
A New Balanced Subdivision of a Simple Polygon
for Time-Space Trade-off Algorithms∗†

Eunjin Oh1 and Hee-Kap Ahn2

1 Department of Computer Science and Engineering, POSTECH, Korea
jin9082@postech.ac.kr

2 Department of Computer Science and Engineering, POSTECH, Korea
heekap@postech.ac.kr

Abstract
We are given a read-only memory for input and a write-only stream for output. For a pos-
itive integer parameter s, an s-workspace algorithm is an algorithm using only O(s) words of
workspace in addition to the memory for input. In this paper, we present an O(n2/s)-time
s-workspace algorithm for subdividing a simple polygon into O(min{n/s, s}) subpolygons of
complexity O(max{n/s, s}).

As applications of the subdivision, the previously best known time-space trade-offs for the
following three geometric problems are improved immediately: (1) computing the shortest path
between two points inside a simple n-gon, (2) computing the shortest path tree from a point
inside a simple n-gon, (3) computing a triangulation of a simple n-gon. In addition, we improve
the algorithm for the second problem even further.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Time-space trade-off, simple polygon, shortest path, shortest path tree

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.61

1 Introduction

In the algorithm design for a given task, we seek to achieve an efficient algorithm with respect
to the time and space complexities. However, one cannot achieve both goals at the same
time in many cases: one has to use more space to achieve a faster algorithm and spend
more time to reduce the space consumption of the algorithm. Therefore, one has to make
a compromise between the running time and the space consumption, considering the goal
of the task and the system resources where the algorithm is performed. With this reason,
a number of time-space trade-offs were considered even as early as in 1980s. For example,
Frederickson [7] presented optimal time-space trade-offs for sorting and selection problems
in 1987. After this work, a significant amount of research has been done for time-space
trade-offs in the design of algorithms.

The model we consider in this paper is formally described as follows. An input is given
in a read-only memory. For a positive integer parameter s which is determined by users,
we are allowed to use O(s) words as workspace in addition to the memory for input. We
assume that a word is large enough to store a number and a pointer. While processing input,

∗ A full version of the paper is available at [10], https://arxiv.org/abs/1709.09932.
† This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the SW Starlab

support program(IITP-2017-0-00905) supervised by the IITP(Institute for Information & communications
Technology Promotion)

© Eunjin Oh and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 61; pp. 61:1–61:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.61
https://arxiv.org/abs/1709.09932
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


61:2 Time-Space Trade-offs for Shortest Paths in a Simple Polygon

we write output to a write-only stream without repetition. An algorithm designed in this
setting is called an s-workspace algorithm.

Most of previous fundamental algorithms and applications assume that they can use
workspace without much constraint in size. Typically, they use workspace of at least the size
of input. Although the memory is relatively cheap these days, this is not always the case as
the amount of data collected and used by various applications has significantly increased
over the last years and the memory resource available in the system is relatively smaller
compared to the amount of data they use. This constraint implies some restriction in using
workspace for the applications.

We assume that input is given in a read-only memory under a random-access model. The
assumption on the read-only memory has been considered in applications where the input is
required to be retained in its original state or more than one program may access the input
simultaneously. Many time-space trade-offs for fundamental problems have been studied
under this read-only assumption.

In this paper, we consider time-space trade-offs for constructing a few geometric structures
inside a simple polygon: the shortest path between two points, the shortest path tree from
a point, and a triangulation of a simple polygon. With linear-size workspace, optimal
algorithms for these problems are known. The shortest path between two points and the
shortest path tree from a point inside a simple n-gon can be computed in O(n) time [8]. A
triangulation of a simple n-gon can also be computed in O(n) time [5].

For a positive integer parameter s, the following s-workspace algorithms are known.
The shortest path between two points inside a simple polygon: The first non-
trivial s-workspace algorithm for computing shortest paths between any two points in a
simple n-gon was given by Asano et al. [2]. Their algorithm consists of two phases. In the
first phase, they subdivide the input simple polygon into O(s) subpolygons of complexity
O(n/s) in O(n2) time. In the second phase, they compute the shortest path between the
two points in O(n2/s) time using the subdivision. In the paper (and the talk by Asano
in a workshop in honor of his 65th birthday during SoCG 2014), they asked whether
the first phase can be avoided and the running time can be improved to O(n2/s). This
problem is still open while there are several partial results.
Har-Peled [9] presented an s-workspace algorithm which takes O(n2/s+n log s log4(n/s))
expected time. Their algorithm takes O(n2/s) expected time for the case that s =
O(n/ log2 n). For the case that the input polygon is monotone, Barba et al. [4] presented
an s-workspace algorithm which takes O(n2/s + (n2 logn)/2s) time. Their algorithm
takes O(n2/s) time for log logn ≤ s < n.
The shortest path tree from a point inside a simple polygon: Aronov et al. [1]
presented an s-workspace algorithm for computing the shortest path tree from a given
point. Their algorithm reports the edges of the shortest path tree without repetition in
an arbitrary order in O((n2 logn)/s+ n log s log5(n/s)) expected time.
A triangulation of a simple polygon: Aronov et al. [1] presented an s-workspace
algorithm for computing a triangulation of a simple n-gon. Their algorithm returns
the edges of a triangulation without repetition in O(n2/s+ n log s log5 (n/s)) expected
time. Moreover, their algorithm can be modified to report the resulting triangles of a
triangulation together with their adjacency information in the same time if s ≥ logn.
For a monotone n-gon, Barba et al. [4] presented an (s logs n)-workspace algorithm for
triangulating the polygon in O(n logs n) time for a parameter s ∈ {1, . . . , n}. Later,
Asano and Kirkpatrick [3] showed how to reduce the workspace to O(s) words without
increasing the running time.



