
slightly larger than 1

2 will arrive, in which case it turns out that the algorithm should have
packed k − 1 items into each bin (so that a new item could be still packed there). For very
large values of k, the two values k − 1 and k are not very different, and since the algorithm
does not know which items will arrive, packing k − 1 items into each bin (if k is very large)
is a good strategy. The result of packing k − 1 items into each bin is that in the first case
the very large items increase the number of bins roughly by a factor of 2, while an optimal
solution has relatively few bins with k small items. Note that the order of options in the
construction below is reversed for the sake of convenience.

Let N be a large integer. Apply procedure SMALL with ε = 1 for the construction of N
items (i.e., condition C3 never happens). The condition C2 is that the item is packed as the
first item of some bin (into an empty bin), and the condition C1 is that the item is packed
into a non-empty bin. The item sizes are no larger than 1

k4 . The multiplicative gap between
the smallest large item and the largest small item is larger than k. The N items presented
so far will be called the first phase items. Let δ > 0 denote the largest size of any first phase
item packed not as a first item of a bin (the largest small item). Let α = k · δ. Any first
phase item that is packed as the first item of a bin (a large item) has size strictly above α.
Let ∆ < 1

k3 be the largest size of any first phase item. Obviously, 1− k∆ > 1− 1
k2 >

1
2 .

For the first phase items, let Xk denote the number of bins packed by the algorithm that
contain k items, and let Y denote the number of other bins (such that there are Xk + Y bins
in total after N items have been presented).

The first phase items are followed by another set of items called the second phase items.
This set of items is selected out of two possible options. The first option is that d N

k−1e items
of size 1− k∆ arrive, and the second option is that dN−Xk−Y

k−1 e items of size 1− α = 1− kδ
arrive. In both cases it is possible to create an offline solution such that each bin (except
for possibly two bins) has k items. In the first case, an offline solution has d N

k−1e bins, each
with one item of size 1− k∆ and an arbitrary subset of k − 1 first phase items (the last bin
may have a smaller number of such items). Such a solution is optimal. In the second case,
an offline solution has dN−Xk−Y

k−1 e bins, each with one item of size 1− kδ and k − 1 small
first phase items, and dXk+Y

k e bins with k large first phase items (for each one of these two
bin types, the last bin may have a smaller number of such items). Indeed the last solution is
an optimal solution though we will only use that it is a feasible solution.

In the first case, the algorithm cannot use the bins that already have k items for packing
second phase items, and its cost is at least Xk + d N

k−1e ≥ Xk + N
k−1 . In the second case, the

algorithm cannot use any of its bins to pack any second phase item, as each bin has a large
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first phase item of size above α, so its cost is

Xk + Y +
⌈
N −Xk − Y

k − 1

⌉
≥ Xk + Y + N −Xk − Y

k − 1 .

We call the two inputs (of the two cases) I1 and I2. Obviously, since each input consists
of more than N items, OPT (I1) = Ω(Nk ) and OPT (I2) = Ω(Nk ) hold. Letting N = kn

provides an input In as required. By Lemma 1, we will analyze modified competitive ratios
of the form ALG(I)+Ca

OPT (I)−Cb
for fixed constants Ca and Cb.

For the input I1, OPT (I1) − 1 ≤ N
k−1 and ALG(I1) ≥ Xk + N

k−1 . For the input I2,
OPT (I2)− 2 ≤ N−Xk−Y

k−1 + Xk+Y
k and ALG(I2) ≥ Xk + Y + N−Xk−Y

k−1 .
First, we analyze the competitive ratio r for input I2 and show that it tends to 2 as k grows

to infinity. Let Z = Xk + Y . We have OPT (I2)− 2 ≤ N−Z
k−1 + Z

k and ALG(I2) ≥ Z + N−Z
k−1 .

Thus,

r ≥ kZ(k − 1) + k(N − Z)
k(N − Z) + (k − 1)Z = Z(k2 − 2k) + kN

kN − Z
.

