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Abstract
We use soft heaps to obtain simpler optimal algorithms for selecting the k-th smallest item,
and the set of k smallest items, from a heap-ordered tree, from a collection of sorted lists,
and from X + Y , where X and Y are two unsorted sets. Our results match, and in some
ways extend and improve, classical results of Frederickson (1993) and Frederickson and Johnson
(1982). In particular, for selecting the k-th smallest item, or the set of k smallest items, from a
collection of m sorted lists we obtain a new optimal “output-sensitive” algorithm that performs
only O(m+

∑m
i=1 log(ki + 1)) comparisons, where ki is the number of items of the i-th list that

belong to the overall set of k smallest items.
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1 Introduction

The input to the standard selection problem is a set of n items, drawn from a totally ordered
domain, and an integer 1 ≤ k ≤ n. The goal is to return the k-th smallest item in the
set. A classical result of Blum et al. [1] says that the selection problem can be solved
deterministically in O(n) time, i.e., faster than sorting the set. The number of comparisons
required for selection was reduced by Schönhage et al. [26] to 3n, and by Dor and Zwick
[8, 9] to about 2.95n.
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5:2 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

In the generalized selection problem, we are also given a partial order P known to hold
for the set of n input items. The goal is again to return the k-th smallest item. The
corresponding generalized sorting problem was extensively studied. It was shown by Kahn
and Saks [20] that the problem can be solved using only O(log e(P )) comparisons, where e(P )
is the number of linear extensions of P . Thus, the information-theoretic lower bound is
tight for generalized sorting. The algorithm of Kahn and Saks [20] performs only O(log e(P ))
comparisons, but may spend much more time on deciding which comparisons to perform.
Kahn and Kim [19] and Cardinal et al. [4] gave algorithms that perform only O(log e(P ))
comparisons and run in polynomial time.

A moment’s reflection shows that an algorithm that finds the k-th smallest item of a set,
must also identify the set of k smallest items of the set.5 Given a partial order P , let sk(P )
be the number of subsets of size k that may possibly be the set of k smallest items in P .
Then, log2 sk(P ) is clearly a lower bound on the number of comparisons required to select the
k-th smallest item, or the set of k smallest items. Unlike sorting, this information-theoretic
lower bound for selection may be extremely weak. For example, the information-theoretic
lower bound for selecting the minimum is only log2 n, while n− 1 comparisons are clearly
needed (and are sufficient). To date, there is no characterization of pairs (P, k) for which the
information-theoretic lower bound for selection is tight, nor an alternative general technique
to obtain a tight lower bound.

Frederickson and Johnson [12, 13, 14] and Frederickson [11] studied the generalized
selection problem for some interesting specific partial orders. Frederickson [11] considered
the case in which the input items are items of a binary min-heap, i.e., they are arranged
in a binary tree, with each item smaller than its two children. Frederickson [11] gave
a complicated algorithm that finds the k-th smallest item using only O(k) comparisons,
matching the information-theoretic lower bound for this case. (Each subtree of size k of
the heap, containing the root, can correspond to the set of k smallest items, and there are

1
k+1
(2k

k

)
, the k-th Catalan number, such subtrees.)

Frederickson and Johnson [12, 13, 14] considered three other interesting special cases. (i)
The input items are in a collection of sorted lists, or equivalently they reside in a row-sorted
matrix; (ii) The input items reside in a collection of matrices, where each matrix is both
row- and column-sorted; (iii) The input items are X + Y , where X and Y are unsorted
sets of items.6 For each of these cases, they present a selection algorithm that matches the
information-theoretic lower bound.

We note in passing that sorting X + Y is a well studied problem. Fredman [15] showed
that X + Y , where |X| = |Y | = n, can be sorted using only O(n2) comparisons, but it is
not known how to do it in O(n2) time. (An intriguing situation!) Fredman [15] also showed
that Ω(n2) comparisons are required, if only comparisons between items in X + Y , i.e.,
comparisons of the form xi + yj ≤ xk + y`, are allowed. Lambert [24] and Steiger and Streinu
[27] gave algorithms that sort X+Y in O(n2 logn) time using only O(n2) comparisons. Kane
et al. [21], in a breakthrough result, have shown recently that X + Y can be sorted using
only O(n log2 n) comparisons of the form (xi + yj)− (xi′ + yj′) ≤ (xk + y`)− (xk′ + y`′), but
it is again not known how to implement their algorithm efficiently.

5 The information gathered by a comparison-based algorithm corresponds to a partial order which can
be represented by a DAG (Directed Acyclic Graph). Every topological sort of the DAG corresponds
to a total order of the items consistent with the partial order. Suppose that e is claimed to be the
k-th smallest item and suppose, for the sake of contradiction, that the set I of the items that are
incomparable with e is non-empty. Then, there is a topological sort in which e is before all the items
of I, and another topological sort in which e is after all the items of I, contradicting the fact that e is
the k-th smallest item in all total orders consistent with the partial order.

6 By X + Y we mean the set of pairwise sums {x + y | x ∈ X, y ∈ Y }.
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The median of X +Y , on the other hand, can be found in O(n logn) time, and O(n logn)
comparisons of items in X + Y , as was already shown by Johnson and Mizoguchi [18] and
Johnson and Kashdan [17]. The selection problem from X + Y becomes more challenging
when k = o(n2).

Frederickson [11] gives two applications for selection from a binary min-heap. The first
is in an algorithm for listing the k smallest spanning trees of an input graph. The second
is a certain resource allocation problem. Eppstein [10] uses the heap selection algorithm
in his O(m + n logn + k) algorithm for generating the k shortest paths between a pair of
vertices in a digraph. As pointed out by Frederickson and Johnson [13], selection from X +Y

can be used to compute the Hodges-Lehmann [16] estimator in statistics. Selection from
a matrix with sorted rows solves the problem of “optimum discrete distribution of effort"
with concave functions, i.e., the problem of maximizing

∑m
i=1 fi(ki) subject to

∑m
i=1 ki = k,

where the fi’s are concave and the ki’s are non-negative integers. (See Koopman [23] and
other references in [13].) Selection from a matrix with sorted rows is also used by Brodal et
al. [3] and Bremner et al. [2].

The O(k) heap selection algorithm of Frederickson [11] is fairly complicated. The naïve
algorithm for the problem runs in O(k log k) time. Frederickson first improves this to
O(k log log k), then to O(k3log∗ k), then to O(k2log∗ k), and finally to O(k).

Our first result is a very simple O(k) heap selection algorithm obtained by running the
naïve O(k log k) algorithm using an auxiliary soft heap instead of a standard heap. Soft
heaps, discussed below, are fairly simple data structures whose implementation is not much
more complicated than the implementation of standard heaps. Our overall O(k) algorithm is
thus simple and easy to implement and comprehend.

Relying on our simple O(k) heap selection algorithm, we obtain simplified algorithms
for selection from row-sorted matrices and from X + Y . Selecting the k-th item from a
row-sorted matrix with m rows using our algorithms requires O(m+ k) time, if k ≤ 2m, and
O(m log k

m ) time, if k ≥ 2m, matching the optimal results of Frederickson and Johnson [12].
Furthermore, we obtain a new optimal “output-sensitive” algorithm whose running time is
O(m+

∑m
i=1 log(ki + 1)), where ki is the number of items of the i-th row that belong to the

set of k smallest items in the matrix. We also use our simple O(k) heap selection algorithm
to obtain simple optimal algorithms for selection from X + Y .

