
Approximation Schemes for 0-1 Knapsack
Timothy M. Chan

Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
tmc@illinois.edu

Abstract
We revisit the standard 0-1 knapsack problem. The latest polynomial-time approximation scheme
by Rhee (2015) with approximation factor 1 + ε has running time near Õ(n+ (1/ε)5/2) (ignoring
polylogarithmic factors), and is randomized. We present a simpler algorithm which achieves the
same result and is deterministic.

With more effort, our ideas can actually lead to an improved time bound near Õ(n+(1/ε)12/5),
and still further improvements for small n.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases knapsack problem, approximation algorithms, optimization, (min,+)-
convolution

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.5

1 Introduction

In the 0-1 knapsack problem, we are given a set of n items where the i-th item has weight
wi ≤W and profit pi > 0, and we want to select a subset of items with total weight bounded
by W while maximizing the total profit. In other words, we want to maximize

∑n
i=1 piξi

subject to the constraint that
∑n
i=1 wiξi ≤W over all ξ1, . . . , ξn ∈ {0, 1}.

This classic textbook problem is among the most fundamental in combinatorial optimiza-
tion and approximation algorithms, and is important for being one of the first NP-hard
problems shown to possess fully polynomial-time approximation schemes (FPTASs), i.e.,
algorithms with approximation factor 1 + ε for any given parameter ε ∈ (0, 1), taking time
polynomial in n and 1

ε .
Despite all the attention the problem has received, the “fine-grained complexity” of

FPTASs remains open: we still do not know the best running time as a function of n and 1
ε .

An O(1
εn

3)-time algorithm via dynamic programming is perhaps the most often taught in
undergraduate algorithm courses. The first published FPTAS by Ibarra and Kim [6] from
1975 required Õ(n + (1

ε)4) time, where the Õ notation hides polylogarithmic factors in n
and 1

ε . Lawler [12] subsequently obtained a small improvement, but only in the hidden
polylogarithmic factors. For a long time, the record time bound was Õ(n+ (1

ε)3) by Kellerer
and Pferschy [10]. Recently, in a (not-too-well-known) Master’s thesis, Rhee [14] described a
new randomized algorithm running in Õ(n+ (1

ε)2.5) time. (Note that improved time bounds
of this form tell us how much accuracy we can guarantee while keeping near-linear running
time; for example, Rhee’s result implies that a (1 + n−2/5)-approximate solution can be
found in Õ(n) time.)

In this paper, we give a new presentation of an algorithm that has the same running
time as Rhee’s, with the added advantages of being deterministic and simpler: One part
of Rhee’s algorithm relied on solving several linear programs with two constraints, using a
Lagrangian relaxation and some sophisticated form of randomized binary search (although
I suspect known low-dimensional linear programming techniques might help). In contrast,

© Timothy M. Chan;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 5; pp. 5:1–5:12

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 Approximation Schemes for 0-1 Knapsack

Table 1 FPTASs for the 0-1 knapsack problem.

running time reference year
nO(1/ε) Sahni [15] 1975
O(n log n + (1

ε
)4 log 1

ε
) Ibarra and Kim [6] 1975

O(n log 1
ε

+ (1
ε
)4) Lawler [12] 1979

O(n log 1
ε

+ (1
ε
)3 log2 1

ε
) Kellerer and Pferschy [10] 2004

O(n log 1
ε

+ (1
ε
)5/2 log3 1

ε
) (randomized) Rhee [14] 2015

O(n log 1
ε

+ (1
ε
)5/2/2Ω(

√
log(1/ε))) (deterministic) Section 4

O(n log 1
ε

+ (1
ε
)12/5/2Ω(

√
log(1/ε))) (deterministic) Appendix A

O(1
ε
n2) Lawler [12] 1979

O((1
ε
)2n log 1

ε
) Kellerer and Pferschy [9] 1999

Õ(1
ε
n3/2) (randomized) Appendix B

O(((1
ε
)4/3n + (1

ε
)2)/2Ω(

√
log(1/ε))) (deterministic) Appendix B

our approach bypasses this part completely. Ironically, the “new” approach is just a simple
combination of two previous approaches. Along the way, we also notice that the hidden
polylogarithmic factors in the second term can be eliminated; in fact, we can get speedup
of a superpolylogarithmic factor (2Ω(

√
log(1/ε))) by using the latest results on (min,+)-

convolution [2, 16], if we give up on simplicity.
In research, simplifying previous solutions can often serve as a starting point to obtaining

new improved solutions. Indeed, by combining our approach with a few extra ideas, we
can actually obtain a faster FPTAS for 0-1 knapsack running in Õ(n+ (1

ε)2.4) time. These
extra ideas are interesting (relying on an elementary number-theoretic lemma), but since
the incremental improvement is small and the algorithm is more complicated, we feel it is of
secondary importance compared to the simpler Õ(n+ (1

ε)2.5) algorithm (in the true spirit
of SOSA), and thus defer that result to the appendix. The appendix also describes some
further improved bounds for small n (see the bottom half of Table 1).