Since Z ≥ N
k and the last lower bound on r is a ratio between an increasing function of Z and

a decreasing function of Z, we conclude that by substituting N
k instead of Z in the last bound,

we achieve a valid lower bound on r. Thus, we have r ≥ N(k−2)+kN
kN−N

k

= 2−2/k
1−1/(k2) = 2k

k+1 and
the last bound tends to 2 when k grows to infinity. By Lemma 1, the overall (asymptotic)
competitive ratio is at least 2. Since there is a 2-competitive algorithm for any value of k [4]
(even for the absolute competitive ratio [6]), we establish the following.

I Theorem 5. The overall best possible asymptotic and absolute competitive ratios for bin
packing with cardinality constraints are equal to 2.

To obtain a better lower bound on the asymptotic competitive ratio r for a fixed value of
k ≥ 3, we use I1 as well. By r ≥ ALG(I1)

OPT (I1)−1 ≥
Xk+N/(k−1)
N/(k−1) we have (k − 1)Xk ≤ (r − 1) ·N .

By counting arguments, N ≤ kXk + (k − 1)Y holds, and we get Xk ≥ N − (k − 1)Z, and
(r− 1)N ≥ (k− 1)Xk ≥ (k− 1)(N − (k− 1)Z) = (k− 1)N − (k− 1)2 ·Z. Rearranging gives

Z ≥ (k − r)N
(k − 1)2 .

As we saw earlier, by using I2 we have r ≥ Z(k2−2k)+kN
kN−Z , which is equivalent to

Z(k2 − 2k + r) ≤ kN(r − 1).

Combining the lower bound and upper bound on Z results in

(k − r)N(k2 − 2k + r)
(k − 1)2 ≤ kN(r − 1),

or equivalently

r2 + r(k3 − k2 − 2k)− (2k3 − 4k2 + k) ≥ 0.

Since k3−k2−2k ≥ 0 holds for k ≥ 2 and 2k3−4k2 +k > 0 holds for k ≥ 2, it is sufficient to
find the (unique) positive root which is equal to 2k+k2−k3+

√
(k3−k2−2k)2+4(2k3−4k2+k)

2 . The
last expression is a lower bound on r and thus the following holds.
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I Theorem 6. For any k ≥ 3, the asymptotic competitive ratio for bin packing with cardinality
constraints is at least

2k + k2 − k3 +
√
k6 − 2k5 − 3k4 + 12k3 − 12k2 + 4k

2 .

The last lower bound is equal to approximately 1.54983 for k = 3, 1.63330 for k = 4,
1.69047 for k = 5, 1.73214 for k = 6, 1.76388 for k = 7, 1.78888 for k = 8, 1.80909 for k = 9,
and 1.82575 for k = 10. For k = 2 the resulting lower bound is

√
2 and the construction (for

the case k = 2) is indeed similar to that of [7, 4].

5 Better lower bounds for CCBP for some small values of k

In this section we prove the next theorem that improves the resulting bounds of Theorem 6
for these values of k.

I Theorem 7. The following approximate values are lower bounds on the asymptotic com-
petitive ratio:The value 1.42857 for k = 2 (the exact value of this lower bound is 10

7 ), 1.55642
for k = 3, 1.69776 for k = 5, 1.74093 for k = 6, 1.77223 for k = 7, 1.79634 for k = 8,
1.81563 for k = 9, and 1.83148 for k = 10.

6 Vector packing

As explained in the introduction, vector packing is a generalization of CCBP, and thus the
results of the previous sections imply, in particular, a lower bound of 2 on the asymptotic
competitive ratio for VP in two or more dimensions. In this section we show that VP is more
general, by improving the result, and showing a lower bound above 2 for VP with constant
dimensions. Our result is the first lower bound strictly above 2 for any fixed dimension VP
(recall that currently, the best known upper bound for d-dimensional VP is d+ 0.7 and for
2-dimensional VP 2.7 [14]). We prove the result for two dimensions (and the result for higher
dimensions follows since the asymptotic competitive ratio is monotone in the dimension, as
any d-dimensional vector can be augmented by d′ − d zeroes to become a d′-dimensional
vector). Once again we consider a fixed deterministic online algorithm ALG, but this time it
is an algorithm for VP. Let R be the asymptotic competitive ratio.

