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Abstract
We present a preprocessing-based acceleration technique for computing bi-criteria Pareto-optimal
journeys in public transit networks, based on the well-known RAPTOR algorithm [16]. Our key
idea is to first partition a hypergraph into cells, in which vertices correspond to routes (e.g., bus
lines) and hyperedges to stops, and to then mark routes sufficient for optimal travel across cells.
The query can then be restricted to marked routes and those in the source and target cells. This
results in a practical approach, suitable for networks that are too large to be efficiently handled
by the basic RAPTOR algorithm.
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1 Introduction

Computing best journeys in transportation networks is a success story of applied algorithms
research. Initiated by the publication of a continental road network in 2005 [17], a vast
amount of results have been published [3], yielding exact algorithms that compute shortest
path distances in a constant number of random memory accesses [1]. Some of these tech-
niques turned out to be very practical and have been picked up by industry for widespread
applications. As a result, millions of people today use algorithms developed by researchers
over the last decade.

While most research focused on computing routes in road networks, computing best
journeys in public transit networks is equally important [10, 20, 27, 29]. However, adapting
techniques that work well on road networks to public transit proved to be harder than
expected [6, 7, 8, 9, 13, 22, 34]. The most striking differences are the inherent time-dependency
of the transit schedule as well as the need of multicriteria optimization in practice [26].

Five techniques specialized for public transit networks have been considered in recent
years: Connection Scan (CSA)[18], RAPTOR [16], Transfer Patterns [2], Trip-Based Public
Transit Routing [35], and specific labeling techniques [12, 33]. Unlike previous techniques,
both CSA and RAPTOR do not rely on a graph representation but instead work directly
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on the underlying timetable. This allows for very lightweight preprocessing (to index or
re-organize the timetable) and queries fast enough for metropolitan networks. Notably,
RAPTOR has been extended to a large set of optimization criteria (e.g., arrival time, number
of transfers, reliability, walking duration, and ticket price) as well as to fully multimodal
networks with unrestricted walking, biking and taxi [11, 16]. Trip-Based Public Transit
Routing employs light preprocessing to achieve improvements in query performance of about
an order of magnitude over CSA and RAPTOR. Even faster queries are possible, however,
at considerable preprocessing cost on larger instances [36]. Transfer Patterns employs
most heavy preprocessing to achieve very fast queries, but preprocessing takes too long to
incorporate delays without sacrificing exactness [5]. Labeling techniques achieve even higher
query performance but also require high preprocessing effort, especially for multi-criteria
optimization, making the approach less applicable for real production systems.

Partitioning-based Approaches. For accelerating route planning in road networks, methods
based on partitioning [14, 15, 19, 23, 24, 30, 31] turned out to be the most practical ones. The
main observation is that in transportation networks, topology changes are much less frequent
than metric changes due to, e. g., delays or traffic [14]. Partition-based approaches exploit
this by running a rather expensive preprocessing step using the topology only, whereas a
much faster second step (sometimes referred to as customization) produces auxiliary routing
data based on real-time information [14, 19].

Transfer Patterns and Connection Scan have been enhanced to exploit this partition-based
paradigm: A recent study reduces the preprocessing time of transfer patterns greatly [4], but it
remains high in comparison. Accelerated Connection Scan [32] shows good preprocessing and
query performance, however, it has not been evaluated for full multicriteria optimization (such
as finding a Pareto set of arrival time and number of trips).

In this work, we study how RAPTOR can benefit from a partition of the public transit
network. We argue that ideas from previous works [4, 32] do not translate well, i. e., RAPTOR
needs to be adapted in a non-trivial way, leading to several interesting insights. More precisely,
we introduce a novel approach to partition a public transport network and evaluate different
algorithms for finding such partitions. We also present several algorithms to exploit such a
partition and introduce optimizations for faster queries. We demonstrate feasibility of our
approach on publicly available country-sized networks.