E. Oh and H.-K. Ahn 61:3

1.1 Our Results
We present an s-workspace algorithm to subdivide a simple polygon with n vertices into
O(min{n/s, s}) subpolygons of complexity O(max{n/s, s}) in O(n2/s) deterministic time.
We obtain this subdivision in three steps. First, we choose every max{n/s, s}th vertex
of the simple polygon which we call partition-vertices. In the second step, for every pair
of consecutive partition-vertices, we choose O(1) vertices which we call extreme-vertices.
Then we draw the vertical extensions from each partition-vertex and each extreme-vertex,
one going upwards and one going downwards, until the extensions escape from the simple
polygon. These extensions subdivide the polygon so that each subpolygon has complexity of
O(max{n/s, s}) or has a spiral-like structure. In the third step, we subdivide each spiral-like
structure into subpolygons of complexity O(max{n/s, s}). Then we show that the resulting
subdivision has the desired complexity.

By using this subdivision method together with new ideas, we improve the running times
of the following three problems without increasing the size of the workspace.

The shortest path between two points inside a simple polygon: We can compute
the shortest path between any two points inside a simple n-gon in O(n2/s) deterministic
time using O(s) words of workspace. The previously best known s-workspace algorithm [9]
takes O(n2/s+ n log s log4(n/s)) expected time.
The shortest path tree from a point inside a simple polygon: We can compute
the shortest path tree from a given point inside a simple n-gon in O(n2/s+ (n2 logn)/sc)
expected time for any constant c > 0. The previously best known s-workspace algorithm [1]
takes O((n2 logn)/s+ n log s log5 (n/s)) expected time. The algorithm in [1] computes
the shortest path between two points as a subprocedure. If one uses our shortest path
algorithm for this subprocedure, the algorithm takes O((n2 logn)/s) expected time.
A triangulation of a simple polygon: The previously best known s-workspace
algorithm [1] takes O(n2/s+ n log s log4(n/s)) expected time. This algorithm computes
the shortest path between two points as a subprocedure. If their algorithm uses our
shortest path algorithm for this subprocedure, it takes O(n2/s) deterministic time.

All missing details and proofs can be found in the full version of this paper [10].

2 Preliminaries

Let P be a simple polygon with n vertices. Let v0, . . . , vn−1 be the vertices of P in clockwise
order along ∂P . The vertices of P are stored in a read-only memory in this order. For a
subpolygon S of P , we use ∂S to denote the boundary of S and |S| to denote the complexity
of S. For any two points p and q in P , we use π(p, q) to denote the shortest path between
p and q contained in P . We assume that no two distinct vertices of P have the same
x-coordinate. We can avoid this assumption by using a shear transformation [6, Chapter 6].

Let v be a vertex of P . We consider two vertical extensions from v, one going upwards
and one going downwards, until they escape from P for the first time. A vertical extension
from v contains no vertex of P other than v due to the assumption that no two distinct
vertices of P have the same x-coordinate. We call the point of ∂P where an extension from
v escapes from P for the first time a foot point of v. Note that a foot point of a vertex might
be the vertex itself. We can compute (report) the foot points of all vertices of P in O(n2/s)
time using O(s) words of workspace.

I Lemma 1. We can report the foot points of all vertices of P in O(n2/s) deterministic
time using O(s) words of workspace.

ISAAC 2017



61:4 Time-Space Trade-offs for Shortest Paths in a Simple Polygon

`0 `1`2

γ

γ̄

p1

p2

u1

u2

u3

(a) (b)

h

v0
`3`4

h′

u4

Figure 1 (a) Two chains γ and γ̄ connecting two vertices p1 and p2. The set Vγ = {u2, u4}. The
(l,c)-extreme-vertex of γ is u2, and the (l,cc)-extreme-vertex of γ is u4. The (r,c)-extreme-vertex of
γ̄ is u1, and the (r,cc)-extreme-vertex of γ̄ is u3. (b) In the third step, we compute h for (`0, `1, `2)
and h′ for (`2, `3, `4).

In the following, we compute the extensions from some vertices of P . These extensions
form a subdivision of P . We call each such extension a wall, and each subpolygon in the
subdivision a cell. Given an edge of a cell, we can traverse the boundary of the cell starting
from the given edge in time linear to the complexity of the cell once we store the walls of the
subdivision and their endpoints in clockwise order along ∂P in the workspace.