Soft heaps are “approximate” priority queues introduced by Chazelle [6]. They form a
major building block in his deterministic O(mα(m,n))-time algorithm for finding minimum
spanning trees [5], which is currently the fastest known deterministic algorithm for the
problem. Chazelle [6] also shows that soft heaps can be used to obtain a simple linear time
(standard) selection algorithm. (See the next section.) Pettie and Ramachandran [25] use
soft heaps to obtain an optimal deterministic minimum spanning tree algorithm with a yet
unknown running time. A simplified implementation of soft heaps is given in Kaplan et
al. [22].

All algorithms considered in the paper are comparison-based, i.e., the only operations
they perform on the input items are pairwise comparisons. In the selection from X + Y

problem, the algorithms make pairwise comparisons in X, in Y and in X + Y . The number
of comparisons performed by the algorithms presented in this paper dominates the total
running time of the algorithms.

The rest of the paper is organized as follows. In Section 2 we review the definition of soft
heaps. In Section 3 we describe our heap selection algorithms. In Section 3.1 we describe our
basic algorithm for selection from binary min-heaps. In Sections 3.2 and 3.3 we extend the
algorithm to d-ary heaps and then to general heap-ordered trees and forests. In Section 4 we
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describe our algorithms for selection from row-sorted matrices. In Section 4.1 we describe a
simple O(m + k) algorithm which is optimal if k = O(m). In Section 4.2 we build on the
O(m+ k) algorithm to obtain an optimal O(m log k

m ) algorithm, for k ≥ 2m. In Sections 4.3
and 4.4 we obtain new results that were not obtained by Frederickson and Johnson [12]. In
Section 4.3 we obtain an O(m+

∑m
i=1 logni) algorithm, where ni ≥ 1 is the length of the

i-th row of the matrix. In Section 4.4 we obtain the new O(m+
∑m

i=1 log(ki + 1)) optimal
output-sensitive algorithm. In Section 5 we present our algorithms for selection from X + Y .
In Section 5.1 we give a simple O(m + n + k) algorithm, where |X| = m, |Y | = n. In
Section 5.2 we give a simple O(m log k

m ) algorithm, for m ≥ n and k ≥ 6m. We conclude in
Section 6 with some remarks and open problems.

2 Soft heaps

Soft heaps, invented by Chazelle [6], support the following operations:
soft-heap(ε): Create and return a new, empty soft heap with error parameter ε.
insert(Q, e): Insert item e into soft heap Q.
meld(Q1, Q2): Return a soft heap containing all items in heaps Q1 and Q2, destroying Q1

and Q2.
extract-min(Q): Delete from the soft heap and return an item of minimum key in

heap Q.
In Chazelle [6], extract-min operations are broken into find-min and delete operations.

We only need combined extract-min operations. We also do not need meld operations in
this paper.

The main difference between soft heaps and regular heaps is that soft heaps are allowed
to increase the keys of some of the items in the heap by an arbitrary amount. Such items are
said to become corrupt. The soft heap implementation chooses which items to corrupt, and
by how much to increase their keys. The only constraint is that for a certain error parameter
0 ≤ ε < 1, the number of corrupt items in the heap is at most εI, where I is the number
of insertions performed so far. The ability to corrupt items allows the implementation of
soft heaps to use what Chazelle [6] calls the “data structures equivalent of car pooling” to
reduce the amortized time per operation to O(log 1

ε ), which is the best possible dependency
on ε. In the implementation of Kaplan et al. [22], extract-min operations take O(log 1

ε )
amortized time, while all other operations take O(1) amortized time. (In the implementation
of Chazelle [6], insert operations take O(log 1

ε ) amortized time while the other operations
take O(1) time.)

An extract-min operation returns an item whose current, possibly corrupt, key is the
smallest in the heap. Ties are broken arbitrarily. (Soft heaps usually give many items the
same corrupt key, even if initially all keys are distinct.) Each item e thus has two keys
associated with it: its original key e.key, and its current key in the soft heap e.key ′, where
e.key ≤ e.key ′. If e.key < e.key ′, then e is corrupt. The current key of an item may increase
several times.

At first sight, it may seem that the guarantees provided by soft heaps are extremely
weak. The only bound available is on the number of corrupt items currently in the heap. In
particular, all items extracted from the heap may be corrupt. Nonetheless, soft heaps prove
to be an extremely useful data structure. In particular, they play a key role in the fastest
known deterministic algorithm of Chazelle [5] for finding minimum spanning trees.
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Soft heaps can also be used, as shown by Chazelle [6], to select an approximate median of
n items. Initialize a soft heap with some error parameter ε < 1

2 . Insert the n items into the
soft heap and then perform (1− ε) n

2 extract-min operations. Find the maximum item e,
with respect to the original keys, among the extracted items. The rank of e is between
(1− ε) n

2 and (1 + ε) n
2 . The rank is at least (1− ε) n

2 as e is the largest among (1− ε) n
2 items.

The rank is at most (1 + ε) n
2 as the items remaining in the soft heap that are smaller than e

must be corrupt, so there are at most εn such items. For, say, ε = 1
4 , the running time of

the algorithm is O(n).
Using a linear time approximate median algorithm, we can easily obtain a linear time

algorithm for selecting the k-th smallest item. We first compute the true rank r of the
approximate median e. If r = k we are done. If r > k, we throw away all items larger than e.
Otherwise, we throw away all items smaller than e and replace k by k− r. We then continue
recursively. In O(n) time, we reduced n to at most ( 1

2 + ε)n, so the total running time is
O(n).

In this paper, we show the usefulness of soft heaps in solving generalized selection problems.
We obtain simpler algorithms than those known before, and some results that were not
known before.

In Chazelle [6] and Kaplan et al. [22], soft heaps may corrupt items while performing any
type of operation. It is easy, however, to slightly change the implementation of [22] such that
corruptions only occur following extract-min operations. In particular, insert operations
do not cause corruption, and an extract-min operation returns an item with a smallest
current key at the beginning of the operation. These assumptions simplify algorithms that
use soft heaps, and further simplify their analysis. The changes needed in the implementation
of soft heaps to meet these assumptions are minimal. The operations insert (and meld)
are simply implemented in a lazy way. The implementation of [22] already has the property
that extract-min operations cause corruptions only after extracting an item with minimum
current key.

We assume that an extract-min operation returns a pair (e, C), where e is the extracted
item, and C is a list of items that became corrupt after the extraction of e, i.e., items that
were not corrupt before the operation, but are corrupt after it. We also assume that e.corrupt
is a bit that says whether e is corrupt. (Note that e.corrupt is simply a shorthand for
e.key < e.key ′.) It is again easy to change the implementation of [22] so that extract-min
operations return a list C of newly corrupt items, without affecting the amortized running
times of the various operations. (In particular, the amortized running time of an extract-min
operation is still O(log 1

ε ), independent of the length of C. As each item becomes corrupt
only once, it is easy to charge the cost of adding an item to C to its insertion into the heap.)

