Modeling and Engineering Constrained Shortest Path Algorithms for Battery Electric Vehicles

Moritz Baum¹, Julian Dibbelt², Dorothea Wagner³, and Tobias Zündorf⁴

¹ Karlsruhe Institute of Technology, Karlsruhe, Germany
² Mountain View, CA, USA
³ Karlsruhe Institute of Technology, Karlsruhe, Germany
⁴ Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

We study the problem of computing constrained shortest paths for battery electric vehicles. Since battery capacities are limited, fastest routes are often infeasible. Instead, users are interested in fast routes where the energy consumption does not exceed the battery capacity. For that, drivers can deliberately reduce speed to save energy. Hence, route planning should provide both path and speed recommendations. To tackle the resulting \(NP\)-hard optimization problem, previous work trades correctness or accuracy of the underlying model for practical running times. In this work, we present a novel framework to compute optimal constrained shortest paths for electric vehicles that uses more realistic physical models, while taking speed adaptation into account. Careful algorithm engineering makes the approach practical even on large, realistic road networks: We compute optimal solutions in less than a second for typical battery capacities, matching performance of previous inexact methods. For even faster performance, the approach can easily be extended with heuristics that provide high quality solutions within milliseconds.

1 Introduction

Battery electric vehicles (EVs) have matured, giving the prospect of high powertrain efficiency and independence of fossil fuels, but a major hindrance of their adoption remains the limited battery capacity of most vehicles combined with a lengthy recharge time. To overcome range anxiety, careful route planning that prevents battery depletion during a ride is paramount. Besides a limited cruising range, another substantial difference to vehicles run by combustion engines is the ability to recuperate energy when braking. Naturally, such aspects have to be reflected in any kind of route planning application for EVs.

Classic route planning approaches make use of a graph-based representation of the considered transportation network, where scalar edge weights correspond to, e.g., travel times. A shortest path is then found by Dijkstra’s algorithm [15]. A wide range of speedup techniques [3]
enable provably correct but faster queries in practice. For instance, A* Search [27] uses vertex potentials to guide the search towards the target. Contraction Hierarchies (CH) [23], on the other hand, employs a preprocessing step to obtain a directed acyclic search graph that allows to skip vast parts of the network at query time. For that, it iteratively contracts vertices according to a heuristic vertex ranking, while adding shortcut edges to maintain distances within the remaining graph. Extensions to multicriteria scenarios exist for both A* [17, 32, 33, 36] and CH [21, 22, 38]. Moreover, CH and A* can be combined to Core-ALT [6], where all but the highest-ranked vertices are contracted, which form the core graph. On that, a variant of A* uses precomputed distances to landmark vertices [24].

Route planning for EVs requires handling battery capacity constraints and negative edge weights (due to recuperation), which is tractable when optimizing energy consumption as a single criterion [9, 16, 35]. However, energy-optimal routes often exhibit disproportionate detours, as using minor, slow roads can save energy due to less air drag [9]. Variants of the \(\mathcal{NP} \)-hard Constrained Shortest Path (CSP) problem [26] overcome this by minimizing energy consumption without exceeding a given time limit [37] or finding the fastest route that does not exceed battery constraints [7, 41]. Yet, time–consumption tradeoffs are not only affected by choice of route but also by driving behavior. Assuming a single, fixed speed per road segment neglects attractive solutions that may still use major roads (e.g., motorways), saving energy by deliberately driving below posted speed limits, instead. Sampling such alternative speeds, tradeoffs can be modeled by parallel edges [8, 25], but this yields too many nondominated intermediate solutions, growing exponentially even for chains of vertices. Accordingly, only heuristics offer acceptable performance for common vehicle ranges [8, 25]. By discretizing a continuous range of possible speeds, the approach has further undesirable effects: The majority of its many intermediate solutions offers insignificant tradeoffs [8], while interesting solutions are lost to the discretization; adding degree-two vertices (commonly included for visualization) affects the solution space, even when distributing speeds and consumption evenly. Instead, Hartmann and Funke [28] model tradeoffs as continuous functions per edge, assuming the driver can go at any speed within limits. Yet, for that model they propose only a heuristic extension of CH that requires minutes to answer queries on large networks. Lv et al. [31] use dynamic programming to plan the speed of a solar-powered EV, but their approach aims at simulation and is too slow for interactive applications.

Contribution and Outline. We study a generalization of the CSP problem to capture the characteristics of EVs, considering continuous, adaptive speeds: We allow the EV to adjust its speed to reach its target quickly and with sufficient state of charge (SoC). Using realistic consumption models, we obtain for each road segment a function mapping travel time to energy consumption, yielding a challenging, more precise problem setting (Section 2). As a first solution, we propose an exponential-time extension of Dijkstra’s algorithm: By propagating continuous consumption functions during network exploration, we greatly improve performance and solution quality over previous discretized approaches (Section 3). We also incorporate techniques based on A* and CH, for which a particular challenge is the computation of shortcuts that represent bivariate functions to capture the constraints of our model (Section 4). Our experimental evaluation (Section 5) reveals that we can compute optimal solutions in well below a second for typical battery capacities and less than a minute for large battery capacities, on par or faster than previous heuristic algorithms. Our own heuristic variant provides high-quality solutions and is fast enough for interactive applications.
2 Model and Problem Statement