3 Balanced Subdivision of a Simple Polygon

In this section, we present an s-workspace algorithm to subdivide a simple polygon P into
O(min{n/s, s}) subpolygons of complexity O(max{n/s, s}) using O(min{n/s, s}) walls. To
do this, we first present an s-workspace algorithm to subdivide P into O(n/4) subpolygons
of complexity O(4) using O(n/4) walls in O(n2/s) time, where 4 is a positive integer with
min{n/s, (s logn)/n} ≤ 4 ≤ n which is determined by s. Since n/s ≤ 4, we have n/4 ≤ s.
Thus, we can keep all such walls in the workspace of size O(s). We will set the value of 4 in
Theorem 10 so that we can obtain a subdivision of our desired complexity.

The first step: Subdivision by partition-vertices. We first consider every 4th vertex of P
from v0 in clockwise order, that is, v0, v4, v24, . . . , vbn/4c4. We call them partition-vertices.
The number of partition-vertices is O(n/4). We compute the foot points of each partition-
vertex, which can be done for all partition-vertices in O(n2/s) time in total by Lemma 1. We
sort the foot points along ∂P in O((n/4) log(n/4)) time, which is O(n2/s) by the fact that
4 ≥ (s logn)/n. We store them together with their vertical extensions using O(n/4) = O(s)
words of workspace.

The second step: Subdivision by extreme-vertices between two partition-vertices. The
(l,c)-extreme-vertex and (l,cc)-extreme-vertex of a polygonal curve γ ⊂ ∂P are defined as
follows. Let Vγ be the set of all vertices of γ both of whose foot points are on ∂P \γ and whose
extensions lie locally to the left of γ. The (l,c)-extreme-vertex (or the (l,cc)-extreme-vertex)
of γ is the vertex in Vγ defining the first extension we encounter while we traverse ∂P in
clockwise (or counterclockwise) order from v0. See Figure 1(a). Similarly, we define the
(r,c)-extreme-vertex and (r,cc)-extreme-vertex of γ. In this case, we consider the vertices of
γ whose extensions lie locally to the right of γ. We simply call the (l,c)-,(l,cc)-,(r,c)- and
(r,cc)-extreme-vertices extreme-vertices of γ. Note that γ may not have any extreme-vertex.



E. Oh and H.-K. Ahn 61:5

In the second step, we compute the extreme-vertices of each polygonal curve connecting
two consecutive partition-vertices along ∂P and containing no other partition-vertices. Then
we have O(n/4) extreme-vertices. We compute the foot points of all extreme-vertices and
store them together with their vertical extensions using O(n/4) = O(s) words of workspace
in O(n2/s) time using Lemma 1 and Lemma 2.

I Lemma 2. We can find the extreme-vertices of every polygonal curve connecting two
consecutive partition-vertices along ∂P and containing no other partition-vertices in O(n2/s)
total time using O(s) words of workspace.

The third step: Subdivision by a vertex on a chain connecting three extensions. After
applying the first and second steps, we obtain the subdivision induced by the extensions
from the partition- and extreme-vertices. Let S′ be a subpolygon in this subdivision. We
will see later in Lemma 4 that S′ has the following property: every chain connecting two
consecutive extensions along ∂S′, except for two of them, has no extreme-vertex. However,
it is still possible that S′ contains ω(1) extensions on its boundary. In this case, S′ has a
spiral-like structure due to the property of S′ mentioned above. See Figure 1(b). In the third
step, we subdivide each subpolygon further so that every subpolygon has O(1) extensions on
its boundary.

The boundary of S′ consists of vertical extensions and polygonal chains from ∂P whose
endpoints are partition-vertices, extreme-vertices, or their foot points. We treat the upper
and lower extensions defined by one partition- or extreme-vertex (more precisely, the union
of them) as one vertical extension.

For every triple (`, `′, `′′) of consecutive vertical extensions on ∂S′ such that `, `′ and `′′
appear on ∂S′ in clockwise order, we consider the part (polygonal curve) of ∂S′ from ` to `′′
in clockwise order (excluding ` and `′′). Let Γ be the set of all such polygonal curves. For
every γ ∈ Γ, we find a vertex v(γ) of ∂S′ \ γ such that one of its foot points lies in γ between
` and `′, and the other foot point lies in γ between `′ and `′′ if it exists. If there are more
than one such vertex v(γ), we choose an arbitrary one.

The extensions of v(γ) subdivide S′ into three subpolygons each of which contains one of
`, `′ and `′′. In other words, the extensions from v(γ) separate `, `′ and `′′. We can compute
v(γ) and their extensions for every γ ∈ Γ in O(|S′|2/s+4) time in total. See Figure 1(b).
The sum of |S′| over all subpolygons S′ is O(n) and the number of the subpolygons from
the second step is O(n/4) since we construct O(n/4) extensions in the first and second
steps. Therefore, we do this for all subpolygons in the subdivision from the second step in
O(n2/s+ n) = O(n2/s) time using O(s) words of workspace.