In passing, we should mention two easier special cases. First, for the subset sum problem,
corresponding to the case when pi = wi, Kellerer et al. [8] obtained algorithms with Õ(1

εn)
and Õ(n+ (1

ε)2) running time. For the unbounded knapsack problem, where the variables
ξi are unbounded nonnegative integers, Jansen and Kraft [7] obtained an Õ(n+ (1

ε)2)-time
algorithm; the unbounded problem can be reduced to the 0-1 case, ignoring logarithmic
factors [5]. These methods do not adapt to the general 0-1 knapsack problem.

2 Preliminaries

First we may discard all items with pi ≤ ε
n maxj pj ; this changes the optimal value by at

most εmaxj pj , and thus at most a factor of 1 + ε. So we may assume that maxj pj

minj pj
≤ n

ε . By
rounding, we may assume that all pi’s are powers of 1 + ε. In particular, there are at most
m = O(1

ε log n
ε) distinct pi values.

We adopt a “functional” approach in presenting our algorithms, which does not need
explicit reference to dynamic programming, and makes analysis of approximation factors
more elegant:

T.M. Chan 5:3

Given input I = {(w1, p1), . . . , (wn, pn)}, we consider the more general problem of
approximating the function

fI(x) := max
{

n∑
i=1

piξi :
n∑
i=1

wiξi ≤ x, ξ1, . . . , ξn ∈ {0, 1}
}

for all x ∈ R. Note that fI is a monotone step function (in this paper, “monotone” always
means “nondecreasing”). It is more convenient to define approximation from below: we say
that a function f̃ approximates a function f with factor 1 + ε if 1 ≤ f(x)

f̃(x)
≤ 1 + ε for all

x ∈ R. We say that f̃ approximates f with additive error δ if 0 ≤ f(x)− f̃(x) ≤ δ.
We can merge fI functions by the following easy observation: if I is the disjoint union

of I1 and I2, then fI = fI1 ⊕ fI2 , where the operator ⊕ denotes the (max,+)-convolution,
defined by the formula

(f ⊕ g)(x) = max
x′∈R

(f(x′) + g(x− x′)).

In the “base case” when the pi’s are all equal to a common value p, the function fI is easy
to compute, by the obvious greedy algorithm: the function values are −∞, 0, p, 2p, . . . , np
and the x-breakpoints are 0, w1, w1 + w2, . . . , w1 + · · · + wn, after arranging the items in
nondecreasing order of wi. We say that a step function is p-uniform if the function values
are of the form −∞, 0, p, 2p, . . . , `p for some `. Furthermore, we say that a p-uniform
function is pseudo-concave if the sequence of differences of consecutive x-breakpoints is
nondecreasing. When the pi’s are all equal, fI is indeed uniform and pseudo-concave. Thus,
the original problem reduces to computing a monotone step function that is a (1 +O(ε))-
factor approximation of the ⊕ of m = O(1

ε log n
ε) uniform, pseudo-concave, monotone step

functions.
The following facts provides the building blocks for all our algorithms.

I Fact 1. Let f and g be monotone step functions with total complexity O(`) (i.e., with O(`)
steps). We can compute f ⊕ g in
(i) `2/2Ω(

√
log `) time if f and g are p-uniform;

(ii) O(`) time if f is p-uniform, and g is p-uniform and pseudo-concave;
(iii) O((` + `′ · p

′

p) log p′

p) time if f is p-uniform, and g is p′-uniform and pseudo-concave
with complexity `′, and p′ is a multiple of p.

Proof. Without loss of generality, assume that the ranges of f and g are {−∞, 0, 1, 2, . . . , `}.
(i) Define f−1(y) to be the smallest x with f(x) = y (if no such x exists, define f−1(y) to

be supremum of all x with f(x) < y). Define g−1(y) similarly. Both f−1 and g−1 can be
generated in O(`) time. We can compute the (min,+)-convolution

(f ⊕ g)−1(y) = min
y′∈{0,1,...,`}

(f−1(y′) + g−1(y − y′))

for all y ∈ {0, 1, . . . , 2`} in O(`2) time naively. From (f ⊕ g)−1, we can obtain f ⊕ g in
O(`) time.
A slight speedup to `2/2Ω(

√
log `) time is known for the (min,+)-convolution problem, by

using Bremner et al.’s reduction to (min,+)-matrix multiplication [2] and Williams’ algo-
rithm for the latter problem [16] (which was originally randomized but was derandomized
later [4]). This improvement is not simple, however.

SOSA 2018

5:4 Approximation Schemes for 0-1 Knapsack

(ii) For this part, Kellerer and Pferschy [10] have already described an O(` log `)-time
algorithm (the extra logarithmic factor does not matter to us in the end), but actually
we can directly reduce to a standard matrix searching problem [1]: computing the row
minima in an O(`)×O(`) matrix A satisfying the Monge property. To compute the above
(min,+)-convolution, we can set A[y, y′] = f−1(y) + g−1(y′ − y), and observe that the
Monge property A[y, y′] + A[y + 1, y′ + 1] ≤ A[y, y′ + 1] + A[y + 1, y′] is equivalent to
g−1(y′− y)− g−1(y′− y− 1) ≤ g−1(y′− y+ 1)− g−1(y′− y), which corresponds precisely
to the definition of pseudo-concavity of g. The well-known SMAWK algorithm [1] solves
the matrix searching problem in O(`) time.

(ii′) This part can be directly reduced to (ii) as follows. Say that a function h is shifted-p-
uniform if h+ a is p-uniform for some value a. The upper envelope of h1, . . . , hm refers
to the function h(x) = max{h1(x), . . . , hm(x)}.
We can express the given p-uniform function f as an upper envelope of p′

p shifted-p′-
uniform functions fi, each with complexity O(` pp′). For each i, we can compute fi ⊕ g
by (ii) (after shifting fi) in O(` pp′ + `′) time. The total time is O(p

′

p · (`
p
p′ + `′)). We

can then return the upper envelope of all these functions fi ⊕ g. Note that the upper
envelope of p

′

p step functions can be constructed in time linear in their total complexity
times log p

p′ , by sweeping the breakpoints from left to right, using a priority queue to
keep track of the current maximum. J

3 Two Known Methods with Exponent 3

We begin with two simple approximation approaches, one of which uses Fact 1(i) and the
other uses Fact 1(ii′).

I Lemma 1. Let f and g be monotone step functions with total complexity ` and ranges con-
tained in {−∞, 0}∪ [A,B]. Then we can compute a monotone step function that approximates
f ⊕ g with factor 1 +O(ε) and complexity Õ(1

ε) in
(i) O(`) + Õ((1

ε)2/2Ω(
√

log(1/ε))) time in general;
(ii) O(`) + Õ(1

ε) time if g is p-uniform and pseudo-concave.1

Proof. For a given b ∈ [A,B], we first describe how to compute an approximation2 of
min{f ⊕ g, b} with additive error O(εb) and complexity O(1

ε):
(i) In the general case, we just round the function values of min{f, b} and min{g, b} down

to multiples of εb (in O(`) time). The new functions min{f, b} and min{g, b} are (εb)-
uniform with complexity O(1

ε). We can then compute min{f ⊕ g, b} by Fact 1(i) in
O((1

ε)2/2Ω(
√

log(1/ε))) time.
(ii) In the case when g is p-uniform and pseudo-concave, we consider two subcases:

Case 1: p ≥ εb. We may assume that p is a multiple of εb, by adjusting ε by an
O(1) factor. We round the function values of min{f, b} down to multiples of εb. The
new function f is (εb)-uniform. We can then compute min{f ⊕ g, b} by Fact 1(ii′) in
Õ(1

ε + b
p ·

p
εb) = Õ(1

ε) time.

1 Throughout, we use the Õ notation to hide polylogarithmic factors not just in n and 1
ε , but also other

parameters such as B
A and 1

δ0
. Eventually, these parameters will be set to values which are polynomial

in n and 1
ε .

2 min{f, b} denotes the function F with F (x) = min{f(x), b}.

T.M. Chan 5:5

Case 2: εb > p. We may assume that εb is a multiple of p, by adjusting ε by an
O(1) factor. We can round the function values of min{g, b} down to multiples of εb
while preserving pseudo-concavity (since each difference of consecutive x-breakpoints
in the new function is the sum of εbp differences in the old function); the rounding
causes additive error O(εb). We have now effectively made p equal to εb, and so Case
1 applies.

To finish the proof of (i) or (ii), we apply the above procedure to every b ∈ [A,B] that is
a power of 2, and return the upper envelope of the resulting O(log B

A) functions. This gives
a (1 +O(ε))-factor approximation of f ⊕ g (since in the case when the function value lies
between b/2 and b, the O(εb) additive error for min{f ⊕ g, b} implies approximation factor
1 +O(ε)). The running time increases by a factor of O(log B

A). J

I Lemma 2. Let f1, . . . , fm be monotone step functions with total complexity O(n) and
ranges contained in {−∞, 0} ∪ [A,B]. Then we can compute a monotone step function that
approximates f1 ⊕ · · · ⊕ fm with complexity Õ(1

ε) in
(i) O(n) + Õ((1

ε)2m/2Ω(
√

log(1/ε))) time in general;
(ii) O(n) + Õ(1

εm
2) time if every fi is pi-uniform and pseudo-concave for some pi.

Proof.
(i) We use a simple divide-and-conquer algorithm: recursively approximate f1 ⊕ · · · ⊕ fm/2

and fm/2+1 ⊕ · · · ⊕ fm, and return a (1 + O(ε))-factor approximation of the ⊕ of the
two resulting functions, by using Lemma 1(i). Since the recursion tree has O(m) nodes
each with cost Õ((1

ε)2/2Ω(
√

log(1/ε))) (except for the leaf nodes, which have a total
additional cost O(n)), the total time is O(n) + Õ(m(1

ε)2/2Ω(
√

log(1/ε))). However, since
the depth of the recursion is logm, the approximation factor increases to (1+O(ε))logm =
1 +O(ε logm). We can adjust ε by a factor of logm, which increases the running time
only by polylogarithmic factors.

(ii) We use a simple incremental algorithm: initialize f = f1; for each i = 2, . . . ,m, compute
a (1 +O(ε))-factor approximation of f ⊕ fi, by using Lemma 1(ii), and reset f to this
new function. The total time is O(n) + Õ(m · 1

ε). However, the approximation factor
increases to (1 +O(ε))m = 1 +O(εm). We can adjust ε by a factor of m, which increases
the running time to O(n) + Õ(m · 1

ε/m). J

Both the divide-and-conquer and incremental methods in Lemmas 2(i) and (ii) are known,
or are reinterpretations of known methods [9, 10, 14]. The divide-and-conquer method is
similar to the “merge-and-reduce” technique often used in streaming (and in fact immediately
implies a space-efficient streaming algorithm for the 0-1 knapsack problem). As m = Õ(1

ε),
both method happen to yield an 0-1 knapsack algorithm with roughly the same time bound,
near Õ(n+ (1

ε)3).

4 A Simpler Algorithm with Exponent 5/2

To improve the running time, we use a very simple idea: just combine the two methods!

I Theorem 3. Let f1, . . . , fm be monotone step functions with total complexity O(n) and
ranges contained in {−∞, 0} ∪ [A,B]. If every fi is pi-uniform and pseudo-concave for some
pi, then we can compute a monotone step function that approximates f1 ⊕ · · · ⊕ fm with
factor 1 +O(ε) and complexity Õ(1

ε) in O(n) + Õ((1
ε)3/2m/2Ω(

√
log(1/ε))) time.

SOSA 2018

5:6 Approximation Schemes for 0-1 Knapsack

Proof. Divide the set of given functions into r subsets of mr functions, for a parameter r to
be specified later. For each subset, approximate the ⊕ of its m

r pseudo-concave functions
by Lemma 2(ii). Finally, return an approximation of the ⊕ of the r resulting functions, by
using Lemma 2(i). The total time is

O(n) + Õ

(
r

1
ε

(m
r

)2
+ (r − 1)

(
1
ε

)2
/ 2Ω(

√
log(1/ε))

)
.

Setting r =
⌈√

εm2c
√

log(1/ε)
⌉
for a sufficiently small constant c yields the theorem. J

I Corollary 4. There is a (1 + ε)-approximation algorithm for 0-1 knapsack with running
time O(n log 1

ε + (1
ε)5/2/2Ω(

√
log(1/ε))).

Proof. We apply the theorem with m = Õ(1
ε) and B

A = O(n
2

ε). Initial sorting of the wi’s
takes O(n logn) time. (Note that we may assume n ≤ (1

ε)O(1), for otherwise we can switch
to Lawler’s algorithm [12]. In particular, logn = O(log 1

ε).) J

This completes the description of our new simpler algorithm.

5 Closing Remarks

We have described how to compute approximations of the optimal value, but not a corre-
sponding subset of items. To output the subset, we can modify the algorithms to record extra
information whenever we apply Fact 1 to compute the ⊕ of two functions f and g. Namely,
for each step in the step function f ⊕ g, we store the corresponding steps from f and g that
define its y-value. Then a solution achieving the returned profit value can be retrieved by
proceeding backwards in a straightforward way (as in most dynamic programming algorithms).
Since we have performed a total of Õ(m) ⊕ operations to functions with complexity Õ(1

ε),
the total space usage is O(n) + Õ(1

εm) = O(n) + Õ((1
ε)2). (The space bound can probably

be reduced by known space-reduction techniques [13, 9] on dynamic programming.)
The main open question is whether the running time can be improved to near O(n+(1

ε)2).
Our improvements in the appendix will hopefully inspire future work. Note that any
improved subquadratic algorithm for (min,+)-convolution would automatically lead to
further improvements on the time bounds of our algorithms. The truly subquadratic
algorithm by Chan and Lewenstein [3] for bounded monotone integer sequences does not
seem applicable here for arbitrary weights, unfortunately. In the opposite direction, a variant
of a recent reduction of Cygan et al. [5] or Künnemann et al. [11] shows that there is no
algorithm for 0-1 (or unbounded) knapsack with O((n+ 1

ε)2−δ) running time, assuming the
conjecture that there is no truly subquadratic algorithm for (min,+)-convolution.

References

1 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.
Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.
doi:10.1007/BF01840359.

2 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

http://dx.doi.org/10.1007/BF01840359
http://dx.doi.org/10.1007/s00453-012-9734-3

T.M. Chan 5:7

3 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive combina-
torics. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 31–40. ACM, 2015. doi:10.1145/2746539.2746568.

4 Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1246–1255. SIAM, 2016. doi:10.1137/
1.9781611974331.ch87.

5 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80
of LIPIcs, pages 22:1–22:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.22.

6 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. J. ACM, 22(4):463–468, 1975. doi:10.1145/321906.321909.

7 Klaus Jansen and Stefan Erich Julius Kraft. A faster FPTAS for the unbounded knapsack
problem. In Zsuzsanna Lipták and William F. Smyth, editors, Combinatorial Algorithms -
26th International Workshop, IWOCA 2015, Verona, Italy, October 5-7, 2015, Revised Se-
lected Papers, volume 9538 of Lecture Notes in Computer Science, pages 274–286. Springer,
2015. doi:10.1007/978-3-319-29516-9_23.

8 Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza. An efficient
fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci.,
66(2):349–370, 2003. doi:10.1016/S0022-0000(03)00006-0.

9 Hans Kellerer and Ulrich Pferschy. A new fully polynomial time approximation scheme
for the knapsack problem. J. Comb. Optim., 3(1):59–71, 1999. doi:10.1023/A:
1009813105532.

10 Hans Kellerer and Ulrich Pferschy. Improved dynamic programming in connection with
an FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5–11, 2004. doi:10.1023/B:
JOCO.0000021934.29833.6b.

11 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained com-
plexity of one-dimensional dynamic programming. In Ioannis Chatzigiannakis, Piotr Indyk,
Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80
of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.21.

12 Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper.
Res., 4(4):339–356, 1979. doi:10.1287/moor.4.4.339.

13 M. J. Magazine and O. Oguz. A fully polynomial approximation algorithm for the 0-1
knapsack problem. Europ. J. Oper. Res., 123:325–332, 2000. doi:10.1016/0377-2217(84)
90286-8.

14 Donguk Rhee. Faster fully polynomial approximation schemes for knapsack problems.
Master’s thesis, MIT, 2015. URL: https://dspace.mit.edu/bitstream/handle/1721.
1/98564/920857251-MIT.pdf.

15 Sartaj Sahni. Approximate algorithms for the 0/1 knapsack problem. J. ACM, 22(1):115–
124, 1975. doi:10.1145/321864.321873.

16 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 664–673. ACM, 2014. doi:10.1145/2591796.2591811.

SOSA 2018

http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.22
http://dx.doi.org/10.1145/321906.321909
http://dx.doi.org/10.1007/978-3-319-29516-9_23
http://dx.doi.org/10.1016/S0022-0000(03)00006-0
http://dx.doi.org/10.1023/A:1009813105532
http://dx.doi.org/10.1023/A:1009813105532
http://dx.doi.org/10.1023/B:JOCO.0000021934.29833.6b
http://dx.doi.org/10.1023/B:JOCO.0000021934.29833.6b
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.21
http://dx.doi.org/10.1287/moor.4.4.339
http://dx.doi.org/10.1016/0377-2217(84)90286-8
http://dx.doi.org/10.1016/0377-2217(84)90286-8
https://dspace.mit.edu/bitstream/handle/1721.1/98564/920857251-MIT.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/98564/920857251-MIT.pdf
http://dx.doi.org/10.1145/321864.321873
http://dx.doi.org/10.1145/2591796.2591811

5:8 Approximation Schemes for 0-1 Knapsack

A An Improved Algorithm with Exponent 12/5

In the appendix, we show how the ideas in our Õ(n+ (1
ε)5/2) algorithm can lead to further

improvements.
In what follows, we make an extra input assumption that all the pi’s are within a

constant factor of each other. This case is sufficient to solve the general problem, because
we can divide the input items into O(log n

ε) classes with the stated property, and then
merge via Lemma 2(i). By rescaling, we assume that all pi’s are in [1, 2]. In this case, the
optimal fractional solution approximates the optimal integral solution with O(1) additive
error (since rounding the fractional solution causes the loss of at most one item), and the
optimal fractional solution can be found by the standard greedy algorithm. In other words,
with O(1) additive error, we can approximate fI by the step function with function values
−∞, 0, p1, p1 + p2, . . . , p1 + · · ·+ pn and the x-breakpoints 0, w1, w1 +w2, . . . , w1 + · · ·+wn,
after arranging the items in nondecreasing order of wi/pi. A solution with O(1) additive
error has approximation factor 1 +O(ε) if the optimal value is Ω(1

ε). Thus, we may assume
that the optimal value is upper-bounded by B = O(1

ε).

A.1 Refining the Second Method
To obtain further improvement, we will refine the second incremental method in Lemma 2(ii).
Recall that the inefficency of that method is due to the need to round in every iteration. We
observe that if all the pi’s are integer multiples of a small set of values, we do not need to
round as often, as explained in the following lemma.

For a set ∆, we say that p is a ∆-multiple if it is a multiple of δ for some δ ∈ ∆.

I Lemma 5. Let f1, . . . , fm be monotone step functions and ranges contained in {−∞, 0} ∪
[1, B]. Let ∆ ⊂ [δ0, 2δ0] and let b ∈ [1, B]. If every fi is pi-uniform and pseudo-concave for
some pi ∈ [1, 2] which is a ∆-multiple, then we can compute a monotone step function that
approximates min{f1 ⊕ · · · ⊕ fm, b} with additive error O(|∆|δ0) in Õ(1

δ0
bm) time.

Proof. We use a simple incremental algorithm: Initialize f = −∞. In each iteration, take
one δ ∈ ∆. Round the function values of min{f, b} down to multiples of δ, which incurs
an additive error of O(δ) = O(δ0). The new function min{f, b} is now δ-uniform, with
complexity O(bδ). For each not-yet-considered function fi with pi being a multiple of δ, reset
f to min{f⊕fi, b}, which can be computed exactly by Lemma 1(ii′) in Õ(bδ + b

pi
· pi

δ) = Õ(bδ0)
time. Repeat for the next δ ∈ ∆. The total time is Õ(bδ0m). The total additive error is
O(|∆|δ0). J

A.2 A Number-Theoretic Lemma
To use the above lemma efficiently, we need the following combinatorial/number-theoretic
lemma, stating that all numbers can be approximated well by integer multiples of a small set
of values.

I Lemma 6. Given ε < δ0 < 1, there exists a set ∆ ⊂ [δ0, 2δ0] of size Õ(δ0ε), such that every
value p ∈ [1, 2] can be approximated by a ∆-multiple with additive error O(ε).

The set can be constructed in Õ(1
ε) time by a randomized algorithm.

Proof. Let P = {1, 1 + ε, 1 + 2ε, 1 + 3ε, . . . , 1 + b 1
εcε}. Then |P | = O(1

ε). In the stated
property, it suffices to consider only values p in P .

T.M. Chan 5:9

Given p ∈ P and δ ∈ [δ0, 2δ0], p is approximated by a multiple of δ with additive error ε
iff 0 ≤ p− iδ ≤ ε for some integer i, i.e., iff δ lies in the set

Ip := [δ0, 2δ0] ∩
⋃
i

[
p− ε
i

,
p

i

]
where the union is over all integers i between 1−ε

2δ0 and 2
δ0
. Our goal is to find a small set ∆

of size Õ(δ0ε) that hits Ip for all p ∈ P .
Now, each set Ip is a union of Θ(1

δ0
) disjoint intervals of length Θ(ε

1/δ0) = Θ(εδ0) and thus
has measure Θ(ε). Thus, a uniformly distributed δ ∈ [δ0, 2δ0] lies in Ip with probability Θ(εδ0).
For a simple randomized construction, we can just choose O(δ0ε log |P |) values uniformly
from [δ0, 2δ0] and obtain a set ∆ that hits every Ip with high probability 1−O(1

|P |c) for any
constant c > 1. This yields a Monte Carlo algorithm, but it can be converted to Las Vegas,
since we can verify correctness of ∆ by generating and sorting all ∆-multiples in [1, 2] in
Õ(|∆| 1

δ0
) = Õ(1

ε) time. J

A.3 Putting the Refined Second Method Together
Applying Lemma 5 together with Lemma 6 now gives the following new result:

I Lemma 7. Let f1, . . . , fm be monotone step functions with ranges contained in {−∞, 0} ∪
[1, B]. If every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2], then we can compute
a monotone step function that approximates min{f1 ⊕ · · · ⊕ fm, B} with factor 1 +O(ε) and
complexity Õ(1

ε) in Õ(1
ε

√
Bm) expected time, assuming B = Õ(1

ε).

Proof. For a given b ∈ [1, B], we first describe how to compute an approximation of
min{f1 ⊕ · · · ⊕ fm, b} with additive error O(εb) and complexity O(1

ε):
Construct the set ∆ of size Õ(δ0ε) from Lemma 6 in Õ(1

ε) expected time for some parameter
δ0 > ε to be specified later. Generate and sort all ∆-multiples in [1, 2] in Õ(|∆| 1

δ0
) = Õ(1

ε)
time. For each pi, round it down to a ∆-multiple with additive error O(ε) (e.g., by
binary search) and change fi accordingly. This multiplies the approximation factor by
1 +O(ε), and thus increases the additive error by at most O(εb). Now apply Lemma 5.
The additive error is O(|∆|δ0) = O(δ

2
0
ε) = O(εb) by choosing δ0 := ε

√
b. The running

time is Õ(1
δ0
bm) = Õ(1

ε

√
bm). Note that the complexity of the resulting function can be

reduced to O(1
ε) by rounding down to multiples of εb.

To finish, we apply the above procedure to every b ∈ [1, B] that is a power of 2, and
then return the upper envelope of the resulting O(logB) functions. This gives a (1 +O(ε))-
factor approximation of min{f1 ⊕ · · · ⊕ fm, B}. The running time increases by a factor of
O(logB). J

As m = Õ(1
ε) and B = O(1

ε) in our application, the above lemma immediately gives an
alternative algorithm with near Õ(n+ (1

ε)5/2) running time. Notice that this alternative is
based solely on the second incremental method, without combining with the first divide-and-
conquer method. Naturally, it suggests the possibility that a combination might lead to a
further improvement. . .

A.4 Putting Everything Together
To this end, we first show that if the size of ∆ could be reduced (from O(δ0ε) to, say, O(δ0rε))
for some particular choice of δ0, then Lemma 7 could be improved (from Õ(1

ε

√
Bm) time to

Õ(1
r1/4ε

√
Bm)), by bootstrapping:

SOSA 2018

5:10 Approximation Schemes for 0-1 Knapsack

I Lemma 8. Let f1, . . . , fm be monotone step functions with ranges contained in {−∞, 0} ∪
[1, B]. Let ∆ ⊂ [δ0, 2δ0] be a set of size O(δ0rε) for some r ∈ [1, B2] where δ0 := r1/4ε

√
B. If

every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2] which is a ∆-multiple, then we
can compute a monotone step function that approximates min{f1 ⊕ · · · ⊕ fm, B} with factor
1 +O(ε) and complexity Õ(1

ε) in Õ(1
r1/4ε

√
Bm) expected time, assuming B = Õ(1

ε).

Proof.
1. First compute an approximation of min{f1 ⊕ · · · ⊕ fm, B/s} with factor 1 + O(ε) and

complexity Õ(1
ε) by Lemma 7 in Õ(1

ε

√
B/sm) time, for some parameter s ≥ 1 to be

specified later.
2. Next compute an approximation of min{f1 ⊕ · · · ⊕ fm, B} with additive error O(εB/s).

This can be done by applying Lemma 5. The additive error is O(|∆|δ0) = O(δ
2
0
rε) =

O(εB/s) by choosing δ0 := ε
√

(r/s)B. The running time is Õ(1
δ0
Bm) = Õ(1

ε

√
(s/r)Bm).

To finish, we return the upper envelope of the two resulting functions. This gives a (1+O(ε))-
factor approximation of min{f1 ⊕ · · · ⊕ fm, B} (since in the case when the function value
exceeds B/s, the O(εB/s) additive error in the second function implies 1+O(ε) approximation
factor). Note that the complexity of the resulting function can be reduced to Õ(1

ε) by rounding
down to powers of 1 + ε, which multiplies the approximation factor by 1 +O(ε).

The total running time

Õ

(
1
ε

√
B/sm+ 1

ε

√
(s/r)Bm

)
is Õ(1

r1/4ε

√
Bm) by setting s :=

√
r. J

To reduce the size of ∆, we combine the above with the first divide-and-conquer method
from Lemma 2(ii), which finally leads to our new improved result after fine-tuning the choice
of parameters:

I Theorem 9. Let f1, . . . , fm be monotone step functions with ranges contained in {−∞, 0}∪
[A,B]. If every fi is pi-uniform and pseudo-concave with pi ∈ [1, 2], then we can compute a
monotone step function that approximates min{f1 ⊕ · · · ⊕ fm, B} with factor 1 +O(ε) and
complexity Õ(1

ε) in Õ((1
ε)12/5/2Ω(

√
log(1/ε))) expected time if m,B = Õ(1

ε).

Proof. Construct the set ∆ of size Õ(δ0ε) from Lemma 6 with δ0 := r1/4ε
√
B for some

parameter r to be specified later. Generate and sort all ∆-multiples in [1, 2] in Õ(|∆| 1
δ0

) =
Õ(1

ε) time. For each pi, round it down to a ∆-multiple with additive error O(ε) and change
fi accordingly. This multiplies the approximation factor by 1 +O(ε).

Divide ∆ into r subsets ∆1, . . . ,∆r each of size Õ(δ0rε). For each subset ∆j , approximate
the ⊕ of all not-yet-considered functions fi with pi being a ∆j-multiple, by Lemma 8. Finally,
return an approximation of the ⊕ of the resulting r functions by using Lemma 2(i). The
total time is

Õ

(
1

r1/4ε

√
Bm + r

(
1
ε

)2
/ 2Ω(

√
log(1/ε))

)
= Õ

(
1
r1/4

(
1
ε

)5/2
+ r

(
1
ε

)2
/ 2Ω(

√
log(1/ε))

)
.

(1)

Setting r =
⌈
(1
ε)2/52c

√
log(1/ε)

⌉
and δ0 = ε2/52(c/3)

√
log(1/ε) for a sufficiently small constant

c yields the theorem. J

T.M. Chan 5:11

I Corollary 10. There is a (1 + ε)-approximation algorithm for 0-1 knapsack with expected
running time O(n log 1

ε + (1
ε)12/5/2Ω(

√
log(1/ε))).