We use directed graphs \(G = (V, E) \) to model road networks, where edges \(e \in E \) represent road segments. For each edge, we assume that a given tradeoff function \(g_e: \mathbb{R}_{\geq 0} \to \mathbb{R} \) maps desired driving time \(x \in \mathbb{R}_{>0} \) along \(e \) to energy consumption \(g_e(x) \). Consumption can be negative, due to recuperation. In reality, driving time cannot be chosen arbitrarily: Lower bounds are due to speed limits and the vehicle’s maximum speed. On the other hand, driving slower than a reasonable minimum speed would mean to become an obstacle for other drivers. This yields minimum and maximum driving times \(\tau \in \mathbb{R}_{>0} \) and \(\bar{\tau} \in \mathbb{R}_{>0} \), respectively, for \(g_e \). We incorporate them into a consumption function \(c_e: \mathbb{R}_{\geq 0} \to \mathbb{R} \cup \{\infty\} \) with

\[
c_e(x) := \begin{cases}
\infty & \text{if } x < \tau, \\
g_e(\bar{\tau}) & \text{if } x > \bar{\tau}, \\
g_e(x) & \text{otherwise}.
\end{cases}
\]

Thus, driving times below \(\tau \) are infeasible (modeled as infinite consumption) and driving times above \(\bar{\tau} \) become unprofitable. In the special (degenerate) case of \(\tau = \bar{\tau} \), the function \(c_e \) represents a constant pair \((\tau, c_e(\tau)) \) of driving time and consumption. We then call \(c_e \) constant, as the edge \(e \) allows no speed adaptation.

Further, the EV is equipped with a battery that has a capacity \(M \in \mathbb{R}_{\geq 0} \). The SoC must not drop below 0 nor exceed \(M \). Incorporating these constraints, we obtain a bivariate SoC function \(f_e: \mathbb{R}_{\geq 0} \times [0, M] \cup \{-\infty\} \to [0, M] \cup \{-\infty\} \) for every \(e = (u, v) \in E \), mapping SoC at \(u \) to SoC at \(v \) when traversing \(e \) with a specific driving time. It is given by

\[
f_e(x, b) := \begin{cases}
-\infty & \text{if } b - c_e(x) < 0, \\
M & \text{if } b - c_e(x) > M, \\
b - c_e(x) & \text{otherwise},
\end{cases}
\]

where an SoC of \(-\infty \) denotes an empty battery. Hence, \(f_e(x, b) = -\infty \) means that the edge cannot be traversed at the corresponding speed (as the battery would run empty).

An \(s-t \) path in \(G \) is a sequence \(P = [s = v_1, v_2, \ldots, v_k = t] \) of vertices with \((v_i, v_{i+1}) \in E \) for \(1 \leq i \leq k - 1 \). If \(s = t \), we call \(P \) a cycle. Given the SoC \(b_s \in [0, M] \) at \(s \), we obtain a corresponding SoC at \(t \) by iteratively picking driving times \(x_i \in \mathbb{R}_{\geq 0} \) (starting at \(s \)) and evaluating the SoC function \(f_{(v_i, v_{i+1})}(x_i) \) for \(x_i \) and the SoC at \(v_i \). Due to physical constraints, we presume that for cycles this procedure never increases the SoC at \(s = t \). For paths \(P = [v_1, \ldots, v_l] \) and \(Q = [v_{l+1}, \ldots, v_k] \), \(P \circ Q := [v_1, \ldots, v_{l+1}, \ldots, v_k] \) is their concatenation.

Given a source \(s \in V \), a target \(t \in V \), and an initial SoC \(b_s \in [0, M] \), the Electric Vehicle Constrained Shortest Path (EVCSP) Problem is to find an \(s-t \) path \(P = [s = v_1, v_2, \ldots, v_k = t] \) together with driving times \(x_i \), \(i \in \{1, \ldots, k - 1\} \), for every edge in \(P \) that respect battery constraints and minimize overall travel time \(x := \sum_{i=1}^{k-1} x_i \) in \(G \). This yields an \(\mathcal{NP} \)-hard problem by reduction from CSP [26]. An instance of CSP corresponds to an instance of EVCSP where all functions are degenerate constant tuples with nonnegative consumption.

A Simplified Model. We illustrate SoC functions in an example using simplistic but vivid tradeoff functions. For now, let tradeoff functions be decreasing and linear, i.e., \(g_e(x) = \alpha x + \beta \) for every \(e \in E \), where \(\alpha \in \mathbb{R}_{\leq 0} \) and \(\beta \in \mathbb{R} \) are constant coefficients. The values \(\alpha \) and \(\beta \) may differ between edges to reflect different road types or other relevant factors [12, 42]. Figures 1a and 1b show consumption functions (plugging in limits \(\tau \) and \(\bar{\tau} \) on driving time) for two edges \((u, v)\) and \((v, w)\). We are interested in the consumption function of the path.
Constrained Shortest Path Algorithms for Battery Electric Vehicles

Figure 1 Consumption functions based on a simple model. (a) Function $c(u,v)$ of an edge (u,v) with $\bar{\tau} = 1$ and $\bar{\varphi} = 3$. (b) Function $c(v,w)$ of an edge (v,w) with $\bar{\tau} = 1$ and $\bar{\varphi} = 2$. (c) The function c_P of $P = [u,v,w]$. The shaded area indicates possible pairs of driving time and consumption.

Figure 2 The bivariate SoC function of the path P from Figure 1, for $M = 4$. (a) The SoC f_P at v, subject to driving time x on P for different fixed values b of initial SoC. (b) The SoC f_P at v, subject to initial SoC b for different fixed values x of driving time.