This work is organized as follows. Section 2 settles some preliminaries. Section 3 discusses
two different approaches to partitioning public transit networks. Section 4 presents our
main algorithm in full detail. Section 5 presents several experiments on large public transit
networks showing the feasibility of approach. We conclude our work in Section 6.

2 Preliminaries

We consider aperiodic timetables, consisting of sets of stops S, events E, trips T , and
footpaths F . Stops are locations where one can board or alight from transit vehicles. Stop
events are scheduled departures or arrivals of vehicles. A trip is a sequence of stop events
served by the same vehicle. Footpaths model walking transfers between stops.

A journey planning algorithm uses the aperiodic timetable in order to answer queries
which consist of a departure stop, a target stop, and desired departure time at the departure
stop. The answer to such a query is a set of journeys, each defined as an alternating sequence
of trips and footpaths. A journey can be evaluated by several criteria, such as arrival time,
number of transfers, total walking time, cost, etc. A journey j1 dominates another journey j2
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with respect to a given set of criteria if j1 is not worse than j2 in any evaluated criteria and
strictly better than j2 for at least one criteria. A set of non-dominated journeys, with ties
broken arbitrarily, is a Pareto set. In this work, we are interested in finding the Pareto set of
journeys with arrival time and number of transfers as criteria. Note that Pareto-optimization
is hard in general [21] but has long been known to be feasible in practice for public transit
networks for these and other sets of well-behaved criteria [28].

RAPTOR

The Round-bAsed Public Transit Optimized Router (RAPTOR) is an algorithm explicitly
designed for multi-criteria search in public transit networks [16]. While its basic variant
optimizes arrival time and number of transfers, the algorithm can be adapted to incorporate
further criteria as well. It organizes the input as a few simple arrays of trips and routes,
where a route is a set of trips following the same sequence of stops (at different times) without
overtaking each other. RAPTOR is now essentially a dynamic program operating in rounds,
one per transfer. For a given source stop ps, round i computes earliest arrival times at all
stops of the network for journeys involving exactly i transfers. Each round takes as input
the stops whose earliest arrival improved in the previous round (in round 0 this is the source
stop only). Then, all routes served by these stops are scanned, which is done by traversing
the stops on a route in order of travel, keeping track of the earliest possible trip that can
be taken, subject to the arrival times from the previous round. This trip may improve the
tentative arrival times along the the stops of the route.

RAPTOR can be extended to rRAPTOR, which computes profile queries resulting in
all optimal journeys in a given time range. Essentially, the algorithm runs an individual
RAPTOR query for each departure in the given range in order of decreasing time, however, it
keeps the labels between runs for the purpose of pruning provably suboptimal journeys [16].

3 Partitioning Public Transit Networks

In this section, we discuss two possible partitioning approaches that may be exploited by the
RAPTOR algorithm.

The most commonly-used approach [32, 4] of partitioning a public transit network is
what we call the stop partition approach. It partitions the stops of the network into k

cells c1, . . . , ck. The partition is computed on the undirected station graph G = (S, E), which
is derived from the timetable as follows. The set of vertices corresponds to the set of stops S,
and there is an edge pi, pj ∈ E if and only if pi and pj appear on at least one route in
consecutive order. One may assign edge weights corresponding to the number of contributing
routes. The objective of the partitioning algorithm is to compute k (preferably balanced)
cells while minimizing the number of cut edges between cells. Note that in the context of
RAPTOR, every cut edge corresponds to a set of routes (those represented by that edge).
Two connected (by a cut edge) boundary stops are therefore separated by a set of routes.

The elementary paradigm of the RAPTOR algorithm is to scan routes in their entirety.
However, the stop partitioning approach separates stops by cutting routes, thus making it
not the most natural fit for accelerating RAPTOR.

