
Brief Announcement: A Persistent Lock-Free
Queue for Non-Volatile Memory∗

Michal Friedman1, Maurice Herlihy2, Virendra Marathe3, and
Erez Petrank4

1 Technion, Haifa, Israel
michal.f@cs.technion.ac.il

2 Brown University, Providence, RI, USA
mph@cs.brown.edu

3 Oracle Labs, Redwood Shores, CA, USA
virendra.marathe@oracle.com

4 Technion, Haifa, Israel
erez@cs.technion.ac.il

Abstract
Non-volatile memory is expected to coexist with (or even displace) volatile DRAM for main
memory in upcoming architectures. As a result, there is increasing interest in the problem
of designing and specifying durable data structures that can recover from system crashes. Data-
structures may be designed to satisfy stricter or weaker durability guarantees to provide a balance
between the strength of the provided guarantees and performance overhead. This paper proposes
three novel implementations of a concurrent lock-free queue. These implementations illustrate
the algorithmic challenges in building persistent lock-free data structures with different levels of
durability guarantees. We believe that by presenting these challenges, along with the proposed
algorithmic designs, and the possible levels of durability guarantees, we can shed light on avenues
for building a wide variety of durable data structures. We implemented the various designs and
evaluate their performance overhead compared to a simple queue design for standard (volatile)
memory.

1998 ACM Subject Classification E.1 Data Structures, D.4.2 Storage Management, D.1.3 Con-
current Programming

Keywords and phrases Non-volatile Memory, Concurrent Data Structures, Non-blocking, Lock-
free

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.50

1 Introduction

Memory is said to be non-volatile if it does not lose its contents after a system crash. Non-
volatile memory is soon expected to co-exist with or even displace volatile DRAM for main
memory (but not caches or registers) in many architectures. As a result, there is increasing
interest in the problem of designing and specifying durable data structures, that is, data
structures whose state can be recovered after a system crash.

A major challenge in designing durable data structures is that caches and registers are
expected to remain volatile. Thus, the state of main memory following a crash may be

∗ This work was supported by the United States - Israel Binational Science Foundation (BSF) grant No.
2012171. Maurice Herlihy was supported by NSF grant 1331141.

© Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 50; pp. 50:1–50:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


50:2 Brief Announcement: A Persistent Lock-Free Queue for Non-Volatile Memory

inconsistent, missing all previous writes to the data structure that were present in the cache,
but not yet written into the main memory. Dealing with arbitrary missing words after a
crash requires non-trivial data structure algorithms that make sure key data does get written
to main memory (without incurring too much overhead), so that restoration of the data
structure to a consistent state becomes possible.

It would be interesting to know if it is possible to build libraries of high performance
persistent data structures that are heavily optimized using ad-hoc techniques informed by
the data structure architecture and semantics. Previous work focuses on B-tree implementa-
tions. The interest in B-trees is natural given their prevalence in file system and database
implementations. However, other foundational data structures are also used in application
domains that care about persistence; e.g. hash tables in key-value stores, persistent message
queues, etc. Since traditional storage media have been block-based, all these applications
persist these data structures by marshaling them to a block-based format. Doing so involves
non-trivial overhead that was dwarfed by the high cost of disk access. As a result, the
in-memory representation and on-disk (-SSD) representation of these data structures are
quite different. Byte-addressable persistent memory can be used to create a unified persistent
representation. As far as we know, there is no previous work that attempts to optimize these
data structures for persistent memory. Furthermore, none of the above works attempt to
build highly concurrent, nonblocking persistent data structures.

In order to strive for high-performance crash-resilient software on non-volatile memories,
we propose to look at modern highly-concurrent data structures, such as the ones used in
java.util.concurrent, and enhance them to work with non-volatile memories. Designing such
concurrent data structures for upcoming non-volatile memories requires dealing with the
challenge of high concurrency and non-volatile durability combined.

We study these challenges by designing a durable version of the lock-free concurrent
queue data structure of Michael and Scott [2], which also serves as the base algorithm for
the queue in java.util.concurrent. This concurrent data structure is complicated enough to
demonstrate the challenges that concurrent durable data structures raise, and simple enough
to demonstrate solutions for these challenges.

Recently various definitions were proposed to formalize durability. In this paper we adopt
and work with the definition of linearizable durability by Izraelevitz et al. [1]. Informally,
durable linearizability guarantees that the state of a data structure following a crash reflects
a consistent subhistory of the operations that actually occurred. This subhistory includes
all operations that completed before the crash, and may or may not include operations in
progress when the crash occurred. The main tool for achieving durable linearizability for a
concurrent data structure is the use of explicit instructions that force volatile cashed data
to be written to non-volatile memory. While such persistence barrier instructions enforce
correctness, they also carry a performance cost and their use should be minimized.

An alternative, weaker condition, is buffered durable linearizability. Informally, this
condition guarantees that the state of the object following a crash reflects a consistent
subhistory of the operations that actually occurred, but this subhistory need not include all
operations that completed before the crash.

The first main contribution of this paper is the proposal of three novel designs of durable
concurrent queues, extending the original Michael-Scott queue for use with non-volatile
memory. It is easy to obtain a durable linearizable queue by adding many persistence barrier
operations automatically. But, in general, the obtained performance can be very low. In this
paper, we attempt to minimize the overhead and still achieve robustness to crashes. The
first implementation, denoted durable queue, provides durable linearization. The second



M. Friedman, M. Herlihy, V. Marathe, and E. Petrank 50:3

implementation, denoted log queue, provides durable linearization, as well as an additional
property that we discuss next. The third implementation, denoted relaxed queue, provides
buffered durable linearizability.

When crashes occur during an execution, it is often difficult to tell which operations were
executed and which operations failed to execute when a crash occurs. Durable linearizability
does not provide a mechanism to determine whether an operation that executed concurrently
with a crash was eventually executed. Without the ability to distinguish completed operations
from lost operations, it would be difficult to recover the entire program, because in practice
it is often important to execute each operation exactly once. In this paper we enable a more
robust use of the queue, by defining a new (natural) notion of detectable execution. A data
structure provides detectable execution if it is possible to tell at the end of a recovery phase
whether a specific operation was executed. The log queue provides durable linearization and
detectable execution. If the program that uses the queue follows a similar procedure for
detecting execution, then it is possible to tell how much of the execution has completed on
recovery from a crash, and program recovery at higher level becomes possible.

2 Measurements

We have implemented the three queue designs and evaluated their performance by comparing
them one against the other and also against the original MS queue. We ran measurements
on an 8-cores Intel Xeon D-1540 2.6GHz.

Above, we depict the throughput of five queues: MSQ is the Michel and Scott’s queue,
Durable is the durable queue, Log is the queue that can detect which operations completed
before the crash, and Relaxed is the queue that only guarantees a view of a prefix of the
operations executed before the crash. We ran Relaxed with an additional operation sync
that makes all history durable once every 100 or 1000 operations, denoted Relaxed100
and Relaxed1000. As expected, implementations that provide durable linearization have a
noticeable cost, and interestingly, providing detectable execution does not add a significant
overhead and may be worthwhile in this case. In addition, implementations that provides
only buffered durable linearizability obtain good performance when the sync() method is
invoked infrequently.

References
1 Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent

memory objects under a full-system-crash failure model. In Distributed Computing - 30th
International Symposium, DISC, pages 313–327, 2016.

DISC 2017



50:4 Brief Announcement: A Persistent Lock-Free Queue for Non-Volatile Memory

2 Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 267–275, 1996.


	Introduction
	Measurements