$P = [u,v,w]$, i.e., a function c_P that maps driving time x spent on P to minimum energy consumption $c_P(x)$. Formally, to get $c_P(x)$ for a driving time $x \in \mathbb{R}_{\geq 0}$, we must pick values $x_1 \in \mathbb{R}_{\geq 0}$ and $x_2 \in \mathbb{R}_{\geq 0}$, such that $x = x_1 + x_2$ and $c(u,v)(x_1) + c(v,w)(x_2)$ is minimized. Figure 1c shows possible distributions of driving times among the two edges and the resulting energy consumption. Their lower envelope yields the desired function c_P. Intuitively, we want to spend as much of the available time as possible on the edge that provides the better tradeoff for saving the most energy, i.e., the function with steeper slope. As a result, the consumption function of a path is always convex on its finite imaginary part. Moreover, while tradeoff functions of edges are linear in the interval $[\bar{\tau}, \bar{\varphi}]$ of admissible driving times, the tradeoff function of a path is piecewise linear within its corresponding interval.

When considering battery constraints, energy consumption depends not only on driving time but also on initial SoC. Note that consumption is positive on (u,v) and negative on (v,w). As before, the edge (v,w) provides the better tradeoff. However, for low initial SoC, we must ensure that (u,v) can be traversed first, spending additional time on this edge in order to obtain a feasible solution at all. In contrast, high initial SoC values may prevent recuperation along (v,w), limiting the payoff of driving slower. Figure 2 illustrates the resulting bivariate SoC function f_P for specific values of initial SoC and driving time.

A Realistic Model. In this work, we use a more realistic model, detailed below. Both driving time and energy consumption depend on the vehicle’s speed. In accordance with realistic physical models [1, 2, 10, 18, 28, 30, 31], we assume that energy consumption on a
Figure 3 Linking consumption functions. (a) Function c_1 with $\alpha_1 = 4$, $\beta_1 = 1$, $\gamma_1 = -1$, $\tau = 2$, and $\overline{\tau}_1 = 4$. (b) Function c_2 with $\alpha_1 = 0.5$, $\beta_1 = 1$, $\gamma_1 = 1$, $\overline{\tau}_1 = 2$, and $\overline{\tau}_1 = 5$. (c) Function $c = \text{link}(c_1,c_2)$, with $c(x) = c_1(\Delta_{\text{opt}}(x)) + c_2(x - \Delta_{\text{opt}}(x))$. It is defined by three subfunctions with subdomains $[4,5]$, $[5,6,5]$, $[6,5,9]$. Values Δ_{opt} and $x - \Delta_{\text{opt}}$ indicate the share of c_1 and c_2.

Figure 3

Road segment $e \in E$ is expressed by a function $h_e: \mathbb{R}_{>0} \to \mathbb{R}$ with $h_e(v) = \lambda_1 v^2 + \lambda_2 v s_e + \lambda_3$, where $v \in \mathbb{R}_{>0}$ is the (constant) vehicle speed, $s_e \in \mathbb{R}$ is the (constant) slope of the road segment, and $\lambda_1 \in \mathbb{R}_{\geq 0}$, $\lambda_2 \in \mathbb{R}_{>0}$, and $\lambda_3 \in \mathbb{R}_{>0}$ are constant nonnegative coefficients of the consumption model (all values may vary for different edges). Note that assuming constant speed and slope per edge is not a restriction, as intermediate vertices can be added to model changing conditions. Further, one can show that varying the speed on a single road segment (with constant slope and speed limit) never pays off in our model [28, Corollary 1].

As we are interested in functions mapping driving time $t \in \mathbb{R}_{>0}$ to energy consumption $g_e(t)$, we substitute $v = t_e/x$, where t_e is the length of the road segment. Slope and length of an edge are fixed, so we simplify this by setting $\alpha := \lambda_1 t_e^2$ and $\gamma := \lambda_2 s_e + \lambda_3$. Observe that $\alpha \in \mathbb{R}_{\geq 0}$ is nonnegative, while $\gamma \in \mathbb{R}$ may be negative (for downhill edges). We introduce a third constant $\beta \in \mathbb{R}_{>0}$, needed later to shift functions along the time axis. Altogether, we obtain the tradeoff function $g_e: \mathbb{R}_{>0} \to \mathbb{R}$ with

$$g_e(t) := \frac{\alpha}{(x - \beta)^2} + \gamma.$$ \hspace{1cm} (1)

For single edges, we always obtain $\beta = 0$ and assume driving time t to be strictly positive. Thus, the denominator $x - \beta$ is strictly positive and $g_e(t)$ is finite. Further, g_e is decreasing and convex on $\mathbb{R}_{>0}$ in this case. In the simplistic model discussed above, we have seen that tradeoff functions of paths may be piecewise linear. Similarly, we allow tradeoff functions in the realistic model to be defined piecewise, so they may consist of multiple subfunctions of the form in Equation 1. Tradeoff functions of paths may also use values $0 < \beta < x$ to reflect additional time spent on previous edges. Plugging in the values $\tau \in \mathbb{R}_{>0}$ and $\bar{\tau} \in \mathbb{R}_{>0}$, we obtain the consumption function $c_e: \mathbb{R}_{>0} \to \mathbb{R} \cup \{\infty\}$.