We therefore propose a different way to partition public transit networks, called the route
partition approach. In this approach, we partition the routes (instead of the stops) of the
network into k cells c1, . . . , ck. Think of different (local or metropolitan) transit agencies
that operate (densely interconnected) sets of routes that are sparsely connected with the
routes of neighboring agencies in comparison. In order to obtain a route partition, we first
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build an undirected route hypergraph G = (R, E). Here, the set of vertices corresponds to
the set of routes R. For every stop p ∈ S, we add a hyperedge e ⊂ R to E, where e is exactly
the set of routes that contain p. If several stops have the same set of incident routes, the
corresponding hyperedge is only added once. As with the stop partition approach, we might
also weigh the vertices and hyperedges in the graph to influence the balance of the resulting
partition.

Note that a route partition with k cells can be transformed into a stop partition with k +1
cells as follows. Since each noncut stop has routes assigned to the same cell ci, we can simply
assign these stops to their corresponding cell ci in the stop partition. The remaining (cut)
stops are assigned to the extra cell ck+1.

4 Main Algorithm

We now introduce HypRAPTOR, our new partition-based speedup technique for RAPTOR.
As mentioned in the previous section, the route partition approach harmonizes more naturally
with RAPTOR, which is why we base our algorithm on it. In what follows, we first go into
more detail about the partitioning itself, then explain how—based on the partition—we
compute a set of fill-in routes that are important for travel across cells, and finally discuss
our accelerated query algorithm.

4.1 Partitioning
We propose two different approaches of computing a route partition: the first builds a partition
by greedily merging adjacent cells, while the second one uses a hypergraph partitioning
algorithm, such as h-metis [25], as a black box.

4.1.1 Greedy Merging
Our greedy approach iteratively merges (smaller) cells, and stops once the desired number of
cells is reached. It starts with a trivial partition by making each route its own cell. Starting
from this partition, it continues by merging cells greedily as follows. Two cells are considered
as possible candidates for merging, if they contain at least one common stop (i. e., a stop
that is contained in routes from both cells). For each pair of candidate cells, we first evaluate
the gain of merging the cells. We define the gain in terms of the reduction of the fill-in size
resulting from merging the cells (see Section 4.2 where we discuss the fill-in computation).
The greedy algorithm maintains a priority queue containing all pairs of cells with the gain
as key. In each iteration, the algorithm merges the pair of cells with minimum key (largest
reduction of the fill-in size) and then updates the key of all adjacent pairs of cells by rerunning
the fill-in computation on them.

Note that the greedy algorithm may be run from any given initial partition. If available,
auxiliary data regarding the structure of the public transit network can be used to obtain
such an initial partition. For example, one usually expects routes operated by the same
agency to be more densely connected with each other than routes of different agencies. We
may therefore initialize the algorithm with a partition, where each cell is exactly formed of
the routes operated by one agency.

4.1.2 Hypergraphs
Our second approach is based on hypergraph partitioning. For this, we first construct an
appropriate hypergraph from the public transit network and may then apply any hypergraph
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partitioning algorithm that computes a vertex partition and minimizes the hyperedge cut. As
already mentioned in Section 3, the vertices of the hypergraph correspond to the routes of the
public transit network. Furthermore, we create one additional vertex for every footpath in the
network. Finally, we create one hyperedge for every stop, such that the edge corresponding
to stop p ∈ S connects all vertices representing routes or footpaths that are incident to p.

In this work, we partition the resulting hypergraph with the well-known partitioning
algorithm h-metis [25]. The general objective of the partitioning algorithm is to find cells
of roughly equal size while minimizing the number of cut hyperedges that are incident to
multiple cells. We can influence the balance of the partition by introducing weights for
the vertices and edges in the hypergraph. In the weighted scenario, the objective of the
partitioning algorithm is to find cells of equal weight while minimizing the sum of the weights
of all cut edges.