The main idea of the lower bound is at follows. First, there are items whose first
component is 1

k for an appropriately chosen integer k, while the second components are very
small. The items are such that the second components are sufficiently larger for items packed
first into their bins by the algorithm compared to those that are not packed first. Afterwards,
one option is that the following items have a very large second component and their first
component is zero (this is equivalent to the items in the construction for CCBP). Every such
item could be packed with k items that arrived earlier, but never with the first item of a bin
of the algorithm, and thus the new items require new bins, while an optimal solution can
pack almost everything densely. For this option it is most profitable for the algorithm to
pack k items in each bin. In the other cases, it turns out that it is better to pack much less
than k items per bin, as further items will have first components of ak for an integer value
of a (which is selected based on the action of the algorithm). Those items will have second
components above 1

3 , and there may be further items whose second components are above 1
2 .

Let k ≥ 10 be a large integer. The set of inputs we define will consist of at most
three phases (where a phase is a sub-input). The first phase of the input is based on the
construction for CCBP as follows. For a large integer N ≥ 1000, there are N items whose
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first component is 1
k . The second components of items are constructed using procedure

SMALL with ε = k−2N+4 , such that SMALL is applied for the construction of N elements
(i.e., condition C3 never happens). The condition C2 is that the item is packed as the first
item of some bin (i.e., it is packed into an empty bin), and the condition C1 is that the item
is packed into a non-empty bin. The N (two-dimensional) items presented so far will be
called the first phase items. The second components of the first phase items are no larger
than k−2N+4 ≤ 1

k4 . Due to the value of the first component, in any packing every bin has at
most k first phase items. A first phase item packed as the first item of a bin will be called
large and any other first phase item will be called small.

The multiplicative gap between the smallest second component of any large item and the
largest second component of any small item is greater than k. Let δ > 0 denote the largest
second component of any small first phase item. Let α = k · δ. Any large first phase item
has a second component strictly above α. Let ∆ < 1

k3 be the largest second component of
any first phase item. Obviously, 1− α = 1− kδ > 1− 1

k3 > 0.999.

Let Xi denote the number of bins packed with i first phase items and let Θ = (
∑k

i=1
Xi)

N ,
where Θ ≤ 1 as every bin has at least one item out of the N items. Let the input of
first phase items be denoted by I. At this time, any k items can be packed into a bin,
and thus OPT (I) ≤ dNk e. If ALG(I) = ΘN ≥ 3N

k , we get R ≥ ALG(I)
OPT (I)−1 ≥ 3. Thus, we

assume in what follows that Θ < 3
k . Since every bin of the algorithm contains exactly one

large item and the remaining items are small, there are ΘN < 3N
k large items and at least

N −ΘN > (k−3)N
k ≥ 7N

10 small items.
The first option for the second part of the input is similar to the construction for CCBP

(the second part of the input will also be the last part of the input in this specific case). The
next phase of items will consist of dN−Θ·N

k e items called second phase items, whose first
component is zero and the second component is 1− α = 1− kδ. This input (consisting of
the first phase items and the second phase items) is called I ′. By the following lemma we
have 1 + (k − 1)Θ ≤ R.

I Lemma 8. We have ALG(I ′) = ΘN + dN−ΘN
k e ≥ ΘN + N−ΘN

k = N+(k−1)ΘN
k and

OPT (I ′)− 2 ≤ N−ΘN
k + ΘN

k = N
k .