3 Basic Approach

We generalize the (exponential-time) bicriteria variant [34] of Dijkstra’s algorithm [15] to solve EVCSVP. As a crucial ingredient, the algorithm requires a link operation: For two consumption functions c_1 and c_2 modeling consumption on two paths P_1 and P_2, the function $c := \text{link}(c_1,c_2)$ maps driving time spent on $P := P_1 \circ P_2$ to minimum possible energy consumption (bar battery constraints). Let $\overline{\tau}_1$, $\overline{\tau}_2$, and $\bar{\tau}_2$ denote the respective minimum
Constrained Shortest Path Algorithms for Battery Electric Vehicles

and maximum driving times of c_1 and c_2. We obtain $c(x) = \infty$ for all $x < \tau_1 + \tau_2$ and $c(x) = c_1(\tau_1) + c_2(\tau_2)$ for $x > \tau_1 + \tau_2$. For all $x \in [\tau_1 + \tau_2, \tau_1 + \tau_2]$, we have to compute

$$c(x) = \min_{\Delta \in [\tau_1, \tau_2]} c_1(\Delta) + c_2(x - \Delta).$$

In other words, we have to divide the amount of time that exceeds the minimum possible total driving time among the two paths such that consumption is minimized; see Figure 3 for an example. Although realistic functions require a more technical analysis, many observations made for our simplistic (linear) model from the previous section carry over to the more realistic (nonlinear) tradeoff functions. In fact, the function c can be computed in linear time in the number of subfunctions defining c_1 and c_2.

Algorithm Description. Given a source $s \in V$, a target $t \in V$, and initial SoC $b_s \in [0, M]$, the tradeoff function propagating (TFP) algorithm solves EVCSP. It propagates labels consisting of consumption functions (defined piecewise, by sequences of tradeoff functions) and applies battery constraints on-the-fly. Hence, it does not have to maintain bivariate SoC functions explicitly. The algorithm starts with the constant label $c_s \equiv M - b_s$ at s. The label is also added to a priority queue, which uses minimum driving time of a label as key. In each step of its main loop, the algorithm extracts and settles a label c_u (at some vertex $u \in V$) with minimum key from the queue. For every edge $(u, v) \in E$, the function $c := \text{link}(c_u, c_{(u,v)})$ is computed. Note that c may violate battery constraints, so we set $c(x) := \infty$ for all $x \in \mathbb{R}_{\geq 0}$ with $c(x) > M$ and $c(x) := 0$ for all $x \in \mathbb{R}_{\geq 0}$ with $c(x) < 0$. The resulting function is added to the priority queue, unless it is dominated by existing labels at v; we say that a label c_1 dominates another label c_2 if $c_1(x) \leq c_2(x)$ for all $x \in \mathbb{R}_{\geq 0}$.

To keep the number of label comparisons low, each vertex $v \in V$ maintains a set $L_{\text{set}}(v)$ and a heap $L_{\text{uns}}(v)$ containing its settled and unsettled labels, respectively. We maintain the invariant that for each $v \in V$, the unsettled label in $L_{\text{uns}}(v)$ with minimum key is not dominated by any settled label in $L_{\text{set}}(v)$. Labels (at v) added to the priority queue are also pushed into $L_{\text{uns}}(v)$. Every time the minimum element of $L_{\text{uns}}(v)$ changes (because an element is added or extracted), we check whether the new minimum element is dominated by any settled label in $L_{\text{set}}(v)$ and discard it in this case [7]. Dominance is tested as follows. For two subfunctions (with the form of Equation 1), we can test in constant time whether one dominates the other (by evaluating extreme points of their difference and subdomain borders). For piecewise-defined consumption functions, we exploit that we only need to compare subfunctions whose subdomains intersect. This allows us to test for dominance in a linear scan (comparing subfunctions in increasing order of driving time). Given a consumption function c in the set $L_{\text{uns}}(v)$ of some vertex $v \in V$, a naive implementation then performs pairwise comparisons to functions in $L_{\text{set}}(v)$ to determine whether c is dominated by any of them. In doing so, the algorithm may miss cases where c is merely partially dominated, or dominated only by the lower envelope of several functions. Although including dominated labels in $L_{\text{set}}(v)$ does not affect correctness, it may lead to unnecessary vertex scans and increases the label size. Instead of pairwise dominance checks, we therefore identify dominated parts of c in a single coordinated scan over c and all functions in $L_{\text{set}}(v)$.

TFP is label setting, i.e., labels extracted from the queue are never dominated later on. An optimal (constrained) path is found once a label at t is extracted, which gives the optimal driving time. It is also possible to retrieve the optimal path and driving speeds.

A Polynomial-Time Heuristic. To improve running times, TFP can easily be extended to a heuristic search, at the cost of inexact results. We propose a polynomial-time approach based on ε-dominance [4]. When testing dominance of a label $c \in L_{\text{uns}}(v)$ at some vertex $v \in V$,
it is kept in $L_{\text{uns}}(v)$ only if it yields an improvement (over labels in $L_{\text{set}}(v)$) by at least a

certain fraction εM, with $\varepsilon \in (0, 1]$, for some driving time. Hence, we test for every $x \in \mathbb{R}_{\geq 0}$

whether $c(x) + \varepsilon M \leq c_{\text{set}}(x)$ holds for all settled functions $c_{\text{set}} \in L_{\text{set}}(v)$. Then, the number

of settled labels per set can become at most $\lceil 1/\varepsilon \rceil$, which yields polynomial running time.

4 Speedup Techniques

We propose speedup techniques based on A* and CH for TFP (and its heuristic variant). Combining both techniques, we obtain our fastest variant, CHAsp (CH, A*, Adaptive Speeds).

Our techniques do not alter the output of the algorithm, so correctness of TFP is maintained.

A* Search.

This well-known technique [27, 33] uses a potential function $\pi : V \to \mathbb{R}_{\geq 0}$. The potential $\pi(v)$ of a vertex $v \in V$ is added to all keys of labels when running TFP, so labels are extracted in a different order. We compute the potential function at query time.

Our first variant uses a cost functions $d : E \to \mathbb{R}_{\geq 0}$ with $d(e) = c_e(\tau_e)$, i.e., minimum driving time on an edge. Before running TFP, a backward search (i.e., Dijkstra’s algorithm traversing edges in backward direction) from the target t computes, for each vertex $v \in V$, the minimum unconstrained driving time $d(v, t)$ from v to the t. We obtain a consistent potential function $\pi_d : V \to \mathbb{R}_{\geq 0}$ by setting $\pi_d(v) := d(v, t)$ [40]. Similarly, we compute lower bounds on energy consumption, which allow us to prune the TFP search [8].

The potential function $\pi_d(v)$ may be too conservative if consumption on the optimal path is very high. In such cases, it pays off to use a potential function $\pi_f : V \times [0, M] \to \mathbb{R}_{\geq 0}$ that incorporates current SoC at a vertex [7]. We represent $\pi_f(v, b)$ with a convex, piecewise linear function that maps SoC $b \in [0, M]$ at a vertex $v \in V$ to a lower bound on remaining driving time. The functions are determined in a label-correcting backward search from t.

Contraction Hierarchies.

We propose an adaptation of CH to our scenario, which adds a preprocessing step for faster queries. As in plain CH [23], vertices are contracted iteratively (ordered by heuristic rank) during preprocessing and shortcut edges are added to maintain distances. However, we contract only a subset of the vertices, leaving an uncontracted core graph – a common approach in complex scenarios [7, 14, 28, 37]. Since the SoC at a vertex $u \in V$ is only known at query time in our setting, any shortcut (u, v) has to store a bivariate SoC function $f_{(u,v)}$. Figure 4 illustrates how the initial SoC influences energy consumption in our model. Their bivariate nature makes explicit construction and comparison of SoC functions rather challenging. We discuss simple representations of SoC functions in certain cases, exploiting that most consumption values are positive in realistic instances. We say that a path P is discharging if the SoC on P never exceeds the (arbitrary) initial SoC, i.e., there is no prefix of P that has negative minimum consumption for arbitrary driving times (subpaths with negative consumption are allowed, though). Hence, it is not necessary to explicitly check whether the SoC exceeds M on a discharging path. We show how the SoC function of a discharging path is represented by at most two consumption functions.

As a first example, assume we are given a path $P = P_1 \circ P_2$ consisting of two subpaths P_1 and P_2 with respective consumption functions c_1 and c_2, as in Figure 4. Let $\overline{\tau}_1, \overline{\tau}_1, \overline{\tau}_2, \overline{\tau}_2$ denote their corresponding minimum and maximum driving times. Assume that $c_1(x) > 0$ is positive for all $x \in \mathbb{R}_{\geq 0}$, while $c_2(x) \leq 0$ is nonpositive for all $x \in [\overline{\tau}_2, \infty)$. Finally, assume that $\{c_1(\overline{\tau}_1)\} > \{c_2(\overline{\tau}_2)\}$, i.e., the cost of P_1 is higher than the gain of P_2 for any driving time, so P is discharging. To derive the SoC function of P we introduce two auxiliary functions: a positive part c^+ with $c^+(x) := c_1(x - \overline{\tau}_2)$, and a negative part c^- with $c^-(x) := c_2(x + \overline{\tau}_2)$.
The original functions are shifted along the x-axis to simplify the analysis (note that the minimum feasible driving time of \(c^- \) is 0). Given some initial SoC \(b \in [0, M] \), the positive part \(c^+ \), and the negative part \(c^- \), we first define the constrained positive part \(c^+_b \) as

\[
c^+_b(x) := \begin{cases}
\infty & \text{if } b < c^+(x) \\
c^+(x) & \text{otherwise},
\end{cases}
\]

which applies battery constraints along \(P_1 \) for an initial SoC of \(b \); see Figure 4. Then, the SoC function \(f_P \) of the path \(P \) evaluates to \(f_P(x, b) = b - \text{link}(c^+_b, c^-)(x) \) for arbitrary \(x \in \mathbb{R}_{\geq 0} \) and \(b \in [0, M] \). The function first applies battery constraints on the positive part and links the resulting function with the negative part.

We now describe how SoC functions representing general discharging paths are constructed from two given SoC functions of discharging paths. Assume we are given a discharging path \(P_1 \) whose SoC function is defined by two consumption functions \(c^+_1 \) and \(c^-_1 \), as described above. Similarly, we are given a discharging path \(P_2 \) with respective consumption functions \(c^+_2 \) and \(c^-_2 \). Observe that the path \(P := P_1 \circ P_2 \) must be discharging as well. Apparently, if we know the initial SoC, we can compute energy consumption on \(P \) by computing \(\text{link}(\text{link}(c^+_1, c^-_1), c^+_2, c^-_2) \) and applying battery constraints before each link operation, like in the TFP algorithm. However, we want to represent \(P \) with only two consumption functions \(c^+ \) and \(c^- \). Recall that the only constraint we have to check for discharging paths is whether the SoC drops below 0. Thus, we identify a new positive part \(c^+ \) as follows. Since both \(c^-_1 \) and \(c^-_2 \) are nonpositive for all admissible driving times, the constraint needs only to be checked for \(c^+_1 \) and \(c^+_2 \) (i.e., before the first and third link operation). To integrate these checks into a single positive part \(c^+ \), we first compute the function \(h := \text{link}(c^+_1, c^+_2) \).