Analysis. We obtained O(n/4) vertical extensions in O(n2/s) time using O(s) words of
workspace. In the following, we show that these vertical extensions subdivide P into O(n/4)
subpolygons of complexity O(4). We call this subdivision the balanced subdivision of S. For
any two points a, b on ∂P , we use P [a, b] to denote the polygonal curve from a to b (including
a and b) in clockwise order along ∂P .

We use the technical lemmas (Lemma 3 to Lemma 6) to show that each subpolygon in
the final subdivision is incident to O(1) walls and has complexity of O(4). Then we obtain
Theorem 11 by setting a parameter 4.

I Lemma 3. Both P [a1, v] and P [v, a2] contain partition-vertices for any extension a1a2
from a vertex v constructed from any of the three steps such that P [a1, a2] contains v.

ISAAC 2017



61:6 Time-Space Trade-offs for Shortest Paths in a Simple Polygon

Let S be a subpolygon in the final subdivision and S′ be the subpolygon in the subdivision
from the second step containing S. We again treat two vertical extensions defined by one
vertex as one vertical extension. We label the extensions lying on ∂S as follows. Let `0
be the first extension on ∂S we encounter while we traverse ∂P from v0 in clockwise order.
We let `1, `2, . . . , `k be the extensions appearing on ∂S in clockwise order along ∂S from `0.
Similarly, we label the extensions lying on ∂S′ from `′0 to `′k′ along ∂S′ in clockwise order
such that `′0 is the first one we encounter while we traverse ∂P from v0 in clockwise order.
Then we have the following lemmas.

I Lemma 4. For any 1 ≤ i < k′, let a1a2 = `′i and b1b2 = `′i+1 such that a1, a2, b1 and b2
appear on ∂P (and ∂S′) in clockwise order. Then P [a2, b1] has no extreme-vertex.

I Lemma 5. For any 1 ≤ i < k − 1, one of `i, `i+1 and `i+2 is constructed in the third step.

I Lemma 6. The subpolygon S is incident to O(1) extensions constructed in the third step.

Proof. Consider an extension ` incident to S constructed in the third step. Let v be the
vertex defining the extension `. The boundary of S′ consists of the walls `′0, . . . , `′k′ and the
polygonal curves connecting two consecutive walls. Let ηi be the polygonal curve of ∂S′
connecting `′i and `′i+1 (excluding the walls) for 0 ≤ i < k′, and ηk′ be the polygonal curve
connecting `′k′ and `′0 (excluding the walls).

We also claim that there exist at most two vertices u ∈ η0 such that the foot points of u
are in ∂S′ \ η0 and the extension of u is incident to S. To see this, let u1, u2 ∈ η0 be such
vertices if they exist. Let h1 and h2 be the extensions from u1 and u2, respectively, incident
to S. One polygonal chain connecting h1 and h2 along ∂S (but not containing them in its
interior) is contained in η0 since u1 and u2 are in η0. The other polygonal chain along ∂S
does not intersect η0. This is because the foot points of u1 and u2 are not in η0, and both h1
and h2 are incident to S. Therefore, no other vertex in η0 with foot points in ∂S \ η0 has
extensions incident to S. This proves the claim. The same holds for ηk′ .

Therefore, there are at most four extensions on ∂S constructed in the third step: two of
them are extensions of vertices of η0 and the others are extensions of vertices of ηk′ . Thus
the lemma holds. J

Due to Lemma 5 and Lemma 6, the following corollary holds.

I Corollary 7. Every subpolygon in the final subdivision is incident to O(1) extensions.

I Lemma 8. Every subpolygon in the final subdivision has complexity of O(4).

Proof. Consider a subpolygon S in the final subdivision. By Corollary 7, the boundary
of S consists of O(1) vertical extensions and O(1) polygonal curves from the boundary of
P connecting two consecutive endpoints of vertical extensions of S. Each polygonal curve
from the boundary of P contains at most one partition-vertex in its interior. Otherwise,
a vertical extension intersecting the interior of S is constructed in the first or second step,
which contradicts that S is a subpolygon in the final subdivision. The number of vertices
between two consecutive partition-vertices is O(4). Therefore, S has O(4) vertices on its
boundary. J

Therefore, we have the following lemma.

I Lemma 9. Given a simple n-gon and a parameter 4 with min{n/s, (s logn)/n} ≤ 4 ≤ n,
we can compute a set of O(n/4) walls which subdivides the polygon into O(n/4) cells of
complexity O(4) in O(n2/s) time using O(s) words of workspace.



E. Oh and H.-K. Ahn 61:7

By setting a parameter, we can obtain the following theorem.

I Theorem 10. Given a simple n-gon, we can compute a set of O(min{n/s, s}) walls which
subdivides the polygon into O(min{n/s, s}) cells of complexity O(max{n/s, s}) in O(n2/s)
time using O(s) words of workspace.