For the vertices (routes) of the hypergraph, we propose three possible weighting schemes.
Our first vertex weight is the number of stops contained in the corresponding route. Since
scanning a route in RAPTOR requires some computation for every stop of the route, this
weight directly measures the cost of scanning a route. Also, the cost of scanning a route
depends on the number of trips of a route, so we propose to use the number of trips in the
route as vertex weight. Finally, we can use the number of stop events of a route as the vertex
weight, since this reflects both the number of stops and trips of a route.

Similar to the vertex weights, we want to design edge weights such that the size of a
vertex cut corresponds to the induced complexity of the query algorithm. We propose two
types of edge weights beyond unit weights. An obvious choice is to use the number of stop
events at the stop as edge weight. However, this weight is quite unevenly distributed and
cannot distinguish well between stops with many incident routes and those with only a few.
To overcome this, we propose the logarithm of the number of stop events as a second edge
weight.

Finally, we remark that the construction of the hypergraph may lead to multi-edges. This
may happen when two stops are incident to the exact same set of routes and footpaths. We
can reduce these multi-edges to one edge by summing up there respective edge weights. This
does not influence the quality of the partition since either all or none of the edges from a set
of parallel edges will be cut.

4.2 Fill-In Computation
In our query algorithm we would ideally restrict the RAPTOR computation to the cells of
the source and target stop, which we call active cells. Unfortunately this only yields the
correct output, if the optimal journey does not use routes outside these active cells. We
therefore need to compute information on the optimal way of traveling across the other
cells. We solve this problem by precomputing a set of routes, called fill-in, such that an
optimal ps-pt-journey can always be found using only routes from the source cell, the target
cell, and the fill-in. If an optimal journey requires routes from the fill-in, then it has to
enter and leave the fill-in by transferring between trips at cut stops. This observation can be
exploited for the fill-in computation itself. Consider an optimal journey with two transfers at
stops pu and pv. In this case, the sub-journey from pu to pv is either an optimal journey
by itself or can be replaced with an optimal one, without impairing the original journey.
Therefore, it suffices for the fill-in computation to compute all optimal journeys between cut
stops and add the involved routes to the fill-in.

A straightforward implementation of the fill-in computation performs an unrestricted
rRAPTOR query on the entire public transit network from every cut stop of the partition.
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However, this may be too time consuming in practice. In what follows we propose several
techniques that exploit the partition of the public transit network in order to speed up the
fill-in computation. Our first variant of the fill-in computation performs one rRAPTOR
query from every cut stop pu, restricted to the cells that pu is part of. Essentially, we are
using our accelerated query that only uses the source and target cells as active cells, in
order to accelerate the fill-in computation itself. Since at that time the fill-in is not yet
fully computed, the result of these queries may not be optimal (since optimal journeys may
require routes that are not part of the active cell), causing the algorithm to add superfluous
routes to the fill-in. Note that this has no effect on the optimality of the query algorithm.

In the second variant of the fill-in computation we go a step further and restrict the
rRAPTOR queries to one cell at a time. This requires us to run rRAPTOR multiple times
from every cut stop, once for every cell containing a route the cut stop is a part of. As before,
this restriction can introduce unnecessary routes to the fill-in, at the benefit of reducing the
computation time.

In order to reduce the overhead of the preprocessing even further, we have to analyze
which routes have to be part of the fill-in. We already know that an optimal ps-pt-journey
can contain routes that are not contained in the cells of ps and pt. Furthermore, we know
that the first route of the journey has to be contained in one of the cells of ps. This is because
by definition the cells containing ps also contain all routes reachable from ps. Therefore, it
suffices to add a route to the fill-in, if they are part of an optimal journey that first uses
a route from an active cell and then connects two border stops. We now show how we
can exploit this fact during the fill-in computation. Normally, rRAPTOR starts with an
initialization phase, where all departure times of trips at the source stop are collected [16].
We modify the collection phase in order to reflect the fact that another trip has to be used
prior to the fill-in. When computing the fill-in for a cut stop pu restricted to cell c, we collect
all arrival times of trips that are not part of routes in c. Afterwards we proceed with a
standard rRAPTOR execution.