Clearly, the battery can only run empty on \(P_2 \) if this consumption function is positive for some admissible driving time. To distinguish this case, we split \(h \) into a positive part \(h^+ \) with \(h^+(x) := \max\{h(x), 0\} \) and a negative part \(h^- \) with \(h^-(x) := h(x) \) if \(h(x) \leq 0 \) and \(h^- := \infty \) otherwise. Since \(h \) is a decreasing consumption function, so are \(h^+ \) and \(h^- \). We obtain the positive part \(c^+ \) of \(P \) by setting \(c^+(x) := \text{link}(c^+_1, h^+)(x - \tau) \) and the negative part \(c^- \) by setting \(c^-(x) := \text{link}(h^-, c^-)(x + \tau) \), where \(\tau \) is the minimum driving time of \(h^- \).

The SoC function of \(P \) is obtained from \(c^+ \) and \(c^- \) as described above.

During preprocessing, we only allow a vertex \(v \in V \) to be contracted if all new shortcuts created as part of its contraction are discharging. We call \(v \) active in this case. Note that the number of active vertices grows as contraction proceeds, as contraction produces longer
Table 1 Benefits of our approach (Eur-PG, 2 kWh). For TFP and TFP-dom. (improved dominance tests), we report the number of settled labels (#Lbls.), number of label comparisons during the forward search (#Dom.), average and maximum running times, and relative driving time savings over the constrained path found by BSP on discretized speeds.

<table>
<thead>
<tr>
<th>Algo.</th>
<th>#Lbls.</th>
<th>#Dom.</th>
<th>avg. [ms]</th>
<th>max. [ms]</th>
<th>avg. [%]</th>
<th>max. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSP</td>
<td>30 990 276</td>
<td>21 300 657 522</td>
<td>47 755</td>
<td>779 756</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TFP</td>
<td>103 119</td>
<td>4 399 002</td>
<td>444</td>
<td>14 347</td>
<td>2.7%</td>
<td>9.4%</td>
</tr>
<tr>
<td>TFP-dom.</td>
<td>46 228</td>
<td>700 546</td>
<td>103</td>
<td>3 851</td>
<td>2.7%</td>
<td>9.4%</td>
</tr>
</tbody>
</table>

shortcuts, which are more likely to consist of long positive parts. Since we deal with a bicriteria scenario, vertex contraction may produce multi-edges. In such cases, we only want to keep shortcuts whose SoC functions are not dominated by parallel shortcuts. Hence, after contraction of a vertex, we delete (parts of) SoC functions of shortcut candidates that are dominated by existing functions between the same pair of vertices (and vice versa). To this end, we derive efficient dominance checks for (simple) bivariate SoC functions that can be performed in linear time (in the number of subfunctions of all involved functions). Finally, before adding a (nondominated) shortcut candidate to the graph, we run a witness search [23] to test if the shortcut is necessary to maintain distances. As an exact approach would require propagation and comparison of bivariate SoC functions, our witness search computes univariate upper bounds on energy consumption instead. This does not violate correctness, but may result in unnecessary shortcuts.

Queries. Plain CH uses a bidirectional search, which scans only edges to vertices of higher rank in the input graph enriched with shortcuts obtained during preprocessing. In our case, however, the SoC at the target vertex $t \in V$ is not known at query time, which makes backward search difficult. Instead, we extract the search space in a (backward) BFS from t, scanning and marking only edges to vertices of higher rank. Afterwards, we execute TFP from the source vertex s, scanning upward edges (with respect to ranks of incident vertices), core edges, and marked downward edges. For faster queries, we can combine this search with A*.

5 Experiments

We implemented all approaches in C++, using g++ 4.8.3 (-O3) as compiler. Experiments were conducted on a single core of a 4-core Intel Xeon E5-1630v3 clocked at 3.7 GHz, with 128 GiB of DDR4-2133 RAM, 10 MiB of L3 cache, and 256 KiB of L2 cache.

We consider road networks of Europe with 22,198,628 vertices and 51,088,095 edges and Germany with 4,692,091 vertices and 10,805,429 edges, provided by PTV AG (http://ptvgroup.com). Combining reasonable minimum speeds for different road types (e.g., 80 km/h on motorways and 30 km/h in residential areas) with the posted speed limits (if higher), we get intervals of allowed speeds per road segment, resulting in 25% and 38% of nonconstant edges for Germany and Europe, respectively. Applying elevation data from the Shuttle Radar Topography Mission, v4.1 (srtm.csi.cgiar.org), we derived realistic energy consumption from two detailed micro-scale emission models [29]: one based on a Peugeot iOn and one artificial model [39] that additionally accounts for auxiliary consumers (e.g., air conditioning). These data sources are proprietary, but enable evaluation on
detailed and realistic input data. We denote our instances by Germany-Aux (Ger-AX),
Germany-Peugeot (Ger-PG), Europe-Aux (Eur-AX), and Europe-Peugeot (Eur-PG). They
have negative consumption (for at least some driving times) on 7.8% (Ger-AX) to 12.9% (Eur-
PG) of their edges.

For comparison, we consider parallel edges and bicriteria shortest paths (BSP) [34]
to model adaptive speeds, as was best practice in previous approaches [8]. We generate
multi-edges by sampling consumption functions at discrete velocity steps of 10km/h.

We evaluate random in-range queries, i.e., we pick a source vertex \(s \in V \) uniformly at
random. Among all vertices in range from \(s \) with an initial SoC \(b_s = M \), we pick the target
vertex \(t \in V \) uniformly at random. Since unreachable targets are easily detected by backward
search phases of A* (or any algorithm for computing energy-optimal routes [9, 16, 35]), this
yields more challenging and interesting queries for us.

Model Validation and Scalability. We have argued that an approach based fully on con-
sumption functions unlocks both better tractability and improved solution quality compared
to discrete speeds and BSP. Indeed, we observe a significant speedup by simply switching to
our more realistic model, as Table 1 shows. TFP is up to two orders of magnitudes faster than
BSP and finds paths that are up to 9.4% quicker (within SoC constraints), since it evaluates
speed–consumption tradeoffs more fine-granularly while maintaining less query state (labels
of continuous functions expressed by few parameters instead of large, discrete Pareto sets).
This is interesting, as sampling was expressly considered to manage tractability [8, 25, 28].
In fact, even though atomic operations (linking and comparing labels) are more expensive
for TFP, a drastic reduction in the number of vertex scans explains the speedup.

Figure 5 gives an overview of our approaches and their scalability across increasing battery
capacities. For each capacity, we ran 100 random in-range queries, reporting median running
time if all 100 queries terminated within one hour. Beyond the previously discussed BSP,
TFP, and TFP-dom., A* enables reasonable running times for capacities of up to 32kWh,
without any preprocessing. Adding preprocessing, CHAsp-\(\pi_d \) provides further speedup by
about an order of magnitude. In comparison, median running times of CHAsp-\(\pi_f \) are slower
for all ranges up to 32kWh. However, this algorithm is more robust against outliers and
Table 2 Impact of core size on performance (Ger-PG, 16 kWh). Vertex contraction stopped once the average degree of active vertices in the core reached a given threshold ($\bar{\text{Deg}}$). We report the resulting core size ($\# \text{Vertices}$), preprocessing time, and average query times for 1000 queries using CHAsp with potential functions π_d and π_f, respectively.

<table>
<thead>
<tr>
<th>Core size</th>
<th>Prepr. $\bar{\text{Deg}}$</th>
<th># Vertices</th>
<th>π_d [ms]</th>
<th>π_f [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>--</td>
<td>3326.0</td>
<td>4861.5</td>
</tr>
<tr>
<td>8</td>
<td>720.514 (15.36%)</td>
<td>5:07</td>
<td>737.2</td>
<td>798.3</td>
</tr>
<tr>
<td>16</td>
<td>400.174 (8.53%)</td>
<td>13:25</td>
<td>496.2</td>
<td>485.0</td>
</tr>
<tr>
<td>32</td>
<td>305.301 (6.51%)</td>
<td>31:44</td>
<td>451.8</td>
<td>434.0</td>
</tr>
<tr>
<td>64</td>
<td>268.436 (5.72%)</td>
<td>1:11:13</td>
<td>505.5</td>
<td>473.1</td>
</tr>
<tr>
<td>128</td>
<td>251.410 (5.36%)</td>
<td>2:37:23</td>
<td>649.1</td>
<td>586.1</td>
</tr>
</tbody>
</table>

Table 3 Preprocessing and exact query performance for the potential functions π_d and π_f. For the ranges 16 kWh and 85 kWh, we show number of labels settled during the forward search ($\# \text{Lbls.}$), number of label comparisons during the forward search ($\# \text{Dom.}$) and total query times.

<table>
<thead>
<tr>
<th>Prepro.</th>
<th>16 kWh</th>
<th>85 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inst.</td>
<td>[h:m:s]</td>
<td># Lbls.</td>
</tr>
<tr>
<td>Ger-AX</td>
<td>30:34</td>
<td>152</td>
</tr>
<tr>
<td>Ger-AX</td>
<td>30:34</td>
<td>61</td>
</tr>
<tr>
<td>Ger-PG</td>
<td>31:44</td>
<td>32773</td>
</tr>
<tr>
<td>Ger-PG</td>
<td>31:44</td>
<td>6008</td>
</tr>
<tr>
<td>Eur-AX</td>
<td>3:10:43</td>
<td>124</td>
</tr>
<tr>
<td>Eur-AX</td>
<td>3:10:43</td>
<td>73</td>
</tr>
<tr>
<td>Eur-PG</td>
<td>3:13:01</td>
<td>23304</td>
</tr>
<tr>
<td>Eur-PG</td>
<td>3:13:01</td>
<td>6629</td>
</tr>
</tbody>
</table>

is the only exact method that terminates within an hour for all queries at 64 kWh and up.
Finally, our heuristic variant scales very well with vehicle range: Query times actually bottom out for large battery capacities, as the vehicle range gets close to the graph diameter.

Detailed Experiments. We evaluate different variants of our fastest approach, CHAsp. Table 2 shows CH preprocessing effort and query performance subject to core size on Ger-PG, for a common battery capacity of 16 kWh (corresponding to a range of 100 km). Contraction becomes much slower beyond a core degree of 32, which is explained by the small number of remaining active (i.e., contractable) vertices in the core. This also explains why speedup compared to the baseline ($\bar{\text{Deg}} = 0$ is equivalent to plain TFP combined with A^*) is much smaller than in simpler applications, where CH typically improves the baseline by several orders of magnitude [23]. Similar observations were made in other complex settings, including time-dependent [5, 11] and multicriteria [21, 22] scenarios. Nevertheless, CH still yields an improvement by up to an order of magnitude in our case. In our subsequent experiments, we pick an average core degree of 32 as stopping criterion of CH preprocessing.