Proof. We set 4 to n/s if s ≤
√
n. We set 4 to s, otherwise. J

4 Applications

Comparison with other subdivision methods. There are several subdivision methods which
are used for computing the shortest path between two points in the context of time-space
trade-offs. Asano et al. [2] presented a subdivision method that subdivides a simple polygon
into O(s) subpolygons of complexity O(n/s) using O(s) chords. Then they showed that the
shortest path can be computed in O(n2/s) time using O(s) words of workspace. However,
their algorithm takes O(n2) time to compute such a subdivision, which dominates the overall
running time. Thus, computing such a subdivision is a bottleneck of this problem. In fact,
in the paper, they asked whether such a subdivision can be computed more efficiently.

Instead of answering this question directly, Har-Peled [9] presented a way to subdivide a
simple polygon into subpolygons of slightly different complexity and show that this subdivision
has a structural property similar to the one for the subdivision of Asano et al. The subdivision
of Har-Peled consists of O(n/s) subpolygons of complexity O(s) using O(n/s) line segments.
The number of line segments defining this subdivision is larger than Ω(s), so they cannot
keep the whole subdivision in the workspace. Instead, they gave a procedure to find the
subpolygon containing a query point in O(n+ s log s log4(n/s)) expected time. They showed
that one can find the shortest path between two points using this subdivision in a way similar
to the algorithm by Asano et al.

The balanced subdivision that we propose has a structural property similar to the ones by
Asano et al. and Har-Peled, so we can use our balanced subdivision to compute the shortest
path between any two points. Moreover, our subdivision method has several advantages
compared to the ones of Asano et al. and Har-Peled: our balanced subdivision can be
computed faster than the one by Asano et al., and we can keep the whole subdivision in
the workspace unlike the one by Har-Peled. Due to the first advantage, ours can be used to
improve a number of algorithms. Due to the second advantage, we can solve a few other
application problems. A specific example is to compute the shortest path between a query
point and a fixed point after a preprocessing for the fixed point. See Lemma 17.

Computing the shortest path between two points. Given any two points p and q in P ,
we can report the edges of the shortest path π(p, q) in order in O(n2/s) deterministic time
using O(s) words of workspace. This improves the s-workspace randomized algorithm by
Har-Peled [9] which takes O(n2/s+ n log s log4(n/s)) expected time.

As mentioned earlier, our subdivision method has properties similar to the ones by Asano
et al. [2] and Har-Peled [9]. For s ≥

√
n, we have the subdivision consisting of O(n/s)

cells of complexity O(s). We use the algorithm by Har-Peled [9]. His algorithm takes
O(n(T (n) + n)/s) time, where T (n) is the time for finding the cell containing a query point.
In our case, T (n) = O(n), thus we can compute the shortest path between any two points in
O(n2/s) deterministic time.

For s <
√
n, we have the subdivision consisting of O(s) cells of complexity O(n/s). We

use the algorithm by Asano et al. [2] that computes the shortest path between any two points
assuming that we are given a subdivision consisting of O(s) cells of complexity O(n/s).

ISAAC 2017



61:8 Time-Space Trade-offs for Shortest Paths in a Simple Polygon

I Theorem 11. Given any two points in a simple polygon with n vertices, we can compute
the shortest path between them in O(n2/s) deterministic time using O(s) words of workspace.

Computing the shortest path tree from a point. The shortest path tree rooted at p is
defined to be the union of π(p, v) over all vertices v of P . Aronov et al. [1] gave an s-workspace
randomized algorithm for computing the shortest path tree rooted at a given point. It takes
O((n2 logn)/s+ n log s log5 (n/s)) expected time and uses the algorithm by Har-Peled [9] as
a subprocedure. If one uses Theorem 11 instead of Har-Peled’s algorithm, the running time
is improved to O((n2 logn)/s) expected time. In Section 5, we improve this algorithm even
further using our balanced subdivision.

Computing a triangulation of a simple polygon. Aronov et al. [1] presented an s-workspace
algorithm for computing a triangulation of a simple polygon by using the shortest path
algorithm by Har-Peled [9] as a subprocedure. By replacing this algorithm with ours in
Theorem 11, we can obtain a triangulation of a simple polygon in O(n2/s) deterministic
time using O(s) words of workspace.

I Theorem 12. Given a simple polygon with n vertices, we can compute a triangulation of
the simple polygon in O(n2/s) deterministic time using O(s) words of workspace.

5 Improved Algorithm for Computing the Shortest Path Tree

In this section, we improve the algorithm for computing the shortest path tree from a given
point even further to O(n2/s+ (n2 logn)/sc) expected time for an arbitrary constant c > 0.
We use the following lemma given by Aronov et al. [1].

I Lemma 13 ([1, Lemma 6]). For any point p in a simple n-gon, we can compute the shortest
path tree rooted at p in O(n2 logn) expected time using O(1) words of workspace.

We apply two different algorithms depending on the size of the workspace: s = O(
√
n) or

s = Ω(
√
n). In this paper, we consider the case of s = O(

√
n) only. The other case can be

handled analogously. A main difference is that we do not use Theorem 11 and Lemma 13 for
s = Ω(

√
n). Instead, we use the fact that we can store all edges of each cell in the workspace.

The details for the case of s = Ω(
√
n) can be found in the full version of this paper.

Given a point p ∈ P , we want to report all edges of the shortest path tree rooted at p. For
every wall a1a2 of the balanced subdivision, we first compute the edges of π(p, a1) ∪ π(p, a2)
crossing some walls in O(n2/s2) time in Section 5.1. We show that the number of such edges
is O(s) in total. These edges allow us to compute the shortest path π(p, q) for any point q of
P in O(n2/s2) time. We call an edge a w-edge if it crosses a wall.

Then we decompose P into subpolygons associated with vertices in Section 5.2. For each
subpolygon, we compute the shortest path tree rooted at its associated vertex inside the
subpolygon recursively. If a subpolygon satisfies one of stopping conditions (to be defined
later), we compute the shortest path tree inside the subpolygon in different ways. Because
of the space restriction, we restrict the depth of the recurrence to be a constant instead of
applying the procedure recursively until the problem size becomes O(s).

5.1 Computing w-edges
We compute all w-edges of the shortest paths between p and the endpoints of the walls. The
following lemma implies that there are O(s) such w-edges. For any three points x, y and z in
P , we call a point x′ the junction of π(x, y) and π(x, z) if π(x, x′) is the maximal common
path of π(x, y) and π(x, z).



E. Oh and H.-K. Ahn 61:9

(a)

p b1

b2

a1

a2

e

x

(b)

b1

b2

a1

a2

ve1
e2

yv

S

Figure 2 (a) We compute the junction v of π(p, a1) and π(p, b1) by applying binary search on
the w-edges of π(p, b1). (b) We extend e1 and e2 towards b1. The gray region contains the edge of
π(v, a1) incident to v and has complexity of O(n/s).

I Lemma 14. For every wall a1a2, there is at most one w-edge of π(p, ai) for i = 1, 2 which
is not a w-edge of π(p, b) ∪ π(p, b′) for any wall bb′ crossed by π(p, ai).

We consider the walls one by one in a specific order and compute such w-edges one by
one. To decide the order for considering the walls, we define a wall-tree T as follows. Each
node α of T corresponds to a wall d(α) of the balanced subdivision of P , except for the root.
The root of T corresponds to p and has children each of which corresponds to a wall incident
to the cell containing p. A non-root node β of T is the parent of a node α if and only if d(β)
is the first wall that we encounter during the traversal of π(p, a1) from a1 for an endpoint a1
of d(α). We can compute T in O(n) time.

I Lemma 15. The wall-tree can be built in O(n) time using O(s) words of workspace.

After constructing T , we apply depth-first search on T . Let D be an empty set. When
we visit a node α with a1a2 = d(α), we compute the w-edges of π(p, a1) ∪ π(p, a2) which
are not in D yet, and put them in D. Each w-edge in D has information on the node of T
defining it and the cells of the balanced subdivision containing its endpoints. Due to this
information, we can compute the w-edges of π(p, a) in order from a in O(s) time for any
endpoint a of d(α) and any node α we visited before. Once the traversal is done, D contains
all w-edges in the shortest paths between p and the endpoints of the walls.

We show how to compute the w-edge of π(p, a1) which is not in D yet. The case for
π(p, a2) can be handled analogously. By Lemma 14, there is at most one such edge of π(p, a1).
Moreover, by its proof, such an edge is incident to v on π(v, a1). Here, v is the one of the
two junctions closer to a1 than the other among the junction of π(p, b1) and π(p, a1), and
the junction of π(p, b2) and π(p, a1), where b1b2 is the wall corresponding the parent of α.

Computing junctions. We show how to compute the junction v1 of π(p, b1) and π(p, a1)
in O(n2/s2) time assuming that s = O(

√
n). The junction of π(p, b2) and π(p, a1) can be

computed analogously. Then we can compute v in the same time.
To do this, we find the w-edges in D lying on π(p, bi) in order from bi in O(s) time for

i = 1, 2 and denote the set of them by D(bi). Note that these are the w-edges of π(p, bi). We
find two consecutive edges in D(b1) containing v1 between them along π(p, b1) by applying
binary search on the edges in D(b1).

Given any edge e in D(b1), we can determine which side of e along π(p, b1) contains v1 in
O(n/s) time as follows. We first check whether e is also contained in π(p, b2) in constant
time using D(b2). If so, v1 is contained in the side of e along π(p, b1) containing b1. Thus

ISAAC 2017



61:10 Time-Space Trade-offs for Shortest Paths in a Simple Polygon

we are done. Otherwise, we extend e towards b1 until it escapes from S, where S is the cell
incident to both a1a2 and b1b2. See Figure 2(a). Note that the extension crosses b1b2 since
both π(b1, ve) and π(b2, ve) are concave for an endpoint ve of e. We can compute the point
where the extension escapes from S in O(n/s) time by traversing the boundary of S once. If
an endpoint of the extension lies on the part of ∂S between a1 and b1 not containing a2, v1
lies in the side of e containing p along π(p, b1). Otherwise, the junction v1 is contained in
the other side of e. Therefore, we can find two consecutive w-edges in D(b1) containing v1
between them along π(p, b1) in O((n/s) log s) time since the size of D(b1) = O(s).

The edges of π(p, b1) lying between the two consecutive w-edges are contained in the
same cell. Let x and y be the endpoints of the two consecutive edges of D(b1) contained in
the same cell. Then we compute the edges of π(x, y) one by one from x to y inside the cell
containing x and y. By Theorem 11, we can compute π(x, y) in O(n2/s3) time since the size
of the cell is O(n/s). Here, we use extra O(s) words of workspace for computing π(x, y).
When the algorithm in Theorem 11 reports an edge f of π(x, y), we check which side of f
along π(x, y) contains v1 in O(n/s) time as we did before. We do this until we find v1. This
takes O((n/s)2) time since there are O(n/s) edges in π(x, y). Therefore, in total, we can
compute the junction v1 in O(s+ (n/s) log s+ n2/s2) = O(n2/s2) time since s = O(

√
n).

Computing the edge of π(v, a1) incident to the junction v. In the following, we compute
the edge of π(v, a1) incident to v. Let e1 and e2 be two edges of π(p, b1) incident to v, which
can be obtained while we compute v. See Figure 2(b). We extend e1 and e2 towards b1
until they escape from the cell incident to both a1a2 and b1b2. We consider the subpolygon
bounded by the two extensions and containing a1 on its boundary. Its boundary consists of
parts of the boundary of P and three extra line segments: the extensions of e1 and e2, and
the part of the wall a1a2. Thus, the subpolygon can be represented using O(1) words and
the number of vertices in the subpolygon is O(n/s). Note that π(v, a1) is contained in the
subpolygon. Thus, the edge of π(v, a1) incident to v inside the subpolygon is the edge we
want to compute. We can compute it in O(n2/s3) time by applying Theorem 11 to this cell.

In summary, we presented a procedure to compute the w-edge of π(p, a1) which is not
computed before in O(n2/s2) time assuming that we have done this for every node we
have visited so far. More specifically, computing the junction of π(p, a1) and π(p, bi) takes
O(n2/s2) time for i = 1, 2, and computing the edge incident to each junction takes O(n2/s3)
time. One of the edges is the w-edge that we want to compute. Since the size of the wall-tree
is O(s), we can do this for every node in O(n2/s) time in total. Thus we have the following
lemma.

I Lemma 16. Given a point p in a simple polygon with n vertices, we can compute all
w-edges of the shortest paths between p and the endpoints of the walls in O(n2/s) time using
O(s) words of workspace for s = O(

√
n).

Due to the w-edges, we can compute the shortest path π(p, q) in O(n2/s2) time for any
point q in P . Note that n2/s2 is at least n for s = O(

√
n). For a proof, see Section M.

I Lemma 17. Given a fixed point p in P and a parameter s = O(
√
n), we can compute π(p, q)

in O(n2/s2) time for any point q in P using O(s) words of workspace after an O(n2/s)-time
preprocessing for P and p.

5.2 Decomposing the Shortest Path Tree into Smaller Trees
We subdivide P into subpolygons each of which is associated with a vertex of it in a way
different from the one for the balanced subdivision. Then inside each such subpolygon, we
report all edges of the shortest path tree rooted at its associated vertex recursively. We



E. Oh and H.-K. Ahn 61:11

v

g1

g2
P1

p1

p
p2

P2

p3

P3

Figure 3 Subdivision of the region bounded by π(v, g1) ∪ π(v, g2) and the part of ∂P from g1 to
g2 in clockwise order along ∂P by extending the edges of π(v, g1) ∪ π(v, g2). (Pi, pi)’s are three of
the subproblems of (P, p) for i = 1, 2, 3.

guarantee that the edges reported in this way are the edges of the shortest path tree rooted
at p. We also guarantee that all edges of the shortest path tree rooted at p are reported. We
use a pair (P ′, p′) to denote the problem of reporting the shortest path tree rooted at a point
p′ inside a simple polygon P ′ ⊆ P . Initially, we are given the problem (P, p).

Structural properties of the decomposition. We use the following two steps of the decom-
position. In the first step, we decompose P into a number of subpolygons by the shortest
path π(p, a) for every endpoint a of the walls. The boundary of each subpolygon consists
of polygonal curves from ∂P with endpoints g1, g2 and shortest paths π(v, g1) and π(v, g2),
where v is the junction of π(p, g1) and π(p, g2). In the second step, we decompose each
subpolygon into smaller subpolygons by extending the edges of the shortest paths π(v, g1)
and π(v, g2) towards g1 and g2, respectively. See Figure 3.

