Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH scholarly article en Shimi, Adam; Hurault, Aurélie; Quéinnec, Philippe http://www.dagstuhl.de/lipics License
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-100783
URL:

; ;

Characterizing Asynchronous Message-Passing Models Through Rounds

pdf-format:


Abstract

Message-passing models of distributed computing vary along numerous dimensions: degree of synchrony, kind of faults, number of faults... Unfortunately, the sheer number of models and their subtle distinctions hinder our ability to design a general theory of message-passing models. One way out of this conundrum restricts communication to proceed by round. A great variety of message-passing models can then be captured in the Heard-Of model, through predicates on the messages sent in a round and received during or before this round. Then, the issue is to find the most accurate Heard-Of predicate to capture a given model. This is straightforward in synchronous models, because waiting for the upper bound on communication delay ensures that all available messages are received, while not waiting forever. On the other hand, asynchrony allows unbounded message delays. Is there nonetheless a meaningful characterization of asynchronous models by a Heard-Of predicate? We formalize this characterization by introducing Delivered collections: the collections of all messages delivered at each round, whether late or not. Predicates on Delivered collections capture message-passing models. The question is to determine which Heard-Of predicates can be generated by a given Delivered predicate. We answer this by formalizing strategies for when to change round. Thanks to a partial order on these strategies, we also find the "best" strategy for multiple models, where "best" intuitively means it waits for as many messages as possible while not waiting forever. Finally, a strategy for changing round that never blocks a process forever implements a Heard-Of predicate. This allows us to translate the order on strategies into an order on Heard-Of predicates. The characterizing predicate for a model is then the greatest element for that order, if it exists.

BibTeX - Entry

@InProceedings{shimi_et_al:LIPIcs:2018:10078,
  author =	{Adam Shimi and Aur{\'e}lie Hurault and Philippe Qu{\'e}innec},
  title =	{{Characterizing Asynchronous Message-Passing Models Through Rounds}},
  booktitle =	{22nd International Conference on Principles of Distributed  Systems (OPODIS 2018)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-098-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{125},
  editor =	{Jiannong Cao and Faith Ellen and Luis Rodrigues and Bernardo Ferreira},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/10078},
  URN =		{urn:nbn:de:0030-drops-100783},
  doi =		{10.4230/LIPIcs.OPODIS.2018.18},
  annote =	{Keywords: Message-passing, Asynchronous Rounds, Dominant Strategies, Failures}
}

Keywords: Message-passing, Asynchronous Rounds, Dominant Strategies, Failures
Seminar: 22nd International Conference on Principles of Distributed Systems (OPODIS 2018)
Issue date: 2018
Date of publication: 2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI