Pseudorandom Generators for Low-Sensitivity Functions

Pooya Hatami and Avishay Tal

1 University of Texas at Austin, Austin, TX, USA
pooyahat@gmail.com
2 Stanford University, Palo Alto, CA, USA
avishay.tal@gmail.com

Abstract

A Boolean function is said to have maximal sensitivity s if s is the largest number of Hamming neighbors of a point which differ from it in function value. We initiate the study of pseudorandom generators fooling low-sensitivity functions as an intermediate step towards settling the sensitivity conjecture. We construct a pseudorandom generator with seed-length $2^{O(\sqrt{s}) \cdot \log(n)}$ that fools Boolean functions on n variables with maximal sensitivity at most s. Prior to our work, the (implicitly) best pseudorandom generators for this class of functions required seed-length $2^{O(s) \cdot \log(n)}$.

1998 ACM Subject Classification F. Theory of Computation

Keywords and phrases Pseudorandom Generator, Sensitivity, Sensitivity Conjecture

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.29

1 Introduction

The sensitivity of a Boolean function $f : \{-1,1\}^n \rightarrow \{-1,1\}$ at a point $x \in \{-1,1\}^n$, denoted $s(f,x)$, is the number of neighbors of x in the Hypercube whose f-value is different than $f(x)$. The maximal sensitivity of f, denoted $s(f)$, is the maximum over $s(f,x)$ for all $x \in \{-1,1\}^n$.

The sensitivity conjecture by Nisan and Szegedy [10, 11] asserts that low-sensitivity functions (also called “smooth” functions) are “easy”. More precisely, the conjecture states that any Boolean function whose maximal sensitivity is s can be computed by a decision tree of depth $\text{poly}(s)$. The conjecture remains wide open for several decades now, and the state-of-the-art upper bounds on decision tree complexity are merely $\text{exp}(O(s))$.

Assuming the sensitivity conjecture, low-sensitivity functions are not any stronger than low-depth decision trees, which substantially limits their power. Hence, towards settling the conjecture, it is natural to inspect how powerful low-sensitivity functions are. One approach that follows this idea aims to prove limitations of low-sensitivity functions, which follow from the sensitivity conjecture, unconditionally. This line of work was initiated recently by Gopalan et al. [7], who considered low-sensitivity functions as a complexity class. Denote by $\text{Sens}(s)$ the class of Boolean functions with sensitivity at most s. The sensitivity conjecture...
asserts that \(\text{Sens}(s) \subseteq \text{DecTree-depth}(\text{poly}(s)) \), which then implies
\[
\text{Sens}(s) \subseteq \text{DecTree-depth}(\text{poly}(s)) \subseteq \text{DNF-size}(2^{\text{poly}(s)}) \subseteq \text{AC}^0\text{-size}(2^{\text{poly}(s)}) \\
\subseteq \text{Formula-depth}(\text{poly}(s)) \subseteq \text{Circuit-size}(2^{\text{poly}(s)}) ,
\]
whereas Gopalan et al. [7] proved that \(\text{Sens}(s) \subseteq \text{Formula-depth}(\text{poly}(s)) \) unconditionally. It remains open to prove that \(\text{Sens}(s) \) is contained in smaller complexity classes such as \(\text{AC}^0\text{-size}(2^{\text{poly}(s)}) \) or even \(\text{TC}^0\text{-size}(2^{\text{poly}(s)}) \).

One consequence of the sensitivity conjecture is the existence of pseudorandom generators (PRGs) with short seeds fooling low-sensitivity functions. This is since a depth \(d \) decision tree has \(\ell_1 \) norm at most \(2^d \) in Fourier domain, so is \(\epsilon \) fooled by \(\frac{\epsilon}{2^d} \)-biased spaces. Thus, since under the conjecture \(d \leq \text{poly}(s) \), the standard construction of \(\frac{\epsilon}{2^{\text{poly}(s)/s}} \)-biased spaces gives a PRG with seed length \(\text{poly}(s) \cdot \log(1/\epsilon) + \log n \) fooling \(\text{Sens}(s) \).\(^1\) The goal of our work is to construct PRGs fooling \(\text{Sens}(s) \) unconditionally. (As stated above, this is a necessary hurdle to overcome before proving the conjecture.) We fall short of achieving seed length \(\text{poly}(s) \cdot \log(n) \) and get the weaker seed length of \(2^\Omega(\sqrt{s}) \cdot \log(n) \). Nonetheless, prior to our work, only seed-length \(2^{O(s)} \cdot \log(n) \) was known, which follows implicitly from the state of the art upper bounds on degree in terms of sensitivity \(\text{deg}(f) \leq 2^{(1+o(1))} \) [4].