We stress that the assumptions we make on soft heaps in this paper can be met by minor
and straightforward modifications of the implementation of Kaplan et al. [22], as sketched
above. No complexities are hidden here. We further believe that due to their usefulness,
these assumptions will become the standard assumptions regarding soft heaps.

3 Selection from heap-ordered trees

In Section 3.1 we present our simple, soft heap-based, O(k) algorithm for selecting the k-th
smallest item, and the set of k smallest items from a binary min-heap. This algorithm is
the cornerstone of this paper. For simplicity, we assume throughout this section that the
input heap is infinite. In particular, each item e in the input heap has two children e.left and
e.right. (A non-existent child is represented by a dummy item with key +∞.) In Section 3.2

SOSA 2019
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Heap-Select(r):
S ← ∅
Q← heap()
insert(Q, r)
for i← 1 to k do

e← extract-min(Q)
append(S, e)
insert(Q, e.left)
insert(Q, e.right)

return S

Figure 1 Extracting the k smallest
items from a binary min-heap with
root r using a standard heap.

Soft-Select(r):

S ← ∅
Q← soft-heap(1/4)
insert(Q, r)
append(S, r)

for i← 1 to k − 1 do
(e, C)← extract-min(Q)
if not e.corrupt then
C ← C ∪ {e}

for e ∈ C do
insert(Q, e.left)
insert(Q, e.right)
append(S, e.left)
append(S, e.right)

return select(S, k)

Figure 2 Extracting the k smallest items from
a binary min-heap with root r using a soft heap.

we adapt the algorithm to work for d-ary heaps, for d ≥ 3, using “on-the-fly ternarization
via heapification”. In Section 3.3 we extend the algorithm to work on any heap-ordered tree
or forest. The results of Section 3.3 are new.

3.1 Selection from binary heaps
The naïve algorithm for selection from a binary min-heap is given in Figure 1. The root r of
the input heap is inserted into an auxiliary heap (priority queue), denoted Q. The minimal
item e is extracted from Q and appended to a list S. The two children of e (in the input
heap), if they exist, are inserted into Q. This operation is repeated k times. After k iterations,
the items in S are the k smallest items in the input heap, in sorted order. Overall, 2k + 1
items are inserted into Q and k items are extracted, so the total running time is O(k log k),
which is optimal if the k smallest items are to be reported in sorted order.

Frederickson [11] devised a very complicated algorithm that outputs the k smallest items,
not necessarily in sorted order, in only O(k) time, matching the information-theoretic lower
bound. In Figure 2 we give our very simple algorithm Soft-Select(r) for the same task,
which also performs only O(k) comparisons and runs in optimal O(k) time. Our algorithm is
a simple modification of the naïve algorithm of Figure 1 with the auxiliary heap replaced by
a soft heap. The resulting algorithm is much simpler than the algorithm of Frederickson [11].

Algorithm Soft-Select(r) begins by initializing a soft heap Q with error parameter
ε = 1/4 and by inserting the root r of the input heap into it. Items inserted into the soft
heap Q are also inserted into a list S. The algorithm then performs k − 1 iterations. In each
iteration, the operation (e, C)← extract-min extracts an item e with the smallest (possibly
corrupt) key currently in Q, and also returns the set of items C that become corrupt as a
result of the removal of e from Q. If e is not corrupt, then it is added to C. Now, for each
item e ∈ C, we insert its two children e.left and e.right into the soft heap Q and the list S.
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Figure 3 Types of items in the input heap. White nodes belong to A, i.e., were not inserted yet
into the soft heap Q; black nodes belong to the barrier B; gray nodes belong to C, i.e., are corrupt;
striped nodes belong to D, i.e., were already deleted.

Lemma 1 below claims that Soft-Select(r) inserts the k smallest items of the input heap
into the soft heap Q. Lemma 2 claims that, overall, only O(k) items are inserted into Q, and
hence into S. Thus, the k smallest items in the input heap can be found by selecting the k
smallest items in the list S using a standard selection algorithm.

I Lemma 1. Algorithm Soft-Select(r) inserts the k smallest items from the input binary
min-heap into the soft heap Q. (Some of them may subsequently be extracted from the heap.)

Proof. At the beginning of an iteration of algorithm Soft-Select, let A be the set of items
of the input binary heap that were not yet inserted into the soft heap Q; let B be the set of
items that were inserted, not yet removed and are not corrupt; let C be the set of items that
were inserted, not yet removed, and are corrupt; let D be the set of items that were inserted
and already deleted from Q. We prove below, by easy induction, the following two invariants:
(a) All strict ancestors of items in B are in C ∪D.
(b) Each item in A has an ancestor in B.

Thus, the items in B form a barrier that separates the items of A, i.e., items that were
not inserted yet into the heap, from the items of C ∪D, i.e., items that were inserted and are
either corrupt or were already removed from the soft heap Q. For an example, see Figure 3.

Invariants (a) and (b) clearly hold at the beginning of the first iteration, when B = {r}
and C ∪D is empty. Assume that (a) and (b) hold at the beginning of some iteration. Each
iteration removes an item from the soft heap. The item removed is either a corrupt item
from C, or an item (in fact the smallest item) on the barrier B. Following the extraction,
some items on the barrier B become corrupt and move to C. The barrier is ‘mended’ by
inserting to Q the children of items on B that were extracted or became corrupt. By our
simplifying assumption, insertions do not corrupt items, so the newly inserted items belong
to B and are thus part of the new barrier, reestablishing (a) and (b).

We now make the following two additional claims:
(c) The item extracted at each iteration is smaller than or equal to the smallest item on the

barrier. (With respect to the original keys.)
(d) The smallest item on the barrier cannot decrease.

Claim (c) follows immediately from the definition of an extract-min operation and our
assumption that corruption occurs only after an extraction. All the items on the barrier,
and in particular the smallest item e on the barrier, are in the soft heap and are not corrupt.
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5:8 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

Thus, the extracted item is either e, or a corrupt item f whose corrupt key is still smaller
than e. As corruption can only increase keys, we have f < e.

Claim (d) clearly holds as items on the barrier at the end of an iteration were either on
the barrier at the beginning of the iteration, or are children of items that were on the barrier
at the beginning of the iteration.

Consider now the smallest item e on the barrier after k − 1 iterations. As all extracted
items are smaller than it, the rank of e is at least k. Furthermore, all items smaller than e
must be in C∪D, i.e., inserted at some stage into the heap. Indeed, let f be an item of A, i.e.,
an item not inserted into Q. By invariant (b), f has an ancestor f ′ on the barrier. By heap
order and the assumption that e is the smallest item on the barrier we indeed get e ≤ f ′ < f .
Thus, the smallest k items were indeed inserted into the soft heap as claimed. J

The proof of Lemma 1 relies on our assumption that corruptions in the soft heap occur
only after extract-min operations. A slight change in the algorithm is needed if insert
operations may cause corruptions; we need to repeatedly add children of newly corrupt items
until no new items become corrupt. (Lemma 2 below shows that this process must end if
ε < 1

2 . The process may not end if ε ≥ 1
2 .) The algorithm, without any change, remains

correct, and in particular Lemma 1 holds, if extract-min operations are allowed to corrupt
items before extracting an item of minimum (corrupt) key. The proof, however, becomes
more complicated. (Claim (c), for example, does not hold in that case.)

I Lemma 2. Algorithm Soft-Select(r) inserts only O(k) items into the soft heap Q.

Proof. Let I be the number of insertions made by Soft-Select(r), and let C be the number
of items that become corrupt during the running of the algorithm. (Note that Soft-Select(r)
clearly terminates.) Let ε(= 1

4 ) be the error parameter of the soft heap. We have I < 2k+2C,
as each inserted item is either the root r, or a child of an item extracted during one of the
k − 1 iterations of the algorithm, and there are at most 2k − 1 such insertions, or a child
of a corrupt item, and there are exactly 2C such insertions. We also have C < k + εI, as
by the definition of soft heaps, at the end of the process at most εI items in the soft heap
may be corrupt, and as only k − 1 (possibly corrupt) items were removed from the soft heap.
Combining these two inequalities we get C < k+ε(2k+2C), and hence (1−2ε)C < (1+2ε)k.
Thus, if ε < 1

2 we get

C <
1 + 2ε
1− 2ε k , I < 2

(
1 + 1 + 2ε

1− 2ε

)
k .

The number of insertions I is therefore O(k), as claimed. (For ε = 1
4 , I < 8k.) J

Combining the two lemmas we easily get:

I Theorem 3. Algorithm Soft-Select(r) selects the k smallest items of a binary min-heap
in O(k) time.

Proof. The correctness of the algorithm follows from Lemmas 1 and 2. Lemma 2 also implies
that only O(k) operations are performed on the soft heap. As ε = 1/4, each operation takes
O(1) amortized time. The total running time, and the number of comparisons, performed
by the loop of Soft-Select(r) is thus O(k). As the size of S is O(k), the selection of the
smallest k items from S also takes only O(k) time. J
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3.2 Selection from d-ary heaps

Frederickson [11] claims, in the last sentence of his paper, that his algorithm for binary
min-heaps can be modified to yield an optimal O(dk) algorithm for d-ary min-heaps, for any
d ≥ 2, but no details are given. (In a d-ary heap, each node has (at most) d children.)

We present two simple O(dk) algorithms for selecting the k smallest items from a d-ary
min-heap. The first is a simple modification of the algorithm for the binary case. The second
in a simple reduction from the d-ary case to the binary case.

Algorithm Soft-Select(r) of Figure 2 can be easily adapted to work on d-ary heaps. We
simply insert the d children of an extracted item, or an item that becomes corrupt, into the
soft heap. If we again let I be the number of items inserted into the sort heap, and C be the
number of items that become corrupt, we get I < d(k + C) and C < k + εI, and hence

C <
1 + dε

1− dε k , I < d

(
1 + 1 + dε

1− dε

)
k ,

provided that ε < 1
d , e.g., ε = 1

2d . The algorithm then performs O(dk) insert operations,
each with an amortized cost of O(1), and k − 1 extract-min operations, each with an
amortized cost of O(log 1

ε ) = O(log d). The total running time is therefore O(dk). (Note
that it is important here to use the soft heap implementation of [22], with an O(1) amortized
cost of insert.)

An alternative O(dk) algorithm for d-ary heaps, for any d ≥ 2, can be obtained by a
simple reduction from d-ary heaps to 3-ary (or binary) heaps using a process that we call
“on-the-fly ternarization via heapification”. We use the well-known fact that an array of d
items can be heapified, i.e., converted into a binary heap, in O(d) time. (See Williams [28] or
Cormen et al. [7].) We describe this alternative approach because we think it is interesting,
and because we use it in the next section to obtain an algorithm for general heap-ordered
trees, i.e., trees in which different nodes may have different degrees, and the degrees of the
nodes are not necessarily bounded by a constant.

In a d-ary heap, each item e has (up to) d children e.child[1], . . . , e.child[d]. We construct
a ternary heap on the same set of items in the following way. We heapify the d children of e,
i.e., construct a binary heap whose items are these d children. This gives each child f of e
two new children f.left and f.right. (Some of these new children are null.) We let e.middle
be the root of the heap composed of the children of e. Overall, this gives each item e in
the original heap three new children e.left, e.middle and e.right, some of which may be null.
Note that e gets its new children e.left and e.right when it and its siblings are heapified.
(The names left, middle and right are, of course, arbitrary.) For an example, see Figure 4.

This heapification process can be carried out on-the-fly while running Soft-Select(r)
on the resulting ternary heap. The algorithm starts by inserting the root of the d-ary heap,
which is also the root of its ternarized version, into the soft heap. When an item e is extracted
from the soft heap, or becomes corrupt, we do not immediately insert its d original children
into the soft heap. Instead, we heapify its d children, in O(d) time. This assigns e its middle
child e.middle. Item e already has its left and right children e.left and e.right defined. The
three new children e.left, e.middle and e.right are now inserted into the soft heap. We call
the resulting algorithm Soft-Select-Heapify(r).

I Theorem 4. Algorithm Soft-Select-Heapify(r) selects the k smallest items from a d-ary
heap with root r in O(dk) time.
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Figure 4 On-the-fly ternarization of a 7-ary heap. Thin lines represent the original 7-ary heap.
Bold arrows represent new left and right children. Dashed arrows represent new middle children.

Proof. Algorithm Soft-Select-Heapify(r) essentially works on a ternary version of the
input d-ary heap constructed on the fly. Simple adaptations of Lemmas 1 and 2 show that the
total running time, excluding the heapifications’ cost, is O(k). As only O(k) heapifications
are performed, the cost of all heapifications is O(dk), giving the total running time of the
algorithm. J

It is also possible to binarize the input heap on the fly. We first ternarize the heap as
above. We now convert the resulting ternary tree into a binary tree using the standard first
child, next sibling representation. This converts the ternary heap into a binary heap, if
the three children of each item are sorted. During the ternarization process, we can easily
make sure that the three children of each item appear in sorted order, swapping children if
necessary, so we can apply this final binarization step.

3.3 Selection from general heap-ordered trees
Algorithm Soft-Select-Heapify(r) works, of course, on arbitrary heap-ordered trees in
which different nodes have different degrees. Algorithm Soft-Select(r), on the other hand,
is not easily adapted to work on general heap-ordered trees, as it is unclear how to set
the error parameter ε to obtain an optimal running time. To bound the running time
of Soft-Select-Heapify(r) on an arbitrary heap-ordered tree, we introduce the following
definition.

I Definition 5 (D(T, k)). Let T be a (possibly infinite) rooted tree and let k ≥ 1. Let
D(T, k) be the maximum sum of degrees over all subtrees of T of size k rooted at the root
of T . (The degrees summed are in T , not in the subtree.)

For example, if Td is an infinite d-ary tree, then D(Td, k) = dk, as the sum of degrees in
each subtree of Td containing k vertices is dk. For a more complicated example, let T be the
infinite tree in which each node at level i has degree i+ 2, i.e., the root has two children, each
of which has three children, etc. Then, D(T, k) =

∑k+1
i=2 i = k(k + 3)/2, where the subtrees

achieving the maximum are paths from the root. A simple adaptation of Theorem 4 gives:
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I Theorem 6. Let T be a heap-ordered tree with root r. Algorithm Soft-Select-Heapify(r)
selects the k-th smallest item in T , and the set of k smallest items in T , in O(D(T, 3k))
time.