Proof. It is possible to create a feasible solution for I ′ where each bin (except for possibly
two bins) has k first phase items. This solution has dN−ΘN

k e bins, each with one second
phase item and k small first phase items, and dΘN

k e bins with k large first phase items
(for each one of these two bin types, the last bin may have a smaller number of first phase
items). Indeed the last solution is an optimal solution (since second phase items cannot be
packed with large first phase items), though we will only use that it is a feasible solution.
We conclude that OPT (I ′)− 2 ≤ N−ΘN

k + ΘN
k = N

k . The algorithm uses a different new bin
for each second phase item, since every such item has a second component larger than 1

2 ,
and every bin with first phase items has a total size above α in its second component. Thus,
we get ALG(I ′) = ΘN + dN−ΘN

k e ≥ ΘN + N−ΘN
k = N+(k−1)ΘN

k . J

Let b be an integer such that b < k−4
2 . For any integer a such that 1 ≤ a ≤ b, there will

be two possible inputs I1
a and I2

a . All inputs start with the first phase items defined above.
The second phase of items is identical for the two inputs I1

a and I2
a (but it is different for

different values of a). Let Γa = dN−NΘ
k−2a e. Intuitively, when considering an optimal packing of

the small first phase items in I1
a and I2

a , most of the bins will contain k− 2a small first phase
items, and thus Γa is approximately their number. The second phase items are constructed
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using SMALL with the same value of k as for the first phase items as follows. The number
of items is Na = Γa (and once again C3 never happens and all items are presented). The
sizes are built using ε = 1, and the conditions C1 and C2 are as follows. We let C2 be the
condition that the item is packed into a bin that does not have a second phase item, and
C1 is the condition that the item is packed into a bin that already has a second phase item.
The first component of each item is a

k . Given the ith output of SMALL denoted by z, for
the ith item, the second component is defined as 1

3 + z. If z is defined when C2 holds, we say
that the item whose vector is (ak ,

1
3 + z) is large, and otherwise it is small. Since 0 < z ≤ 1

k4

for any item, the items satisfy that their second components are strictly larger than 1
3 , and

they are not larger than 1
3 + 1

k4 < 0.3335. Furthermore, we conclude that the difference
between the smallest second component of a large second phase item and the largest second
component of a small second phase item is at least k−2N+3 .

Obviously, since second phase items have second components above 1
3 , no bin can have

more than two such items. Let Y a1 and Y a2 denote the numbers of bins with one second
phase item and two second phase items, respectively (note that there may be such bin that
contain first phase items and bins that do not, and both kinds are included in these two
values according to their numbers of second phase items, while bins with only first phase
items are not included). There are Y a2 small second phase items and Y a1 + Y a2 large second
phase items (and Y a1 + 2Y a2 = Γa). Note that since the first component of second phase items
is a

k , they could not have been packed into bins with at least k − a+ 1 first phase items.
Input I1

a continues with Γa items, each of the form (ak , 0.6). Let 1
3 + δ′ be the largest

second component of a small second phase item (such that for any large second phase item,
its second component is larger than 1

3 + 2δ′), and observe that since δ′ ≥ k−2N+3 , the total
sum of second component of a set of at most k first phase items is at most δ′. Input I2

a

continues with the third phase items as follows. dΓa+2Y a
2

4 e items, each of the form (ak ,
2
3 −2δ′),

and dN4k e items, each of the form (0, 1− α). Let ∆c =
∑k
i=cXi.

I Lemma 9. The costs of the algorithm satisfy

ALG(I1
a) ≥ ∆k−a+1 + Y a2 + Γa

and

ALG(I2
a) ≥ ∆k−a+1 + Y a1 + Y a2 + Γa + 2Y a2

4 + N

4k .