Hardness vs Randomness? We note an unusual phenomenon in the hardness vs randomness paradigm with respect to the class \(\text{Sens}(s) \). The paradigm of *Hardness vs Randomness*, initiated by Nisan and Wigderson [12], asserts that PRGs and average-case lower bounds are essentially equivalent, for almost all reasonable complexity classes. For example, the average-case lower bound of Håstad [9] for the parity function by \(\text{AC}^0 \) circuits implies a pseudorandom generator fooling \(\text{AC}^0 \) circuits with poly-logarithmic seed-length. This general transformation of hardness to randomness is achieved via the NW-generator, which constructs a PRG based on the hard function. In [8], it was proved that low-sensitivity functions can be \(\epsilon \)-approximated by real polynomials of degree \(O(s \cdot \log(1/\epsilon)) \), which implies that the parity function on \(n \) variables can only have agreement \(1/2 + 2^{-O(n/s)} \) with Boolean functions of sensitivity \(s \). In other words, the parity function on \(n \) variables is average-case hard for the class \(\text{Sens}(s) \). It thus seems very tempting to use the parity function in the NW-generator to construct a PRG fooling \(\text{Sens}(s) \), however, the proof does not follow through since the class of low-sensitivity functions is not closed under the transformations made by the analysis of the NW-generator (in particular it is not closed under identifying a set of the input variables with one variable). We do not claim that the NW-generator with the parity function does not fool \(\text{Sens}(s) \), but we point out that the argument in the standard proof breaks. (See more details in Appendix A).

1.1 Our Results

A function \(G : \{-1, 1\}^r \rightarrow \{-1, 1\}^n \) is said to be a pseudorandom generator with seed-length \(r \) that \(\epsilon \)-fools a class of Boolean functions \(\mathcal{C} \) if for every \(f \in \mathcal{C} \):
\[
\left| \mathbb{E}_{z \in \{-1, 1\}^r} [f(G(z))] - \mathbb{E}_{x \in \{-1, 1\}^n} [f(x)] \right| \leq \epsilon .
\]

\(^1\) Even under the weaker conjecture \(\text{Sens}(s) \subseteq \text{AC}^0\text{-size}(n^{\text{poly}(s)}) \), we would get that \(\text{poly}(s, \log n) \)-wise independence fools \(\text{Sens}(s) \) via the result of [6].
In other words, any \(f \in \mathcal{C} \) cannot distinguish (with advantage greater than \(\varepsilon \)) between an input sampled according to the uniform distribution over \(\{−1, 1\}^n \) and an input sampled according to the uniform distribution over \(\{−1, 1\}^\gamma \) and expanded to an \(n \)-bit string using \(G \).

The main contribution of this paper is the first pseudorandom generator for low-sensitivity Boolean functions with subexponential seed length in the sensitivity.

\textbf{Theorem 1.} There is a distribution \(\mathcal{D} \) on \(\{−1, 1\}^n \) with seed-length \(2^{O(\sqrt{s} + \log(1/\varepsilon))} \cdot \log(n) \) that \(\varepsilon \)-fools every \(f : \{−1, 1\}^n \to \{−1, 1\} \) with \(s(f) = s \).

We prove the following strengthening of Friedgut's Theorem for low-sensitivity functions that is essential to our construction. (In the following, we denote by \(W^k[f] = \sum_{S \subseteq [n], |S| \geq k} \hat{f}(S)^2 \).)

\textbf{Lemma 2.} Let \(f : \{−1, 1\}^n \to \{−1, 1\} \) with \(s(f) \leq s \). Let \(1 \leq k \leq s/10 \). Assume \(W^k[f] \leq 2^{-6s} \), and that at most \(2^{-6s} \) fraction of the points in \(\{−1, 1\}^n \) have sensitivity at least \(k \). Then, \(f \) is a \(2^{20k} \)-junta.

\subsection{1.2 Proof Outline}

Below we give a sketch of our proof of Theorem 1.

Similar to a construction of Ajtai and Wigderson [1], and more recent examples [14, 17], our pseudorandom generator involves repeated applications of “pseudorandom restrictions”. Using Lemma 2 and studying the behavior of the Fourier spectrum of low-sensitivity functions under pseudorandom restrictions, we are able to prove the following. Let \(f : \{−1, 1\}^n \to \{−1, 1\} \) be a Boolean function, let \(S \subseteq [n] \) be randomly selected according to a \(k \)-wise independent distribution such that \(|S| \approx pm \), and let \(x_S = (x_i)_{i \in S} \in \{−1, 1\}^{|S|} \) be selected uniformly at random. Then

\[
\Pr_{S, x_S}[f(x_S) \text{ is not a } 2^{20k} \text{-junta}] \leq O(p^k) \cdot 2^{6s}.
\]

Since every \(2^{20k} \)-junta is fooled by an almost \(2^{20k} \)-wise independent distribution, we will fill the \(x_S \) coordinates according to efficient constructions of such distributions due to [3]. The final distribution involves applying the above process repeatedly over the remaining unset variables (i.e., \(x_{\neg S} \)) until all the coordinates are set, observing that for every \(J \subseteq [n] \) and \(x, j \), \(f(\cdot, x, j) \) has sensitivity at most \(s \). The subexponential seed-length is achieved by optimizing the parameters \(k \) and \(p \) from (1) while making sure that the overall error does not exceed \(\varepsilon \).

\section{Discussion}

Our overall construction involves a combination of several samples from any \(k \)-wise independent distribution for an appropriate \(k \). It is not clear whether simply one sample from a \(k \)-wise independent distribution suffices to fool low-sensitivity functions (recall that this is a consequence of the sensitivity conjecture with \(k = \text{poly}(s) \)). If this were true for all \(k \)-wise independent distributions, then via LP Duality (see the work of Bazzi [5]) we would get that every Boolean function \(f \) with sensitivity \(s \) has sandwiching real polynomials \(f_t, f_u \) of degree \(k \) such that \(\forall x : f_t(x) \leq f(x) \leq f_u(x) \) and \(\mathbb{E}_x[f_u(x) - f_t(x)] \leq \varepsilon \). We ask if a similar characterization can be obtained for the class of functions fooled by our construction.

\section{Preliminaries}

We denote by \([n] = \{1, \ldots, n\} \). We denote by \(\mathcal{U}_n \) the uniform distribution over \(\{−1, 1\}^n \). We denote by \(\log \) and \(\ln \) the logarithms in bases 2 and \(e \), respectively. For \(f : \{−1, 1\}^n \to \mathbb{R} \), we
denote by \(\|f\|_p = (\mathbb{E}_{x \in \{-1,1\}^n}[|f(x)|^p])^{1/p} \). For \(x \in \{-1,1\}^n \), denote by \(x \oplus e_i \) the vector obtained from \(x \) by changing the sign of \(x_i \).

For a Boolean function \(f : \{-1,1\}^n \rightarrow \{-1,1\} \), denote by \(S(f,y) \), the set of sensitive coordinates of \(f \) at \(y \), i.e.,
\[
S(f,y) \triangleq \{ i \in [n] : f(y) \neq f(y \oplus e_i) \}.
\]
The sensitivity of \(f \), denoted \(s(f,x) \), is defined to be the number of sensitive coordinates of \(f \), namely \(s(f,x) = |S(f,x)| \). For example if \(f(x_1,x_2,x_3) = x_1x_2 \), then \(s(f,111) = 2 \) and \(S(f,111) = \{1,2\} \). The sensitivity of a Boolean function \(f \), denoted \(s(f) \) is the maximum \(s(f,x) \) over all choices of \(x \).

2.1 Harper’s Inequality and Simon’s Theorem

\[\text{Theorem 3 (Harper’s Inequality).} \quad \text{Let } G = (V,E) \text{ be the } n \text{-dimensional hypercube, where } V = \{-1,1\}^n. \text{ Let } A \subseteq V \text{ be a non-empty set. Then,} \]
\[
\frac{|E(A,A')|}{|A|} \geq \log_2 \left(\frac{2^n}{|A|} \right).
\]

We will use the following simple corollary of Harper’s inequality on multiple occasions. (This inequality was used in several previous works regarding the sensitivity conjecture, e.g. [15, 4].)

\[\text{Corollary 4.} \quad \text{Let } f : \{-1,1\}^n \rightarrow \{-1,1\} \text{ be a non-constant function with } s^1(f) \leq s. \text{ Then,} \]
\[
|f^{-1}(1)| \geq 2^{n-s}.
\]
\[\text{Proof.} \quad \text{Let } A = f^{-1}(1). \text{ Since } f \text{ is non-constant, } |A| > 0. \text{ By Harper’s inequality the average sensitivity of } f \text{ on } A \text{ is at least } \log(2^n/|A|). \text{ However the average sensitivity of } f \text{ on } A \text{ is at most } s, \text{ hence } \log(2^n/|A|) \leq s, \text{ or equivalently, } |A| \geq 2^{n-s}. \]

We will also need the following result due to Simon [15].

\[\text{Theorem 5 (Simon [15]).} \quad \text{For every Boolean function } f : \{-1,1\}^n \rightarrow \{-1,1\} \text{ we have} \]
\[
s(f)4^{s(f)} \geq n',
\]
where \(n' \leq n \) is the number of variables on which \(f \) depends.

2.2 Restrictions

\[\text{Definition 6 (Restriction).} \quad \text{Let } f : \{-1,1\}^n \rightarrow \{-1,1\} \text{ be a Boolean function. A restriction is a pair } (J,z) \text{ where } J \subseteq [n] \text{ and } z \in \{-1,1\}^J. \text{ We denote by } f_{J,z} : \{-1,1\}^n \rightarrow \{-1,1\} \text{ the function } f \text{ restricted according to } (J,z), \text{ defined by} \]
\[
f_{J,z}(x) = f(y), \quad \text{where } y_i = \begin{cases} x_i, & i \in J \\ z_i, & \text{otherwise}. \end{cases}
\]

\[\text{Definition 7 (Random Valued Restriction).} \quad \text{Let } n \in \mathbb{N}. \text{ A random variable } (J,z) \text{, distributed over restrictions of } \{-1,1\}^n \text{ is called random-valued if conditioned on } J, \text{ the variable } z \text{ is uniformly distributed over } \{-1,1\}^J. \]

\[\text{Definition 8 ((k,p)-wise Random Selection).} \quad \text{A random variable } J \subseteq [n] \text{ is said to be a } (k,p) \text{-wise random selection if the events } \{ (1 \in J), (2 \in J), \ldots, (n \in J) \} \text{ are } k \text{-wise independent, and each one of them happens with probability } p. \]

A \((k,p)\)-wise independent restriction is a random-valued restriction in which \(J \) is chosen using a \((k,p)\)-wise random selection.
2.3 Fourier Analysis of Boolean Functions