4.3 Queries
Finally, we introduce our query algorithm, a variant of RAPTOR that is restricted to the
cells of the source and target cells, as well as the fill-in. We present three different variants
of the algorithm that differ in their representation of the fill-in. These variants implement
different trade-offs between memory usage and query performance.

The simplest representation of the fill-in requires one boolean flag for every route and
every stop event in the public transit network. The flag of a stop event indicates whether
the stop event is part of the fill-in, i.e., it is required to travel between border stops of the
partition or not. If any flag of a stop event belonging to a route is set, then the flag of this
route is also set.

Our first variant of the accelerated query completely ignores stop events if they are not
flagged. For the most parts, the search is identical to standard RAPTOR. However, if the
flag of a route is not set and the route is not part of the source or target cell, then the
algorithm does not scan the route at all. Additionally, routes that are not part of the source
or target cell, are only scanned partially. During the scan of these routes, stop events that
are not marked are ignored. In particular, this means that scanning an unmarked stop event
neither updates the arrival time of the associated stop, nor changes the trip that is scanned.
Unfortunately, unmarked stop events still need to be scanned in order to determine if they
are flagged or not, which is time-consuming.

Our second variant improves on this by introducing skip-lists. The basic idea of the
skip-list is to provide for every stop event an offset that indicates the number of stop events
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that can be skipped to reach the next marked stop event. In order to reduce the memory
usage of the skip lists, we do not use one offset value per stop event. Instead, we use one
offset value for every stop and every trip that is part of a route. The skip-list entry for
stop pu regarding route r specifies the index of the next stop pv in r, such that a trip exists
where stop which corresponds to pv is marked. Similarly, the skip-list entry for a trip t of
route r specifies the index of the latest trip t′ before t, such that t′ contains at least one
marked stop event. The skip-lists are used when scanning the stop events of a route, allowing
to skip entire parts of the route. While this approach scans less data than our first approach,
it is still not very cache-friendly.

Finally, we present an even more efficient way of scanning fill-in routes, at the expense of
an increased memory usage. For this variant we simply copy all trips that contain at least
one marked stop event. From the copied trips we remove all stop events that are not marked,
resulting in pure fill-in trips. Pure fill-in trips that serve the same sequence of stops are
again aggregated like for normal RAPTOR into pure fill-in routes. Afterwards, our query
algorithm only needs to scan routes that are either part of the source or target cell, or are
pure fill-in routes.

A special case of the query algorithm occurs if the source or target stop are cut stops of
the partition. In this case the cell of source or target stop is not defined. A straightforward
solution for this problem is to combine all cells adjacent to the source or target stop. The
algorithm can then proceed with the combined cells as source or target cell. However, we do
not need to scan the source (or target) cell in case we use standard rRAPTOR queries to
compute the fill-in. In this case we already know that all stop events are marked that are
required to travel from the cut stop to another cell. Note that cut stops most probably are
important stops, and queries between important stops are thus accelerated even more by our
approach.

Restricted Walking

In the original publication of RAPTOR [16], the footpaths are assumed to be transitively
closed, forming clusters of full cliques between stops. This enables RAPTOR to scan them
as part of the same round, possibly improving the earliest arrival times associated in the
respective round.

On realistic inputs, however, computing the transitive closure of all footpaths is often
not feasible, as this would result in too many footpaths. Therefore, we propose to restrict
walking between trips as follows. After scanning the routes in round i, we introduce an extra
intermediate round i′ (with its own dedicated set of earliest arrival time labels). Round i′

scans all footpaths incident to all stops whose earliest arrival improved in round i in arbitrary
order by reading labels from round i and writing labels to round i′. The subsequent regular
round i + 1 then reads its labels from round i′ instead of i. The domination rule for target
pruning [16] is adjusted, accordingly.