Consider a subpolygon Pi in the resulting subdivision. Its boundary consists of a polygonal
curve from ∂P and two line segments sharing a common endpoint pi. We can represent Pi
using O(1) words. Moreover, Pi has complexity of O(n/s). For any point q in Pi, π(p, q) is
the concatenation of π(p, pi) and π(pi, q). Therefore, the shortest path rooted at pi of Pi
coincides with the shortest path tree rooted at p inside P restricted to Pi. We can obtain
the entire shortest path tree rooted at p inside P by solving (Pi, pi) for every subpolygon Pi
in the resulting subdivision and its associated vertex pi.

The procedure for obtaining this decomposition is described in the full version of this
paper. We decompose each problem recursively unless the problem satisfies one of the three
stopping conditions in Definition 18. Then we directly solve each base problem (that is, we
report the edges of the shortest path tree.) But for non-base problems, we do not report any
edge of the shortest path tree. In this way, we report each edge of the shortest path tree at
most twice. We can report each edge without repetition using an orientation of each edge.

I Definition 18 (Stopping conditions). There are three stopping conditions for (Pi, pi):
(1) Pi has O(s) vertices, (2) s ≥

√
|Pi|, where |Pi| is the complexity of Pi, and (3) the depth

of the recurrence is c, where c > 0 is a fixed constant.

When stopping condition (1) holds, we compute the shortest path tree directly using the
algorithm by Guibas et al. [8]. When stopping condition (2) holds, we apply the algorithm
described in the full version of this paper that computes the shortest path tree rooted at pi
inside Pi in O(|Pi|2/s) time for the case that s ≥

√
|Pi|, where |Pi| is the complexity of Pi.

When stopping condition (3) holds, we compute the shortest path tree using Lemma 13.

ISAAC 2017



61:12 Time-Space Trade-offs for Shortest Paths in a Simple Polygon

For each maximal polygonal curve with endpoints g1 and g2 containing no endpoints
of walls in its interior, we spend O(n2/s2 + nk/s) time, where k is the number of edges
of π(v, g1) ∪ π(v, g2) for the junction v of π(p, g1) and π(p, g2). Since there are O(s) such
maximal polygonal curves and the sum of k over all such maximal polygonal curves is O(n),
the running time for decomposing the problem (P, p) into smaller problems is O(n2/s).

The total time complexity is O(cn2/s+ (n2 logn)/sc) = O(n2/s+ (n2 logn)/sc), and the
space complexity is O(cs) = O(s).

I Theorem 19. Given a point p in a simple polygon with n vertices, we can compute the
shortest path tree rooted at p in O(n2/s+ (n2 logn)/sc) expected time using O(s) words of
workspace for an arbitrary constant c > 0.

By setting c to the size of workspace and s to 2, we have the following theorem.

I Theorem 20. Given a point p in a simple polygon with n vertices, we can compute the
shortest path tree rooted at p in O((n2 logn)/2s) expected time using O(s) words of workspace
for s ≤ log logn.

References
1 Boris Aronov, Matias Korman, Simon Pratt, André van Renssen, and Marcel Roeloffzen.

Time-space trade-offs for triangulating a simple polygon. Journal of Computational Geo-
metry, 8(1):105–124, 2017.

2 Tetsuo Asano, Kevin Buchin, Maike Buchin, Matias Korman, Wolfgang Mulzer, Günter
Rote, and André Schulz. Memory-constrained algorithms for simple polygons. Computa-
tional Geometry, 46(8):959–969, 2013.

3 Tetsuo Asano and David Kirkpatrick. Time-space tradeoffs for all-nearest-larger-neighbors
problems. In Proceedings of the 13th Algorithms and Data Strucutres Symposium (WADS
2013), pages 61–72, 2013.

4 Luis Barba, Matias Korman, Stefan Langerman, Kunihiko Sadakane, and Rodrigo I. Sil-
veira. Space-time trade-offs for stack-based algorithms. Algorithmica, 72(4):1097–1129,
2015.

5 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6(3):485–524, 1991.

6 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, 2008.

7 Greg N. Frederickson. Upper bounds for time-space trade-offs in sorting and selection.
Journal of Computer and System, 34(1):19–26, 1987.

8 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1):209–233, 1987.

9 Sariel Har-Peled. Shortest path in a polygon using sublinear space. Journal of Computa-
tional Geometry, 7(2):19–45, 2015.

10 Eunjin Oh and Hee-Kap Ahn. A new balanced subdivision of a simple polygon for time-
space trade-off algorithms, 2017. arXiv:1709.09932.

http://arxiv.org/abs/1709.09932

	Introduction
	Our Results

	Preliminaries
	Balanced Subdivision of a Simple Polygon
	Applications
	Improved Algorithm for Computing the Shortest Path Tree
	Computing w-edges
	Decomposing the Shortest Path Tree into Smaller Trees