Any function \(f : \{-1,1\}^n \rightarrow \mathbb{R} \) has a unique Fourier representation:
\[
 f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i,
\]
where the coefficients \(\hat{f}(S) \in \mathbb{R} \) are given by \(\hat{f}(S) = \mathbb{E}_x[f(x) \cdot \prod_{i \in S} x_i] \). Parseval’s identity states that \(\sum_S \hat{f}(S)^2 = \mathbb{E}_x[f(x)^2] = \|f\|_2^2 \), and in the case that \(f \) is Boolean (i.e., \(f : \{-1,1\}^n \rightarrow \{-1,1\} \)), all are equal to 1. The Fourier representation is the unique multilinear polynomial which agrees with \(f \) on \(\{-1,1\}^n \). We denoted by \(\deg(f) \) the degree of this polynomial, which also equals \(\max\{|S| : \hat{f}(S) \neq 0\} \). We denote by
\[
 W^k[f] \triangleq \sum_{S \subseteq [n], |S| = k} \hat{f}(S)^2
\]
the Fourier weight at level \(k \) of \(f \). Similarly, we denote \(W_{\geq k}[f] \triangleq \sum_{S \subseteq [n], |S| \geq k} \hat{f}(S)^2 \). For \(k \in \mathbb{N} \) we denote the \(k \)-th Fourier moment of \(f \) by
\[
 \text{Inf}^k[f] \triangleq \sum_{S \subseteq [n]} \hat{f}(S)^2 \cdot \frac{|S|^k}{k!} = \sum_{d=1}^n W^d[f] \cdot \binom{d}{k}.
\]

We will use the following result of Gopalan et al. [8].

Theorem 9 ([8, Lemma 5.6]). Let \(f \) be a Boolean function with sensitivity at most \(s \). Then, for all \(k \), \(\text{Inf}^k[f] \leq (32 \cdot s)^k \).

For more about Fourier moments of Boolean functions see [16, 8]. The following fact relates the Fourier coefficients of \(f \) and \(f_{J,z} \), where \((J, z) \) is a random valued restriction.

Fact 10 (Proposition 4.17, [13]). Let \(f : \{-1,1\}^n \rightarrow \mathbb{R} \), let \(S \subseteq [n] \), and let \(D \) be a distribution of random valued restrictions. Then,
\[
 \mathbb{E}_{(J,z) \sim D} \left[\hat{f}_{J,z}(S) \right] = \hat{f}(S) \cdot \mathbb{Pr}_{(J,z) \sim D}[S \subseteq J]
\]
and
\[
 \mathbb{E}_{(J,z) \sim D} \left[\hat{f}_{J,z}(S)^2 \right] = \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \mathbb{Pr}_{(J,z) \sim D}[J \cap U = S]
\]

We include the proof of this fact for completeness.

Proof. Let \((J, z) \sim D\). Then, by definition of random valued restriction, given \(J \) we have that \(z \) is a random string in \(\{-1,1\}^T \). Fix \(J \), and rewrite \(f \)'s Fourier expansion by splitting the variables to \((J, \bar{J})\).
\[
 f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i = \sum_{T \subseteq J} \prod_{i \in T} x_i \cdot \sum_{T' \subseteq \bar{J}} \hat{f}(T \cup T') \cdot \prod_{j \in T'} x_j
\]
Hence,
\[
 f_{J,z}(x) = \sum_{T \subseteq J} \prod_{i \in T} x_i \cdot \sum_{T' \subseteq \bar{J}} \hat{f}(T \cup T') \cdot \prod_{j \in T'} z_j
\]
So the S-Fourier coefficient of $f_{J,z}$ is 0 if $S \not\subseteq J$ and it is $\sum_{T' \subseteq J} \hat{f}(S \cup T') \cdot \prod_{j \in T'} z_j$ otherwise. In other words,
\[
\hat{f}_{J,z}(S) = \mathbb{1}_{S \subseteq J} \cdot \sum_{T' \subseteq J} \hat{f}(S \cup T') \cdot \prod_{j \in T'} z_j,
\]
and its expectation in z in the case $S \subseteq J$ is $\hat{f}(S)$. As for the second moment,
\[
\mathbb{E}_{J,z}[\hat{f}_{J,z}(S)^2] = \mathbb{E}_{J}[\mathbb{E}_{z}[\hat{f}_{J,z}(S)^2]] = \mathbb{E}_{J}[\mathbb{E}_{z}[(\sum_{T' \subseteq J} \hat{f}(S \cup T') \prod_{j \in T'} z_j)^2]]
\]
\[
= \mathbb{E}_{J}[\mathbb{E}_{z}[(\sum_{T' \subseteq J} \hat{f}(T \cup T')^2] = \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \Pr[J \cap U = S].
\]

3 PRGs for Low-Sensitivity Functions

In this section we prove our main theorem.

Theorem 1. There is a distribution \mathcal{D} on $\{-1, 1\}^n$ with seed-length $2^{O(\sqrt{s} + \log(1/\varepsilon))} \cdot \log(n)$ that ε-fools every $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ with $s(f) = s$.

Our main tool will be the following theorem stating that under k-wise independent random restrictions every low-sensitivity function becomes a junta with high probability. We postpone the proof of Theorem 11 to Section 4.