5 Experiments

We implemented our algorithms in C++ using LLVM 8.1 with full optimization. All
experiments were conducted on a 2015 15-inch MacBook Pro with a quad core Intel Core i7
CPU and 16GiB of 1600MHz DDR-3 RAM running macOS 10.12.5. We use h-metis 1.5 [25]
as hypergraph partitioner. All runs are sequential.

We consider two realistic inputs of country size: the national networks of Nether-
lands (datahub.io/dataset/gtfs-nl) and Switzerland (gtfs.geops.ch). Both networks
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Figure 1 The routes of the Netherlands (left) and Switzerland (right) networks partitioned
into 8 cells, each. Each color represents a different cell of the partition and the black circles indicate
cut stops between routes of different cells.

contain local and long-distance transport. We extract the timetable of one week between
June 4, 2016 and June 9, 2016. The footpath data for these two inputs is incomplete.
Hence, we also artificially generate footpaths by connecting all pairs of stops that are closer
than 200m by straight-line distance and a walking speed of 3.6 kph. Note that in contrast
to some prior work [16, 18, 12], our footpaths are not required to form clusters of full
cliques. The resulting network of Netherlands has 54,500 stops, 618,961 trips, 12,989 routes,
and 13,231,954 stop events. The network of Switzerland has 25,607 stops, 1,076,662 trips,
16,122 routes, and 12,733,856 stop events.

Hypergraph Partitioning

The first stage of our preprocessing is to compute a partition on the routes hypergraph (cf. Sec-
tion 4.1.2). The hypergraphs resulting from our networks have 78,007 vertices and 54,500 hy-
peredges (Netherlands), and 30,839 vertices and 25,607 hyperedges (Switzerland). In addition,
we use the number of stop events in a route as weight for the corresponding vertex in the hy-
pergraph, vertices corresponding to a transfer have a constant weight of 0. Hyperedges (stops)
are weighted with the logarithm of the number of stop events at the stop. We chose those
weights because they yielded the best partitions during preliminary experiments. We then
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Table 1 Figures for the partitioning and fill-in computation stages on 2, 4, 8, and 16 cells. We
report the number of cut stops (# cut), the balance ratio of the largest to the smallest cell in terms
of stop events (bal.), the number of routes in the fill in (% fn. rts), the number of stop events in the
fill-in (% fn. ses), and the total running time of hmetis and the fill-in computation ([m:s]).

Netherlands Switzerland

#cells # cut bal. % fn. rts % fn. se [m:s] # cut bal. % fn. rts % fn. se [m:s]

2 365 1.7 31.5 5.3 67:32 155 1.7 19.1 1.5 13:02
4 589 2.1 40.7 7.3 82:53 345 2.0 32.0 3.5 20:58
8 1,072 3.7 54.7 13.0 113:45 545 3.6 42.6 6.1 27:19

16 1,980 6.2 68.2 22.1 203:34 907 6.1 52.5 14.4 36:51

run h-metis [25] on these hypergraphs with the following parameters: balancing (UBfactor)
set to 15, number of runs (Nruns) set to 20, hybrid first choice (HFC) vertex grouping
scheme (CType), Fiduccia-Mattheyses (FM) refinement scheme (RType), and V -cycle refine-
ment on the final solution of each bisection step (VCycle), see [25] for a detailed explanation
of the parameters.

Table 1 shows figures of the partitioning stage for 2, 4, 8, and 16 cells (Figure 1 shows the
partition into 8 cells for both our inputs). For each instance, we report the number of cut
hyperedges (# cut) and the balance of the partition (bal.) as the ratio between the largest
and the smallest cell in terms of stop events. The other columns in the table are related to
the fill-in computation and are discussed later.

We observe that by increasing the number of cells, the size of the cut as well as the
imbalance between the cells grows. While the former is natural, the latter may be surprising
at first. However, the sizes of metropolitan areas (which are typically put in different cells)
differ substantially.