Proof. We use the on-the-fly binarization and a soft heap with ε = 1
6 . The number of corrupt

items is less than 2k. The number of extracted items is less than k. Thus, the algorithm
needs to heapify the children of less than 3k items that form a subtree T ′ of the original
tree T . The sum of the degrees of these items is at most D(T, 3k), thus the total time spent
on the heapifications, which dominates the running time of the algorithm, is O(D(T, 3k)).
We note that D(T, 3k) can be replaced by D(T, (2 + δ)k), for any δ > 0, by choosing ε small
enough. J

I Theorem 7. Let T be a heap-ordered tree and let k ≥ 1. Any comparison-based algorithm
for selecting the k-th smallest item in T must perform at least D(T, k−1)−(k−1) comparisons
on some inputs.

Proof. Let T ′ be the subtree of T of size k − 1 that achieves the value D(T, k − 1), i.e., the
sum of the degrees of the nodes of T ′ is D(T, k − 1). Suppose the k − 1 items of T ′ are
the k − 1 smallest items in T . The nodes of T ′ have at least D(T, k − 1)− (k − 2) children
that are not in T ′. The k-th smallest item is the minimum item among these items, and no
information on the order of these items is implied by the heap order of the tree. Thus, finding
the k-th smallest item in this case requires at least D(T, k − 1)− (k − 1) comparisons. J

4 Selection from row-sorted matrices

In this section we present algorithms for selecting the k smallest items from a row-sorted
matrix, or equivalently from a collection of sorted lists. Our results simplify and extend
results of Frederickson and Johnson [12]. The algorithms presented in this section use
our Soft-Select algorithm for selection from a binary min-heap presented in Section 3.1.
(Frederickson’s [11] algorithm could also be used, but the resulting algorithms would become
much more complicated, in particular more complicated than the algorithms of Frederickson
and Johnson [12].) In Section 4.1 we give an O(m+ k) algorithm, where m is the number
of rows, which is optimal for k = O(m). In Section 4.2 we give an O(m log k+m

m ) algorithm
which is optimal for k = Ω(m). These results match results given by Frederickson and
Johnson [12]. In Sections 4.3 and 4.4 we give two new algorithms that improve in some cases
over the previous algorithms.

4.1 An O(m + k) algorithm
A sorted list may be viewed as a heap-sorted path, i.e., a 1-ary heap. We can convert a
collection of m sorted lists into a (degenerate) binary heap by building a binary tree whose
leaves are the first items in the lists. The values of the m − 1 internal nodes in this tree
are set to −∞. Each item in a list will have one real child, its successor in the list, and a
dummy child with value +∞. To find the k smallest items in the lists, we simply find the
m + k − 1 smallest items in the binary heap. This can be done in O(m + k) time using
algorithm Soft-Select of Section 3.1. More directly, we can use the following straightforward
modification of algorithm Soft-Select. Insert the m first items in the lists into a soft heap.
Perform k − 1 iterations in which an item with minimum (corrupt) key is extracted. Insert
into the soft heap the child of the item extracted as well as the children of all the items that
became corrupt following the extract-min operation.
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Figure 5 Partitioning the items in each row to blocks of size b. Block representatives are shown
as small filled circles. The shaded regions contains the k smallest items. The darkly shaded region
depicts blocks all of whose items are among the k smallest.

Alternatively, we can convert the m sorted lists into a heap-ordered tree Tm,1 by adding
a root with value −∞ that will have the m first items as its children. All other nodes in
the tree will have degree 1. It is easy to see that D(Tm,1, k) = m + k − 1. By Theorem 6
we again get an O(m+ k) algorithm. We have thus presented three different proofs of the
following theorem.

I Theorem 8. Let A be a row-sorted matrix containing m rows. Then, the k-th smallest
item in A, and the set of k smallest items in A, can be found in O(m+ k) time.

We refer to the algorithm of Theorem 8 as Mat-Select1(A, k). The O(m+ k) running
time of Mat-Select1(A, k) is asymptotically optimal if k = O(m), as Ω(m) is clearly a lower
bound; each selection algorithm must examine at least one item in each row of the input
matrix.

4.2 An O(m log k
m

) algorithm, for k ≥ 2m

We begin with a verbal description of the algorithm. Let A be the input matrix and let
k ≥ 2m. Partition each row of the matrix A into blocks of size b =

⌊
k

2m

⌋
. The last item in

each block is the representative of the block. Consider the (yet unknown) distribution of
the k smallest items among the m rows of the matrix. Let ki be the number of items in the
i-th row that are among the k smallest items in the whole matrix. These ki items are clearly
the first ki items of the i-th row. They are partitioned into a number of full blocks, followed
possibly by one partially filled block. (For an example, see Figure 5.) The number of items
in partially filled blocks is at most m

⌊
k

2m

⌋
. Thus, the number of filled blocks is at least

k −m
⌊

k
2m

⌋⌊
k

2m

⌋ ≥ m .

Apply algorithm Mat-Select1 to select the smallestm block representatives. This clearly takes
only O(m) time. (Algorithm Mat-Select1 is applied on the implicitly represented matrix A′
of block representatives.) All items in the m blocks whose representatives were selected are
among the k smallest items of the matrix. The number of such items is mb = m

⌊
k

2m

⌋
≥ k

4 ,
as k ≥ 2m. These items can be removed from the matrix. All that remains is to select the
k −mb smallest remaining items using a recursive call to the algorithm. In each recursive
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Mat-Select2(A, k):
m← num-rows(A)
if k ≤ 2m then

return Mat-Select1(A, k)
else

b← bk/(2m)c
A′ ← jump(A, b)
K ← Mat-Select1(A′,m)
A′′ ← shift(A, bK)
return bK + Mat-Select2(A′′, k − bm)

Figure 6 Selecting the k smallest items from a row-sorted matrix A. (Implicit handling of
submatrices passed to recursive calls.)

Mat-Select2(〈A, c,D〉, k):
m← num-rows(A)
if k ≤ 2m then

return Mat-Select1(〈A, c,D〉, k)
else

b← bk/(2m)c
K ← Mat-Select1(〈A, bc,D〉,m)
return bK + Mat-Select2(〈A, c,D + bcK〉, k − bm)

Figure 7 Selecting the k smallest items from a row-sorted matrix A. (Explicit handling of
submatrices passed to recursive calls.)

call (or iteration), the total work is O(m). The number of items to be selected drops by a
factor of at least 3/4. Thus after at most log4/3

k
2m = O(log k

m ) iterations, k drops below
2m and then Mat-Select1 is called to finish the job in O(m) time.

Pseudo-code of the algorithm described above, which we call Mat-Select2(A, k) is given
in Figure 6. The algorithm returns an array K = (k1, k2, . . . , km), where ki is the number
of items in the i-th row that are among the k smallest items of the matrix. The algorithm
uses a function num-rows(A) that returns the number of rows of a given matrix, a function
jump(A, b) that returns an (implicit) representation of a matrix A′ such that A′i,j = Ai,bj , for
i, j ≥ 1, and a function shift(A,K) that returns an (implicit) representation of a matrix A′′
such that A′′i,j = Ai,j+ki

, for i, j ≥ 1.
In Figure 7 we eliminate the use of jump and shift and make everything explicit.