Table 3 reports performance of CHAsp on all instances for capacities of 16 kWh and 85 kWh (as in Tesla models, with a range of 400–500 km). Figures are average values for 1000 in-range queries. For 16 kWh, our techniques find the optimal solution in well below a second on average. For Ger-AX and Eur-AX, we even achieve query times in the order of milliseconds.
Table 4 Performance of the heuristic variant of CHAsp-π, for different choices of the parameter ε (see Section 3) on the hard instances Ger-PG and Eur-PG. We show figures on query performance for 1000 random queries with a range of 16 kWh, as in Table 3. Additionally, we report the percentage of feasible and optimal results, as well as the average and maximum relative error.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ger-PG</td>
<td>31:43</td>
<td>0.00</td>
<td>32773</td>
<td>6352488</td>
<td>451.8</td>
<td>100.0 %</td>
<td>100.0 %</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>30:41</td>
<td>0.01</td>
<td>19922</td>
<td>1949458</td>
<td>225.6</td>
<td>100.0 %</td>
<td>89.4 %</td>
<td>1.0001</td>
<td>1.0047</td>
</tr>
<tr>
<td></td>
<td>25:49</td>
<td>0.10</td>
<td>6891</td>
<td>208058</td>
<td>75.6</td>
<td>98.9 %</td>
<td>62.8 %</td>
<td>1.0013</td>
<td>1.0502</td>
</tr>
<tr>
<td></td>
<td>17:48</td>
<td>1.00</td>
<td>1742</td>
<td>11149</td>
<td>30.7</td>
<td>95.1 %</td>
<td>47.6 %</td>
<td>1.0144</td>
<td>1.2294</td>
</tr>
<tr>
<td>Eur-PG</td>
<td>3:09:22</td>
<td>0.00</td>
<td>23304</td>
<td>5024403</td>
<td>346.1</td>
<td>100.0 %</td>
<td>100.0 %</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>3:04:48</td>
<td>0.01</td>
<td>12803</td>
<td>1132685</td>
<td>151.6</td>
<td>100.0 %</td>
<td>82.8 %</td>
<td>1.0001</td>
<td>1.0145</td>
</tr>
<tr>
<td></td>
<td>2:47:09</td>
<td>0.10</td>
<td>5045</td>
<td>126662</td>
<td>60.9</td>
<td>99.5 %</td>
<td>57.5 %</td>
<td>1.0020</td>
<td>1.0418</td>
</tr>
<tr>
<td></td>
<td>2:14:03</td>
<td>1.00</td>
<td>1428</td>
<td>7641</td>
<td>28.2</td>
<td>92.7 %</td>
<td>45.8 %</td>
<td>1.0203</td>
<td>1.3960</td>
</tr>
</tbody>
</table>

This gap in running time is explained by the difference in the number of edges with negative cost, caused by the underlying consumption model. One could even argue that the instances Ger-PG and Eur-PG are actually rather excessive in this regard, by not accounting for any auxiliary consumers at all. As a result, these instances are significantly more difficult to solve. Regarding the potential functions πd and πf, the search space is consistently smaller when using πf, but the backward search is more expensive. In fact, it becomes the major bottleneck for a battery capacity of 16 kWh on the easier instances. Consequently, query times are slower by about a factor of 4. For harder scenarios, however, the potential function πf provides better results due to better scalability. Note that when using πd, at least one query exceeded our threshold of one hour in computation time on Eur-PG. In summary, we can solve EVCSP optimally for typical ranges in less than a second, even on hard instances. For very long ranges, our algorithm computes the optimum in well below a minute on average (using πf), despite its exponential running time.

In Table 4, we evaluate our heuristic approach for different choices of ε (in % of total SoC). During preprocessing, new shortcuts are included only if they significantly improve on the existing ones. Thus, preprocessing becomes faster and core sizes (not reported in the table) decrease by up to 30%. Regarding queries, we achieve a speedup by an order of magnitude. However, the choice of ε clearly matters. For ε = 0.01, the decrease in quality is negligible, but speedup (about a factor of 2) is rather limited as well. For ε = 0.1, on the other hand, the optimal solution is still found very often. The average error is roughly 0.2%, while the overall maximum error is 5%, which is acceptable in practice. Finally, for ε = 1.0, both the average and maximum error increase significantly. Given that speedup is also limited compared to ε = 0.1, we conclude that the latter provides the best tradeoff in terms of quality and query performance: providing high-quality solutions, it enables query times of well below 100 ms, which is fast enough even for interactive applications. Moreover, note that in cases where no path is found (about 1% of all queries for ε = 0.1), a simple fallback solution could return the energy-optimal path, which can be computed quickly [9, 16, 35].

6 Conclusion

We introduced a novel framework for computing constrained shortest paths for EVs in practice, using realistic consumption models. Our base algorithm TFP respects battery
M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf

constraints and accounts for adaptive speeds in a mathematically sounder way that unlocks both better query performance and improved solution quality when compared to previous approaches using discretized, sampled speeds. Nontrivial speedup techniques based on A* and CH make the algorithm practical. For typical EV ranges, it computes optimal solutions in less than a second, making it the first practical exact approach – with running times similar to previous inexact methods [8, 25, 28]. Our own heuristic enables even faster queries while retaining high-quality solutions.

The result of our computations is not only the suggested route from source to target but also optimal driving speeds along that route. In practice, these can be passed to the driver as recommendations or directly to a cruise control unit. With the advent of autonomous vehicles, the output of our algorithms can also be used for speed planning of self-driving EVs, either directly or after further refinement [19]. For future work, a next step would be the integration of planned charging stops [7, 37]. From a practical point of view, it might also be interesting to consider adaptive speeds only on the fastest roads (e.g., motorways), where going below the speed limit really pays off the most. Then, contracting vertices incident to constant edges in CH might be a promising approach. Finally, we are interested in the integration of variable speed limits imposed by, e.g., historic knowledge of traffic patterns [5, 13, 20].

References

Constrained Shortest Path Algorithms for Battery Electric Vehicles

Constrained Shortest Path Algorithms for Battery Electric Vehicles