Fill-in Computation

The second stage of our preprocessing involves the computation of the fill-in based on the
output of the partitioning stage. In our experiment we use the following fill-in algorithm
from Section 4.2: for each cut stop, we run an rRAPTOR query, restricted to the cells that
are incident to the respective cut stop.

Table 1 shows figures on both our networks and for partitions of size 2, 4, 8, and 16 cells.
We report the number of routes in the fill-in as a percentage of the total number of routes in
the network (%,fn. rts). Recall that for correctness, not necessarily all trips of each route are
required to be part of the fill-in. We therefore also report the number of stop events (again
as a percentage) of the fill-in (% fn. se). Finally, we also report the running time for the
entire preprocessing (partitioning and fill-in computation) in minutes and seconds. Note
that the partitioning stage takes only a small fraction of the total reported time (less than a
couple of minutes).

We observe that with increasing number of cells, the fraction of routes in the fill-in also
grows, which is expected. However, the fraction of required stop events is much lower, a
factor 4.2 on Netherlands and even a factor 7 on Switzerland (both on 8 cells). This confirms
that only a small subset of the trips on the selected routes is actually important for the
fill-in. Regarding running time, our preprocessing takes between 67 and 203 minutes on
Netherlands, and between 13 minutes and 36 minutes on Switzerland. Note that while our
reported running times are sequential, we would expect excellent speedups in a parallel
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Table 2 Query performance figures of HypRAPTOR and RAPTOR for varying number of cells.
We report the number rounds (# rnd), the number of scanned routes (# rts), the percentage of
scanned routes in the fill-in (% fn. rts), and the average running time in milliseconds ([ms]). Each
figure is obtained by taking the average over 10,000 queries with origin and destination stops picked
uniformly at random.

Netherlands Switzerland

Algorithm #cells # rnd # rts % fn. rts [ms] # rnd # rts # fn. rts [ms]

RAPTOR — 10.0 28,021 — 29.3 9.1 29,090 — 19.3

HypRAPTOR-f 2 9.8 24,592 7.5 25.1 9.1 25,267 4.2 16.7
HypRAPTOR-sk 2 9.8 24,592 7.5 25.2 9.1 25,267 4.2 16.7
HypRAPTOR-cr 2 9.8 24,666 7.8 25.0 9.1 25,306 4.4 16.8

HypRAPTOR-f 4 9.6 21,053 29.6 21.4 8.9 19,474 23.4 12.9
HypRAPTOR-sk 4 9.6 21,053 29.6 21.3 8.9 19,474 23.4 13.1
HypRAPTOR-cr 4 9.6 21,313 30.4 19.3 8.9 19,654 24.1 11.8

HypRAPTOR-f 8 9.7 19,821 56.4 21.0 8.7 17,056 48.1 12.0
HypRAPTOR-sk 8 9.7 19,821 56.4 21.6 8.7 17,056 48.1 11.9
HypRAPTOR-cr 8 9.7 20,278 57.3 17.5 8.8 17,405 49.1 9.3

HypRAPTOR-f 16 9.8 20,521 76.7 22.4 8.7 17,294 72.3 13.7
HypRAPTOR-sk 16 9.8 20,521 76.7 23.9 8.7 17,294 72.3 14.5
HypRAPTOR-cr 16 9.9 21,085 77.3 18.2 8.7 17,799 73.0 10.1

implementation, as the individual rRAPTOR queries are independent and could be easily
run in parallel, or even distributed.

Regarding space consumption, the only information we need to store is the cell each route
belongs to as well as one bit for each stop event. This is only a small fraction of the size of
the input data.

Query Performance

Given the partition and fill-in, we now evaluate the query performance of our algorithms.
Table 2 reports figures for the basic RAPTOR algorithm compared to three variants of
HypRAPTOR: HypRAPTOR-f checks a flag associated with each stop event (of fill-in routes)
to determine whether they are relevant; HypRAPTOR-sk uses skip lists to skip over ranges of
irrelevant stop events more quickly; and HypRAPTOR-cr uses a compressed representation
for the fill-in routes by completely rebuilding them based on the relevant stop events.