The input matrix is now represented by a triplet 〈A, c,D〉, where A is a matrix, c ≥ 1
is an integer, and D = (d1, d2, . . . , dm) is an array of non-negative integral displace-
ments. Mat-Select2(〈A, c,D〉, k) selects the k smallest items in the matrix A′ such that
A′i,j = Ai,cj+di

, for i, j ≥ 1. To select the k smallest items in A itself, we simply call
Mat-Select2(〈A, 1,0〉, k), where 0 represents an array of m zeros. The implementation of
Mat-Select2(〈A, c,D〉, k) in Figure 7 is recursive. It is easy to convert it into an equivalent
iterative implementation.

I Theorem 9. Let A be a row-sorted matrix containing m rows and let k ≥ 2m. Algorithm
Mat-Select2(A, k) selects the k smallest items in A in O(m log k

m ) time.
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Frederickson and Johnson [12] showed that the O(m log k
m ) running time of algorithm

Mat-Select2(A, k) is optimal, when k ≥ 2m. A simple proof of this claim can also be found
in Section 4.5.

4.3 An O(m + ∑m
i=1 log ni) algorithm

Assume now that the i-th row of A contains only ni items. We assume that ni ≥ 1, as
otherwise, we can simply remove the i-th row. We can run algorithms Mat-Select1 and
Mat-Select2 of the previous sections by adding dummy +∞ items at the end of each row,
but this may be wasteful. We now show that a simple modification of Mat-Select2, which
we call Mat-Select3, can solve the selection problem in O(m+

∑m
i=1 logni) time. We focus

first on the number of comparisons performed by the new algorithm.
At the beginning of each iteration, Mat-Select2 sets the block size to b =

⌊
k

2m

⌋
. If ni < b,

then the last item in the first block of the i-th row is +∞. Assuming that k ≤
∑m

i=1 ni, no
representatives from the i-th row will be selected in the current iteration. There is therefore
no point in considering the i-th row in the current iteration. Let m′ be the number of long
rows, i.e., rows for which ni ≥

⌊
k

2m

⌋
. We want to reduce the running time of the iteration to

O(m′) and still reduce k by some constant factor.
The total number of items in the short rows is less than m

⌊
k

2m

⌋
≤ k

2 . The long rows
thus contain at least k

2 of the k smallest items of the matrix. We can thus run an iteration
of Mat-Select2 on the long rows with k′ = k

2 . In other words, we adjust the block size to
b′ =

⌊
k′

2m′

⌋
=
⌊

k
4m′

⌋
and use Mat-Select1 to select the m′ smallest representatives. This

identifies b′m′ ≥ k′

4 ≥
k
8 items as belonging to the k smallest items in A. Thus, each iteration

takes O(m′) time and reduces k by a factor of at least 7
8 .

In how many iterations did each row of the matrix participate? Let kj be the number of
items still to be selected at the beginning of iteration j. Let bj =

⌊
kj

2m

⌋
be the threshold for

long rows used in iteration j. As kj drops exponentially, so does bj . Thus, row i participates
in at most O(logni) of the last iterations of the algorithm. The total number of comparisons
performed is thus at most O(m+

∑m
i=1 logni), as claimed.

To show that the algorithm can also be implemented to run in O(m+
∑m

i=1 logni) time, we
need to show that we can quickly identify the rows that are long enough to participate in each
iteration. To do that, we sort dlognie using bucket sort. This takes only O(m+maxidlognie)
time. When a row loses some of its items, it is easy to move it to the appropriate bucket in
O(1) time. In each iteration we may need to examine rows in one bucket that turn out not
to be long enough, but this does not affect the total O(m+

∑m
i=1 logni) running time of the

algorithm.

I Theorem 10. Let A be a row-sorted matrix containing m rows, and let N= (n1, n2, . . . , nm),
where ni ≥ 1 be the number of items in the i-th row of the matrix, for 1 ≤ i ≤ m.
Let k ≤

∑m
i=1 ni. Algorithm Mat-Select3(A,N, k) selects the k smallest items in A in

O(m+
∑m

i=1 logni) time.

In Section 4.5 below we show that the running time of Mat-Select3(A,N, k) is optimal
for some values of N = (n1, n2, . . . , nm) and k, e.g., if k = 1

2
∑m

i=1 ni, i.e., for median
selection. The O(m log k

m ) running time of Mat-Select2(A, k) is sometimes better than the
O(m+

∑m
i=1 logni) running time of Mat-Select3(A,N, k). We next describe an algorithm,

Mat-Select4(A, k), which is always at least as fast as the three algorithms already presented,
and sometimes faster.
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4.4 An O(m + ∑m
i=1 log(ki + 1)) algorithm

As before, let ki be the (yet unknown) number of items in the i-th row that belong to the
smallest k items of the matrix. In this section we describe an algorithm for finding these ki’s
that runs in O(m+

∑m
i=1 log(ki + 1)) time.

We partition each row this time into blocks of size 1, 2, 4, . . .. The representative of a
block is again the last item in the block. Note that the first ki items in row i reside in
blog(ki + 1)c complete blocks, plus one incomplete block, if log(ki + 1) is not an integer.
Thus L =

∑m
i=1blog(ki + 1)c is exactly the number of block representatives that belong to

the k smallest items of the matrix.
Suppose that ` ≥ L is an upper bound on the true value of L. We can run Mat-Select1

to select the ` smallest block representatives in O(m + `) time. If `i representatives were
selected from row i, we let ni = 2`i+1 − 1. We now run Mat-Select3 which runs in
O(m+

∑m
i=1 logni) = O(m+

∑m
i=1(`i +1)) = O(m+`). Thus, if ` = O(L), the total running

time is O(m+
∑m

i=1 log(ki + 1)), as promised.
How do we find a tight upper bound on L =

∑m
i=1blog(ki + 1)c? We simply try

` = m, 2m, 4m, . . ., until we obtain a value of ` that is high enough. If ` < L, i.e., ` is not large
enough, we can discover it in one of two ways. Either

∑m
i=1 ni < k, in which case ` is clearly

too small. Otherwise, the algorithm returns an array of ki values. We can check whether these
values are the correct ones in O(m) time. First compute M = maxm

i=1 Ai,ki
. Next check that

Ai,ki+1 > M , for 1 ≤ i ≤ m. As ` is doubled in each iteration, the cost of the last iteration
dominates the total running time which is thus O(m+ 2L) = O(m+

∑m
i=1 log(ki + 1)). We

call the resulting algorithm Mat-Select4.

I Theorem 11. Let A be a row-sorted matrix containing m rows and let k ≥ 2m. Al-
gorithm Mat-Select4(A, k) selects the k smallest items in A in O (m+

∑m
i=1 log(ki + 1))

time, where ki is the number of items selected from row i.

4.5 Lower bounds for selection from row-sorted matrices
We begin with a simple proof that the O(m log k

m ) algorithm is optimal for k ≥ 2m.

I Theorem 12. Any algorithm for selecting the k smallest items from a matrix with m

sorted rows must perform at least (m− 1) log m+k
m comparisons on some inputs.