Proof. For I1
a , the algorithm cannot use any bin with at least k − a+ 1 first phase items

to pack any other items (as second phase and third phase items afterwards have a first
component of value a

k ), and the algorithm cannot pack an item of the form (ak , 0.6) into a
bin with two second phase items. Thus, using ∆c =

∑k
i=cXi, the total number of bins of

the algorithm is at least ∆k−a+1 + Y a2 + Γa.
For I2

a , the algorithm cannot use any bin with at least k− a+ 1 first phase items to pack
items whose first component is a

k , and it cannot use any bins with first phase items to pack
items whose second component is 1− α. Moreover, since every bin with second phase items
has a large second phase item, the algorithm cannot pack any third phase item into a bin
containing at least one second phase item (and each bin with a third phase item will contain
exactly one third phase item). The only bins that can possibly be used for third phase items
are those with at most k − a first phase items and no other items. Thus, the number of bins
is at least ∆k−a+1 + Y a1 + Y a2 + Γa+2Y a

2
4 + N

4k . J

We next analyze optimal solutions for I1
a and I2

a .
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I Lemma 10. The cost of the optimal solutions for I1
a and I2

a satisfy

OPT (Ia1 ) ≤ Γa + dNΘ
k
e

and

OPT (I2
a) ≤ N

4k + Y a1 + Y a2
2 + Γa + 2Y a2

4 + 9N
4k2 + 4 = N

4k + 3Γa
4 + 9N

4k2 + 4 .

Proof. For I1
a consider the following feasible solution. There are Γa bins, each with a second

phase item (whose first component is a
k and its second component is in ( 1

3 , 0.3335)), one
item of the form (ak , 0.6), and k − 2a first phase items where each such item has a first
component of 1

k and its second component is no larger than 1
k4 (the last bin may contain

a smaller number of first phase items). The first component of the sum of the vectors of
these items is 1, and the second component is at most 0.3335 + 0.6 + 1

k3 < 1. The remaining
first phase items (there are at most NΘ such items) are packed k in a bin. We find that
OPT (Ia1 ) ≤ Γa + dNΘ

k e.
For I2

a , there are dN4k e bins, each with one item of the form (0, 1− α) and k small first
phase items (recall that the number of small first phase items is larger than N

4 +k), dY
a
1 +Y a

2
2 e

bins with at most two large second phase items and at most k−2a first phase items, dΓa+2Y a
2

4 e
bins with one item of the form (ak ,

2
3 − 2δ′), and at most one small second phase item, and at

most k − 2a first phase items. The remaining first phase items are packed into additional
bins, such that every bin has k such items. All items are packed since the number of small
second phase items, Y a2 , is no larger than Γa

2 , so Γa+2Y a
2

4 ≥ Y a2 . The total space for first
phase items in the first three kinds of bins is at least

N

4 + (k − 2a)
(
Y a1 + Y a2

2 + Γa + 2Y a2
4

)
= N

4 + k − 2a
4 · 3Γa

≥ N

4 + 3
4N(1−Θ) = N − 3

4NΘ ,

so the number of bins of the last kind is at most d 3NΘ
4k e ≤

9N
4k2 + 1 since Θ ≤ 3

k . We find that

OPT (I2
a) ≤ N

4k + Y a1 + Y a2
2 + Γa + 2Y a2

4 + 9N
4k2 + 4 = N

4k + 3Γa
4 + 9N

4k2 + 4 . J

We get

R ≥ ALG(Ia1 )
OPT (Ia1 )− 2 ≥

∆k−a+1 + Y a2 + N−NΘ
k−2a

N−NΘ
k−2a + NΘ

k

,

R ≥ ALG(I2
a)

OPT (Ia2 )− 5 ≥
∆k−a+1 + Y a1 + Y a2 +

N−NΘ
k−2a +2Y a

2
4 + N

4k
N
4k + 3 N−NΘ

k−2a

4 + 9N
4k2

.

We let β = b/k and let k grows to infinity. Choosing β ≈ 0.192806 and using the
inequalities we showed, we find R ≥ 2.03731129, and thus we conclude the following theorem.

I Theorem 11. The asymptotic competitive ratio of any online algorithm for vector packing
with d ≥ 2 is at least 2.03731129.
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