The figures in the table are obtained by running 10,000 queries between stops selected
uniformly at random. We report the average number of rounds (# rnd), the average number
of scanned routes (# rts), where applicable the percentage of the scanned routes that are in
the fill-in (% fn. rts), and finally the average running time per query in milliseconds.

We observe that on both instances, HypRAPTOR scans significantly fewer routes in total,
when compared to the basic RAPTOR implementation. For example, on 8 cells the amount
decreases by 38% on Netherlands and 67% on Switzerland. Recall, that HypRAPTOR scans
all routes in the cells containing the origin or destination stop as well as the routes contained
in the fill-in. While for HypRAPTOR-f and HypRAPTOR-sk the number of scanned routes
is the same by definition, HypRAPTOR-cr may scan slightly more. Building the compressed
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routes in HypRAPTOR-cr may split some of the original routes, if the sequences of stops
at which stop events are marked vary. This may result in a slightly higher number of total
routes in the network.

In terms of running time, the best performance is achieved with HypRAPTOR-cr on 8
cells, resulting in speedups of 1.7 on Netherlands and 2.1 on Switzerland. Note that an
upper bound on the expected speedup is roughly 4 when using a partition with 8 cells, as the
algorithm must always look at the two origin and destination cells in full (plus the fill-in).
When using only cut stops as origin and destination (not shown in the table), the speedups
are 2.6 (Netherlands) and 6.3 (Switzerland). Partitions with higher number of cells than 8
do not seem to pay off on our instances, as they tend to cut through dense metropolitan
areas, which leads to a significant increase of the fill-in size (cf. Table 1). However, on
larger-scale instances with more metropolitan areas (such as the public transport network of
multiple countries or a continent), we expect a higher number of cells to yield the best query
performance.

Comparison

Comparing our results to existing ones from the literature is hard since there is no publicly
available benchmark instance. Even worse, many large instances are actually proprietary [32,
2]. Comparing with the other two techniques that also employ partitioning, we see these
tendencies: ACSA [32] has a speedup of a factor of 30 over regular CSA, but the evaluated
instance is larger (the full network of Germany). More importantly, ACSA was only evaluated
in a single-criterion scenario, which is less relevant for practical applications. Scalable
Transfer Patterns [4] yields query times faster than ours (when scaling for network size) but
preprocessing effort is higher, too. To summarize, our speedups are lower than those reported
in the literature, but we focus on bi-criteria optimization and evaluate only smaller networks.
As we already mentioned the best speedup we can achieve when using k cells is roughly k/2.
On larger networks with more cells, we therefore expect to achieve greater speedups than
the ones reported in our experiments. In fact, preliminary results on our own proprietary
networks confirm this.

6 Conclusion

In this paper we presented a novel partitioning-based speedup technique for the RAPTOR
algorithm. Unlike previous algorithms—which usually partition the set of stops—we instead
compute a partition of the routes by employing a hypergraph partitioning algorithm on a
carefully chosen hypergraph, where vertices correspond to routes and hyperedges to stops.
We also showed how RAPTOR can be adapted to skip over trips that are neither necessary
for travel inside the source and target cells nor for travel between cut stops. Our experiments
on country-sized networks showed reasonable speedups, and we argued that by increasing
the network size, the expected speedups would further grow.

Regarding future work, we are interested in computing better partitions, probably by
an algorithm tailored to our scenario. In road networks, a multi-level partition boosts
performance significantly and we are interested in seeing whether this is also true for public
transit networks. Since our observations indicate that for country-sized networks only a
small number of cells exhibits reasonable speedups, we expect multi-level partitions to be
most useful for continental-sized networks. Finally, we also want to extend our approach
beyond bi-criteria optimization.

ATMOS 2017
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