Proof. We use the information-theoretic lower bound. We need to lower bound sk(m), which
is the number of m-tuples (k1, k2, . . . , km), where 0 ≤ ki, for 1 ≤ i ≤ m, and

∑m
i=1 ki = k. It

is easily seen that sk(m) =
(

m+k−1
m−1

)
, as this is the number of ways to arrange k identical

balls and m− 1 identical dividers in a row. We thus get a lower bound of

log
(
m+ k − 1
m− 1

)
≥ log

(
m+ k − 1
m− 1

)m−1
= (m−1) log m+ k − 1

m− 1 ≥ (m−1) log m+ k

m
,

where we used the well-known relation
(

n
k

)
>
(

n
k

)k. J

We next show that our new O(m+
∑m

i=1 logni) algorithm is optimal, at least in some
cases, e.g., when k = 1

2
∑m

i=1 ni which corresponds to median selection.

I Theorem 13. Any algorithm for selecting the k = 1
2
∑m

i=1 ni smallest items from a row-
sorted matrix with m rows of lengths n1, n2, . . . , nm ≥ 1 must perform at least

∑m
i=1 log(ni +

1)− log (1 +
∑m

i=1 ni) comparisons on some inputs.
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Proof. The number of possible solutions to the selection problem for all values of 0 ≤ k ≤∑m
i=1 ni is

∏m
i=1(ni + 1). (Each solution corresponds to a choice 0 ≤ ki ≤ ni, for i =

1, 2, . . . ,m.) We prove below that the number of solutions is maximized for k =
⌊ 1

2
∑m

i=1 ni

⌋
(and k =

⌈ 1
2
∑m

i=1 ni

⌉
). The number of possible solutions for this value of k is thus at least

(
∏m

i=1(ni + 1))/(1 +
∑m

i=1 ni). Taking logarithm, we get the promised lower bound.
We next prove that the number of solutions is maximized when k =

⌊ 1
2
∑m

i=1 ni

⌋
. Let Xi

be a uniform random variable on {0, 1, . . . , ni}, and let Y =
∑m

i=1 Xi. The number of
solutions for a given value k is proportional to the probability that Y attains the value k.
Let Yj =

∑j
i=1 Xi. We prove by induction on j that the distribution of Yj is maximized at

µj = 1
2
∑j

i=1 ni, is symmetric around µj , and is increasing up to µj and decreasing after µj .
The base case is obvious as Y1 = X1 is a uniform distribution. The induction step follows
from an easy calculation. Indeed, Yj = Yj−1 +Xj , where Xj is uniform and Yj−1 has the
required properties. The distribution of Yj is the convolution of the distributions of Yj−1
and Xj , which corresponds to taking the average of nj + 1 values of the distribution of Yj−1.
It follows easily that Yj also has the required properties. J

We next compare the lower bound obtained,
∑m

i=1 log(ni + 1)− log (1 +
∑m

i=1 ni), with
the upper bound O(m+

∑m
i=1 logni). The subtracted term in the lower bound is dominated

by the first term, i.e., log (1 +
∑m

i=1 ni) ≤ log(m+1)
m

∑m
i=1 log(ni + 1), where equality holds

only if ni = 1, for every i. When the ni’s are large, the subtracted term becomes negligible.
Also, as ni ≥ 1, we have

∑m
i=1 log(ni + 1) ≥ m. Thus, the lower and upper bound are always

within a constant multiplicative factor of each other.
The optimality of the O(m+

∑m
i=1 logni) algorithm also implies the optimality of our

new “output-sensitive” O(m+
∑m

i=1 log(ki + 1)) algorithm. As ki ≤ ni, an algorithm that
performs less than c(m+

∑m
i=1 log(ki +1)) comparisons on all inputs, for some small enough c,

would contradict the lower bounds for the O(m +
∑m

i=1 logni) algorithm. We also note
that an argument very similar to the one used in the proof of Theorem 13 shows that
Ω(
∑m

i=1 log(ki + 1)) comparisons are required even if the algorithm is given a multiplicative
approximation of the ki’s.

5 Selection from X + Y

We are given two unsorted sets X and Y and would like to find the k-th smallest item, and
the set of k smallest items, in the set X + Y . We assume that |X| = m, |Y | = n, where
m ≥ n.

5.1 An O(m + n + k) algorithm
Heapify X and heapify Y , which takes O(m+n) time. Let x1, . . . , xm be the heapified order
of X, i.e., xi ≤ x2i, x2i+1, whenever the respective items exists. Similarly, let y1, . . . , yn be the
heapified order of Y . Construct a heap of maximum degree 4 representing X + Y as follows.
The root is x1 +y1. Item xi +y1, for i ≥ 1 has four children x2i +y1, x2i+1 +y1, xi +y2, xi +y3.
Item xi + yj , for i ≥ 1, j > 1, has two children xi + y2j , xi + y2j+1, again when the respective
items exist. (Basically, this is a heapified version of X + y1, where each xi + y1 is the root
of a heapified version of xi + Y .) We can now apply algorithm Soft-Select on this heap,
which takes only O(k) time. We call the resulting algorithm X+Y-Select1(X,Y ).

I Theorem 14. Let X and Y be unordered sets of m and n items respectively. Then,
algorithm X+Y-Select1(X,Y ) finds the k-th smallest item, and the set of k smallest items in
X + Y , in O(m+ n+ k) time.
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We note that if X and Y are given to us as heaps, and in particular, if they are sorted,
then the running time of algorithm X+Y-Select1(X,Y ) becomes O(k), as there is no need to
heapify X and Y .

5.2 An O(m log k
m

) algorithm, for k ≥ 6m, m ≥ n

If Y is sorted, then X + Y is a row-sorted matrix, and we can use algorithm Mat-Select2 of
Theorem 9. We can sort Y in O(n logn) time and get an O(m log k

m + n logn) algorithm.
The running time of this algorithm is O(m log k

m ) when k ≥ mnε, for any fixed ε > 0. But,
for certain values of m,n and k, e.g., m = n and k = mno(1), the cost of sorting is dominant.
We show below that the sorting can always be avoided.

We first regress and describe an alternative O(m log k
m ) algorithm for selection from row-

sorted matrices. The algorithm is somewhat more complicated than algorithm Mat-Select2
given in Section 4.2. The advantage of the new algorithm is that much less assumptions are
made about the order of the items in each row. A similar approach was used by Frederickson
and Johnson [12] but we believe that our approach is simpler. In particular we rely on a
simple partitioning lemma (Lemma 16 below) which is not used, explicitly or implicitly,
in [12].

Instead of partitioning each row into blocks of equal size, as done by algorithm Mat-Select2
of Section 4.2, we partition each row into exponentially increasing blocks, similar, but not
identical, to the partition made by algorithm Mat-Select3 of Section 4.3.

Let b =
⌊

k
3m

⌋
. Partition each row into blocks of size b, b, 2b, 4b, . . . , 2jb, . . .. The represent-

ative of a block is again the last item in the block. We use algorithm Mat-Select1 to select
the m smallest representatives. This takes O(m) time. Let e1 < e2 < . . . < em denote the m
selected representatives in (the unknown) sorted order, and let s1, s2, . . . , sm be the sizes of
their blocks. We next use an O(m) weighted selection algorithm (see, e.g., Cormen et al. [7],
Problem 9.2, p. 225) to find the smallest ` such that k

6 ≤
∑`

j=1 sj and the items e1, e2, . . . , e`,
in some order. Such an ` ≤ m must exist, as m

⌊
k

3m

⌋
≥ m( k

3m − 1) = 1
3 (k − 3m) ≥ k

6 , as
k ≥ 6m. Also note that k

6 ≤
∑`

j=1 sj <
k
3 , as the addition of each block at most doubles the

total size, i.e.,
∑`

j=1 sj < 2
∑`−1

j=1 sj , for ` > 1.

I Lemma 15. All items of the blocks whose representatives are e1, e2, . . . , e` are among the k
smallest items in the matrix.

Proof. Let Sk be the set of k smallest items of the matrix. Consider again the partition
of Sk among the m rows of the matrix. Less than mb = m

⌊
k

3m

⌋
≤ k

3 of the items of Sk

belong to rows that do not contain a full block of Sk items. Thus, at least 2k
3 of the items

of Sk are contained in rows that contain at least one full block of Sk items. The exponential
increase in the size of the blocks ensures that in each such row, at least half of the items of Sk

are contained in full blocks. Thus, at least k
3 of the items of Sk are contained in full blocks.

In particular, if e1, e2, . . . , e` are the smallest block representatives, and
∑`

j=1 sj ≤ k
3 , then

all the items in the blocks of e1, e2, . . . , e` belong to Sk. J

We can thus remove all the items in the blocks of e1, e2, . . . , e` from the matrix and proceed
to find the k−

∑`
j=1 sj ≤ 5k

6 smallest items of the remaining matrix. When k drops below 6m,
we use the algorithm of Mat-Select1 of Section 4.1. The resulting algorithm performs
O(log k

m ) iterations, each taking O(m) time, so the total running time is O(m log k
m ). (This

matches the running time of Mat-Select2, using a somewhat more complicated algorithm.)
We make another small adaptation to the new O(m log k

m ) algorithm before returning
to the selection from X + Y problem. Instead of letting b =

⌊
k

3m

⌋
and using blocks of size
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Figure 8 Partitions of Y for n = 32.

b, b, 2b, 4b, . . ., we let b′ = 2blog2 bc, i.e., b′ is the largest power of 2 which is at most b, and
use blocks of size b′, b′, 2b′, 4b′, . . .. All block sizes are now powers of 2. As the sizes of the
blocks may be halved, we select the 2m smallest block representatives. The number of items
removed from each row in each iteration is now also a power of 2.

Back to the X + Y problem. The main advantage of the new algorithm is that we do
not really need the items in each row to be sorted. All we need are the items of ranks
b, b, 2b, 4b, . . ., where b = 2` for some ` > 0, in each row. In the X + Y problem the rows,
or what remains of them after a certain number of iterations, are related, so we can easily
achieve this task.

At the beginning of the first iteration, we use repeated median selection to find the items
of Y whose ranks are 1, 2, 4, . . .. This also partitions Y into blocks of size 1, 2, 4, . . . such that
items of each block are smaller than the items of the succeeding block. We also place the
items of ranks 1, 2, 4, . . . in their corresponding places in Y . This gives us enough information
to run the first iteration of the matrix selection algorithm.

In each iteration, we refine the partition of Y . We apply repeated median selection on
each block of size 2` in Y , breaking it into blocks of size 1, 1, 2, 4, . . . , 2`−1. The total time
needed is O(n) per iteration, which we can easily afford. We assume for simplicity that
n = |Y | is a power of 2 and that all items in Y are distinct. We now have the following fun
lemma:

I Lemma 16. After i iterations of the above process, if 1 ≤ r ≤ n has at most i 1’s in its
binary representation, then Y [r] is the item of rank r in Y , i.e., Y [1 : r−1] < Y [r] < Y [r+1 :
n]. Additionally, if r1 < r2 both have at most i 1’s in their binary representation, and r2 is the
smallest number larger than r1 with this property, then Y [1 : r1] < Y [r1+1 : r2] < Y [r2+1 : n],
i.e., the items in Y [r1 + 1 : r2] are all larger than the items in Y [1 : r1] and smaller than the
items in Y [r2 + 1 : n].

For example, if n = 32, then after the first iteration we have the partition

Y [1], Y [2], Y [3 : 4], Y [5 : 8], Y [9 : 16], Y [17 : 32] .
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After the second iteration, we have the partition

Y [1], Y [2], Y [3], Y [4], Y [5], Y [6], Y [7 : 8], Y [9], Y [10], Y [11:12], Y [13 : 16],
Y [17], Y [18], Y [19 : 20], Y [21 : 24], Y [25 : 32] .

(Actually, blocks of size 2 are also sorted.) The partitions obtained for n = 32 in the first
five iterations are also shown in Figure 8.

Proof. The claim clearly holds after the first iteration, as numbers with a single 1 in their
binary representation are exactly powers of 2. Let Y [r1 + 1 : r2] be a block of Y generated
after i iterations. If r1 has less than i 1’s, then r2 = r1 + 1, so the block is trivial. Suppose,
therefore, that r1 has exactly i 1’s in its representation and that r2 = r1 +2`. (` is actually the
index of the rightmost 1 in the representation of r1, counting from 0.) In the (i+1)-st iteration,
this block is broken into the blocks Y [r1 + 1], Y [r1 + 2], Y [r1 + 3 : r1 + 4], . . . , Y [r1 + 2`−1 + 1 :
r1 + 2`]. As the numbers r1 + 2j , for 1 ≤ j < ` are exactly the number between r1 and r2
with at most i+ 1 1’s in their binary representation, this establishes the induction step. J

After i iterations of the modified matrix selection algorithm applied to an X+Y instance,
we have removed a certain number of items di from each row. The number of items removed
from each row in each iteration is a power of 2. By induction, di has at most i 1’s in its
representation. In the (i+ 1)-st iteration we set b = 2`, for some ` ≥ 1 and need the items
of rank b, 2b, 4b, . . . from what remains of each row. The items needed from the i-th row
are exactly X[i] + Y [di + 2jb], for j = 0, 1, . . .. The required items from Y are available, as
di + 2jb has at most i+ 1 1s in its binary representation! We call the resulting algorithm
X+Y-Select2(X,Y ).

I Theorem 17. Let X and Y be unordered sets of m and n items respectively, where m ≥ n,
and let k ≥ 6m. Algorithm X+Y-Select2(X,Y ) finds the k-th smallest item, and the set of k
smallest items in X + Y , in O(m log k

m ) time.

6 Concluding remarks

We used soft heaps to obtain a very simple O(k) algorithm for selecting the k-th smallest item
from a binary min-heap, greatly simplifying the previous O(k) algorithm of Frederickson [11].
We used this simple heap selection algorithm to obtain simpler algorithms for selection from
row-sorted matrices and from X + Y , simplifying results of Frederickson and Johnson [12].
The simplicity of our algorithms allowed us to go one step further and obtain some improved
algorithms for these problems, in particular an O(m+

∑m
i=1 log(ki + 1)) “output-sensitive”

algorithm for selection from row-sorted matrices.
Our results also demonstrate the usefulness of soft heaps outside the realm of minimum

spanning tree algorithms. It would be nice to find further applications of soft heaps.
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