Proof. In the case when all pi ∈ [1, 2], we apply the theorem with m = Õ(1
ε) and B = O(1

ε).
In addition, we take the greedy approximation and return the upper envelope of the two
resulting functions. As noted earlier, the general case reduces to the pi ∈ [1, 2] case, by
merging O(log n

ε) functions via Lemma 2(i), taking additional (1
ε)2/2Ω(

√
log(1/ε)) time. Initial

sorting takes O(n logn) time. (As before, we may assume n ≤ (1
ε)O(1), for otherwise we can

switch to Lawler’s algorithm.) J

A.5 Derandomization
Our algorithm is randomized because of Lemma 6. In the proof of Lemma 6, instead of
random sampling, we can run the standard greedy algorithm for hitting set, with O(δ0ε log |P |)
iterations. We gather all the intervals of Ip over all p ∈ P . In each iteration, we find a deepest
point λ, i.e., a point that hits the most intervals, and delete the intervals in all the sets Ip
that are hit by λ. Initially, the total number of intervals is O(1

δ0
|P |) = O(1

δ0ε
), and this

bounds the total number of deletions as well. It is not difficult to design a data structure
that supports deletions, searching for the deepest point, and searching for the intervals hit
by a given point, all in logarithmic time per operation. Thus, the total time is Õ(1

δ0ε
), which

is at most Õ((1
ε)2).

This adds an Õ((1
ε)2) term to the time bounds of Lemmas 7 and 8, and an Õ(r(1

ε)2) to (1),
which slightly affects the final bound in the extra superpolylogarithmic factors. We can fix
this by modifying the proof of Lemma 7: if b ≥ (1

ε)0.1, we proceed as before and notice that
the construction time for ∆ is Õ(1

δ0ε
) ≤ O(1

ε2−Ω(1)); but if b < (1
ε)0.1, we can switch to using

a singleton set ∆ = {ε} with δ0 = ε, which leads to running time Õ(1
ε bm) ≤ Õ((1

ε)1.1m).
All this adds an extra Õ((1

ε)1.1m+ r · (1
ε)2−Ω(1)) term to (1), which does not affect the final

bound.

I Corollary 11. The algorithm in Corollary 10 can be made deterministic.

As before, the algorithm can be modified to compute not just an approximation of the
optimal value but also a corresponding subset of items.

B Variants for Small n

We note two further results which are better when n is small relative to 1
ε .

I Corollary 12. There is a (1 + ε)-approximation algorithm for 0-1 knapsack with expected
running time Õ(1

εn
3/2).

Proof. In the case when all pi ∈ [1, 2], an Õ(1
εn

3/2) time bound follows directly from
Lemma 7, since the number of distinct pi values is m ≤ n, and a trivial upper bound for the
maximum optimal value is B ≤ 2n.

As noted earlier, the general case reduces to the pi ∈ [1, 2] case, by merging O(log n
ε)

functions via Lemma 2(i), taking additional (1
ε)2/2Ω(

√
log(1/ε)) time. To avoid the merging

cost, we need to bypass Lemma 2(i). First, we can easily generalize Lemmas 5 and 7 to
compute f ⊕ f1 ⊕ · · · ⊕ fm for an arbitrary monotone step function f with complexity Õ(1

ε).
We can then apply Lemma 7 iteratively, with each iteration handling all pi ∈ [2j , 2j+1] (which
can be rescaled to [1, 2]), in increasing order of j. The approximation factor increases to
(1 + ε)O(log B

A) = 1 +O(ε log B
A). We can adjust ε by a logarithmic factor. J

SOSA 2018

5:12 Approximation Schemes for 0-1 Knapsack

I Corollary 13. There is a (1 + ε)-approximation algorithm for 0-1 knapsack with running
time O(((1

ε)4/3n+ (1
ε)2)/2Ω(

√
log(1/ε))).

Proof. Divide the input items into r subsets of nr items each. For each subset, apply the
method from Corollary 12. Finally, return an approximation of the ⊕ of the resulting r
functions by using Lemma 2(i). The total time is

Õ

(
r

1
ε

(n
r

)3/2
+ r

(
1
ε

)2
/2Ω(
√

log(1/ε))

)
.

Setting r =
⌈
ε2/3n2c

√
log(1/ε)

⌉
for a sufficiently small constant c yields the corollary. This

algorithm can be made deterministic as in Section A.5. The derandomization adds an extra
Õ((1

ε)1.1m+ r · (1
ε)2−Ω(1)) term, which does not affect the final bound. J

Corollary 12 gives the current best bound for n � (1
ε)2/3, and Corollary 13 gives the

current best bound for (1
ε)2/3 � n� (1

ε)16/15. For example, when n = 1
ε , Corollary 13 gives

Õ((1
ε)7/3), which is a little better than Õ((1

ε)12/5). This case is of interest, since for certain
related problems such as subset-sum or unbounded knapsack (but unfortunately not for the
general 0-1 knapsack problem), there are efficient preprocessing algorithms that can reduce
the input size n to Õ(1

ε).

	Introduction
	Preliminaries
	Two Known Methods with Exponent 3
	A Simpler Algorithm with Exponent 5/2
	Closing Remarks
	An Improved Algorithm with Exponent 12/5
	Refining the Second Method
	A Number-Theoretic Lemma
	Putting the Refined Second Method Together
	Putting Everything Together
	Derandomization

	Variants for Small n