Theorem 11. Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ with $s(f) = s$. Let $1 \leq k \leq s/10$, and let \mathcal{D} be a distribution of (k, p)-wise independent restrictions. Then,
\[
\Pr_{(J,z) \sim \mathcal{D}}[f_{J,z} \text{ is not a } (2^{20k})\text{-junta}] \leq O(pa)^k \cdot 2^{6s}
\]

Theorem 11 allows us to employ the framework of Trevisan and Xue [17] who used a derandomized switching lemma to construct pseudorandom generators for AC_0 circuits. In what follows we will make the following choices of parameters

i. $k := O(\sqrt{s + \log(1/\varepsilon)})$.
ii. $p := 2^{-k}/s = 2^{-O(\sqrt{s + \log(1/\varepsilon)})}$
iii. $m := O(p^{-1} \cdot \log(s \cdot 4^s/\varepsilon)) = 2^{O(\sqrt{s + \log(1/\varepsilon)})}$

We select a sequence of disjoint sets J_1, \ldots, J_m as follows. We pick $J_i \subseteq [n] \setminus (J_1 \cup \cdots \cup J_{i-1})$ by letting $J_i := K_i \setminus (J_1 \cup \cdots \cup J_{i-1})$ where $K_i \subseteq [n]$ is drawn from a (p, k)-wise random selection. For each i, we pick $x_{J_i} \in \{-1, 1\}^{[J_i]}$ according to an $\frac{1}{2^{m^2}}$-almost 2^{20k}-wise independent distribution. Finally, we will fix $x_i := 0$ for any $i \in [n] \setminus (J_1 \cup \cdots \cup J_m)$.

To account for the seed-length:

- By a construction of [2] each K_i can be selected using $O(k \cdot \log n)$ random bits, and
- By constructions of [3] each $x_{J_i} \in \{-1, 1\}^{[J_i]}$ can be selected using $O(2^{20k} + \log \log(n) + \log(1/\varepsilon))$ random bits.

Thus, the total seed-length is
\[
O \left(m \cdot (2^{20k} + \log \log(n) + \log(1/\varepsilon) + k \cdot \log(n)) \right) \leq 2^{O(\sqrt{s + \log(1/\varepsilon)})} \cdot \log(n).
\]

To conclude the proof, we show that the above distribution fools sensitivity s Boolean functions. Denote by \mathcal{D} the distribution described above, and suppose $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ satisfies $s(f) = s$. We first note that by Theorem 5, f depends on at most $s \cdot 4^s$ variables,
denote this set S, so that $|S| \leq s \cdot 4^s$. By our choice of m, with probability at least $1 - \frac{\varepsilon}{7}$, $S \subseteq J_1 \cup \cdots \cup J_m$.

We use x to denote a vector drawn from \mathcal{D} and y to denote a vector drawn according to the uniform distribution over $\{-1, 1\}^n$. Moreover, for every $i = 0, 1, \ldots, m$, we let $z_i := (x_{J_1}, \ldots, x_{J_i}, y_{[n] \setminus (J_1 \cup \cdots \cup J_i)})$. Note that $z_0 = y$. We first prove that for every $i = 0, 1, \ldots, m - 1$,

$$\left| \mathbb{E}_{x \sim \mathcal{D}, y \sim \mathcal{D}} f(z_i) - \mathbb{E}_{x \sim \mathcal{D}, y \sim \mathcal{D}} f(z_{i+1}) \right| \leq \frac{\varepsilon}{2m}. \quad (2)$$

This holds since by Theorem 11, for every fixed choice of J_1, \ldots, J_i and x_{J_1}, \ldots, x_{J_i}, we have

$$\mathbb{P}_{J_{i+1}, y \sim \mathcal{D}} \left[f(x_{J_1}, \ldots, x_{J_i}, \cdot, y_{[n] \setminus (J_1 \cup \cdots \cup J_{i+1})}) \right] \text{ is not a } 2^{20k}\text{-junta} \leq O(ps)^k \cdot 2^{4s} \leq \frac{\varepsilon}{4m},$$

and that every 2^{20k}-junta is $\varepsilon/4m$-fooled by any $\varepsilon/4m$-almost 2^{20k}-wise independent distribution. By triangle inequality and summing up (2) for all i we get

$$\left| \mathbb{E}_{y \sim \mathcal{D}} f(y) - \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \mathcal{D}} f(z_m) \right| \leq \sum_{i=0}^{m-1} \left| \mathbb{E}_{x \sim \mathcal{D}, y \sim \mathcal{D}} f(z_i) - \mathbb{E}_{x \sim \mathcal{D}} f(z_{i+1}) \right| \leq \frac{\varepsilon}{2}. \quad (3)$$

To finish the proof of Theorem 1, note that with probability at least $1 - \varepsilon/2$, $f(x_{J_1}, \ldots, x_{J_m}, \cdot)$ is a constant function (which follows from $S \subseteq J_1 \cup \cdots \cup J_m$), and thus $|\mathbb{E}_{x,y} f(z_m) - \mathbb{E}_x f(x)| \leq \varepsilon/2$. Combining this with Eq. (3) gives $|\mathbb{E}_{y \sim \mathcal{D}} f(y) - \mathbb{E}_{x \sim \mathcal{D}} f(x)| \leq \varepsilon/2 + \varepsilon/2$.

4 Measures of Boolean Functions under k-Wise Independent Random Restrictions

Lemma 12. Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$. Let \mathcal{D} be a distribution of (k, p)-wise independent restrictions. Then,

$$\mathbb{E}_{(J,z) \sim \mathcal{D}}[W^{\geq k}[f_{|J[z]}]] \leq p^k \cdot \text{Inf}^k[f]. \quad (4)$$

Proof. Using Fact 10, we have

$$\mathbb{E}_{J,z \sim \mathcal{D}}[W^{\geq k}[f_{|J[z]}]] = \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \mathbb{P}_J[|U \cap J| \geq k]$$

Fix U. Let us upper bound $\mathbb{P}_J[|U \cap J| \geq k]$. It is at most $\binom{|U|}{k} \cdot p^k$ by taking a union bound over all $\binom{|U|}{k}$ subsets of size k of U and observing that $\mathbb{P}_J[S \subseteq J] = p^k$ by the fact that J is a (k, p)-wise random selection. We thus have

$$\mathbb{E}_{J,z \sim \mathcal{D}}[W^{\geq k}[f_{|J[z]}]] \leq \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \binom{|U|}{k} \cdot p^k = \text{Inf}^k[f] \cdot p^k.$$

Very analogously, we have the following statement with respect to sensitivity moments.

Lemma 13. Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$. Let \mathcal{D} be a distribution of (k, p)-wise independent restrictions. Then,

$$\mathbb{E}_{(J,z) \sim \mathcal{D}} \left[\mathbb{P}_x[s(f_{|J[z]}) \geq k] \right] \leq p^k \cdot \mathbb{E}_{x \sim \{-1, 1\}^n} \left[\binom{s(f, x)}{k} \right].$$
Pseudorandom Generators for Low-Sensitivity Functions

Proof. We expand $E_{(j,z) \sim D} \left[Pr_x [s(f_{j,z}, x) \geq k] \right]$:

$$E_{j,z} \left[Pr_x [s(f_{j,z}, x) \geq k] \right] = E_{j \in \{-1,1\}^n} E_{z \in \{-1,1\}^n} E_{x \in \{-1,1\}^n} \left[\mathbb{I} (s(f(z, x)) \geq k) \right]$$

$$= E_{j \in \{-1,1\}^n} E_{y \in \{-1,1\}^n} E_{x \in \{-1,1\}^n} \left[\mathbb{I} (s(f(y, x)) \geq k) \right]$$

$$= E_{y \in \{-1,1\}^n} \Pr_{(j,z) \sim D} \left[\mathbb{I} (s(f(y, x)) \geq k) \right]$$

$$\leq E_{y \in \{-1,1\}^n} \left[\frac{s(f, y)}{k} \right]$$

where the last inequality is due to the following observation. We observe that for a given y and a set $S = \{i_1, ..., i_k\}$ of k sensitive directions of f at y, the probability that $S \subseteq J$ is p^k. We then union-bound over all subsets S of cardinality k of $S(f, y)$.

We are now ready to prove the main theorem of this section (restated next).

Theorem 11. Let $f : \{-1,1\}^n \rightarrow \{-1,1\}$ with $s(f) = s$. Let $1 \leq k \leq s/10$, and let D be a distribution of (k, p)-wise independent restrictions. Then,

$$Pr_{(j,z) \sim D} [f_{j,z} \text{ is not a } (2^{20k})\text{-junta}] \leq O(ps) \cdot 2^{6s}$$

Proof. We upper and lower bound the value of

$$(*) = E_{(j,z) \sim D} \left[W^{2k}[f_{j,z}] + Pr_x [s(f_{j,z}, x) \geq k] \right].$$

For the upper bound we use Lemma 13 to get

$$E_{(j,z) \sim D} \left[Pr_x [s(f_{j,z}, x) \geq k] \right] \leq (ps)^k,$$

and Lemma 12 and Theorem 9 to get

$$E_{(j,z) \sim D} \left[W^{2k}[f_{j,z}] \right] \leq O(ps)^k,$$

which gives $(*) \leq O(ps)^k$.

For the lower bound we use the following lemma, the proof of which we defer to Section 5.

Lemma 14. Let $f : \{-1,1\}^n \rightarrow \{-1,1\}$ with $s(f) \leq s$. Let $1 \leq k \leq s/10$. Assume $W^{\geq k}[f] \leq 2^{-6s}$, and that at most 2^{-6s} fraction of the points in $\{-1,1\}^n$ have sensitivity at least k. Then, f is a 2^{20k}-junta.

Let \mathcal{E} be the event that $f_{j,z}$ is not a 2^{20k}-junta. Whenever \mathcal{E} occurs, Lemma 2 implies that either $Pr_x [s(f_{j,z}, x) \geq k] \geq 2^{-6s}$ or $W^{\geq k}[f_{j,z}] \geq 2^{-6s}$. In both cases, $Pr_x [s(f_{j,z}, x) \geq k] + W^{\geq k}[f_{j,z}] \geq 2^{-6s}$. Thus, we get the lower bound

$$(* \geq) Pr[\mathcal{E}] \cdot E_{(j,z)} \left[W^{2k}[f_{j,z}] + Pr_x [s(f_{j,z}, x) \geq k] \mid \mathcal{E} \right] \geq Pr[\mathcal{E}] \cdot 2^{-6s}$$

Comparing the upper and lower bound gives

$$Pr_{(j,z) \sim D} [f_{j,z} \text{ is not a } (2^{20k})\text{-junta}] \leq Pr[\mathcal{E}] \leq 2^{6s} \cdot (*) \leq 2^{6s} \cdot O(ps)^k.$$
5 A Strengthening of Friedgut’s Theorem for Low-Sensitivity Functions

Theorem 15 (Friedgut’s Junta Theorem - [13, Thm 9.28]). Let \(f : \{-1,1\}^n \to \{-1,1\} \). Let \(0 < \varepsilon \leq 1 \) and \(k \geq 0 \). If \(W^{\geq k}[f] \leq \varepsilon \), then \(f \) is \(2\varepsilon \)-close to a \((9^k \cdot \text{Inf}[f]^3/\varepsilon^2)\)-junta.

Lemma 16. Let \(f : \{-1,1\}^n \to \{-1,1\} \) with \(s(f) \leq s \). Let \(1 \leq k \leq s/10 \). Assume \(W^{\geq k}[f] \leq 2^{-6s} \), and that at most \(2^{-6s} \) fraction of the points in \(\{-1,1\}^n \) have sensitivity at least \(k \). Then, \(f \) is a \(2^{20k} \)-junta.

Proof. We first show that \(\text{Inf}[f] \leq k \). By Theorem 5, \(f \) depends on at most \(4^s \cdot s \) variables\(^2\). Thus, \(\text{Inf}[f] \leq (k-1) + W^{\geq k}[f] \cdot (4^s \cdot s) \leq (k-1) + 1 = k \). Apply Friedgut’s theorem with \(\varepsilon = 2^{-6k} \geq W^{\geq k}[f] \). We get a \(K \)-junta \(h \), for

\[
K = 9^k \cdot \text{Inf}[f]^3/\varepsilon^2 \leq 9^k \cdot k^3 \cdot 2^{12k+2} < 2^{20k},
\]

that \(2\varepsilon = 2^{-6k} \) approximates \(f \). Let \(C_1, \ldots, C_N \) be the subcubes corresponding to the \(N = 2^K \) different assignments to the junta variables. Without loss of generality, under each \(C_i \), \(h \) attains the constant value that is the majority-vote of \(f \) on \(C_i \). In other words, \(f \) and \(h \) agree on at least \(1/2 \) of the points in each subcube \(C_i \).

Let \(p_i = |\{ x \in C_i : f(x) \neq h(x) \}|/|C_i| \) for \(i \in [N] \). By the above discussion, \(0 \leq p_i \leq 1/2 \). In addition, since \(f|_{C_i} \) has sensitivity at most \(s \), if \(p_i > 0 \), then \(p_i \geq 2^{-s} \) using Corollary 4.

Assume towards contradiction that \(h \neq f \). We will think of the hamming cube \(\{-1,1\}^n \) as an outer cube of dimension \(K \), and an inner cube of dimension \(n-K \). Each subcube \(C_i \) is an instance of the inner cube \(\{-1,1\}^{n-K} \). The graph of subcubes is an instance of the outer cube \(\{-1,1\}^K \). Call a subcube \(C_i \):

decisive if \(p_i = 0 \),
confused if \(2^{-s} \leq p_i < 2^{-k-1} \), or
indecisive if \(p_i \geq 2^{-k-1} \).

Denote by \(\alpha, \beta, \gamma \) the fraction of decisive, confused and indecisive subcubes correspondingly.

Since we assumed (towards contradiction) that \(h \neq f \), at least one subcube is confused or indecisive. Consider the graph \(G \) of subcubes, which is isomorphic to \(\{-1,1\}^K \), in which each vertex represents either a decisive, confused or indecisive subcube, and two vertices are adjacent if and only if their corresponding subcubes are adjacent in \(\{-1,1\}^n \). First, we show that at least \(2^{-2s} \) fraction of the subcubes are confused or indecisive. Assume otherwise, then by Harper’s inequality (Thm. 3) there is a confused or indecisive cube \(C_i \) with at least \(2s+1 \) decisive subcubes as neighbors. As there are points with both \(\{-1,1\} \) values in \(C_i \), we may pick a point \(x \in C_i \) whose value is the opposite of the majority of the decisive neighbor subcubes of \(C_i \), which gives \(s(f,x) \geq s+1 \), a contradiction. We thus have

\[
\beta + \gamma \geq 2^{-2s} \tag{5}
\]

Next, we show that \(\beta \) is very small and in particular much smaller than \(\gamma \). Towards this end, we shall analyze the sensitivity within confused subcubes. If \(C_i \) is confused (i.e., \(2^{-s} \leq p_i < 2^{-k-1} \)), then by Harper’s inequality (inside \(C_i \)) the average sensitivity on the minority of \(f|_{C_i} \) is greater than \(k+1 \). Since sensitivity ranges between \(0 \) to \(s \), at least \(1/s \) of the points with minority value in \(f|_{C_i} \) have sensitivity at least \(k \) (otherwise the average

\[^2\text{Note that our final goal will be to show that } f \text{ actually depends on } 2^{20k} \text{ variables, and that } k \text{ can be significantly smaller than } s.\]
Pseudorandom Generators for Low-Sensitivity Functions

sensitivity among them will be less than \((1/s) \cdot s + k \leq k + 1\). As there are at least \(2^{-s}\) points with the minority value on the subcube \(C_i\), we get that at least \(2^{-s}/s \geq 2^{-2s}\) fraction of the points in \(C_i\) have sensitivity at least \(k\).

If the fraction of confused subcubes is more than \(2^{-2s}/(K + 1)\), then more than \(2^{-4s}/(K + 1) \geq 2^{-6s}\) fraction of the points in \([-1, 1]^n\) has sensitivity at least \(k\), which contradicts one of the assumptions. Thus,

\[
\beta \leq 2^{-2s}/(K + 1).
\]

Furthermore, combining Eq. (5) and (6), we have that the fraction of indecisive subcubes, \(\gamma\), is at least

\[
\gamma \geq 2^{-2s} \cdot \frac{K}{K + 1} \geq K \cdot \beta.
\]

Consider again the graph \(G\) of subcubes (which is isomorphic to \([-1, 1]^K\)). Recall that each vertex in the graph \(G\) corresponds to a subcube which is either decisive, confused or indecisive. Call \(A\) the set of vertices that correspond to indecisive subcubes. Then, \(|A| = \gamma \cdot 2^K\). By the fact that \(h\) approximates \(f\) with error at most \(2^{-6k}\), the size of \(A\) is at most \(2^{-6k} \cdot 2^{k+1} = 2^K\), i.e., \(\gamma \geq 2^{-4k}\). By Harper’s inequality, \(|E(A, \overline{A})| \geq |A| \cdot (4k)\). There are at most \(\beta \cdot 2^K \cdot K \leq \gamma \cdot 2^K = |A|\) edges touching confused nodes, hence there are at least \(|A| \cdot (4k - 1)\) edges from \(A\) to decisive nodes. As before, the maximal number of edges from a node in \(A\) to decisive nodes is at most \(2s\), otherwise we get a contradiction to \(s(f) \leq s\). This implies that at least \(1/2s\) fraction of the nodes in \(A\) have at least \(4k - 2\) edges to decisive subcubes. For each indecisive subcube \(C_i\), let \(b \in \{-1, 1\}\) be the majority-vote among these decisive subcubes. All points with value \(-b\) in \(C_i\) have sensitivity at least \((4k - 2)/2 \geq 2k - 1 \geq k\), and the fraction of such points in \(C_i\) is at least \(2^{-k-1}\). Using Eq. (7) we get that

\[
\gamma \cdot \frac{1}{2s} \cdot 2^{-k-1} \geq 2^{-2s} \cdot \frac{K}{K + 1} \cdot \frac{1}{2s} \cdot 2^{-k-1} \geq 2^{-6s}
\]

of the points in \([-1, 1]^n\) have sensitivity at least \(k\), which yields a contradiction. \(\square\)

References

A Does the NW-Generator Fool Low-Sensitivity Functions?

In this section we recall the construction and analysis of the NW-Generator [12]. For ease of notation, we treat Boolean functions here as \(f : \{0,1\}^n \to \{0,1\} \). Suppose we want to construct a pseudorandom function fooling a class of Boolean functions \(\mathcal{C} \). Nisan and Wigderson provide a generic way to construct such PRGs based on the premise that there is some explicit function \(f \) which is average-case hard for a class \(\mathcal{C}' \) that slightly extends \(\mathcal{C} \). Recall that \(\text{Sens}(s) \) is the class of all Boolean functions with sensitivity at most \(s \). In the case \(\mathcal{C} = \text{Sens}(s) \), the argument may fail, because \(\mathcal{C}' \) is not provably similar to \(\mathcal{C} \). The difficulty comes from the fact that low-sensitivity functions are not closed under projections as will be explained later.

Let \(f : \{0,1\}^r \to \{0,1\} \) be a function that is average-case hard for class \(\mathcal{C} \). Let \(S_1, \ldots, S_n \subseteq [r] \) be a design over a universe of size \(r \) where \(|S_i| = \ell \), and \(|S_i \cap S_j| \leq \alpha \) for all \(i \neq j \in [n] \) (think of \(\alpha \) as much smaller than \(\ell \)). The NW-generator \(G_f : \{0,1\}^r \to \{0,1\}^n \) is defined as

\[
G_f(x_1, \ldots, x_r) = (f(x_{S_1}), f(x_{S_2}), \ldots, f(x_{S_n}))
\]

where \(x_{S_i} \) is the restriction of \(x \) to the coordinates in \(S_i \), for any set \(S_i \subseteq [n] \).
Pseudorandom Generators for Low-Sensitivity Functions

The proof that the NW-generator fools \mathcal{C} goes via a contrapositive argument. We assume that there is a distinguisher $c \in \mathcal{C}$ such that

$$\left| \mathbb{E}_{z \in \{0,1\}^n} [c(G_f(z))] - \mathbb{E}_{x \in \{0,1\}^n} [c(x)] \right| \geq \varepsilon,$$

and prove that f can be computed on more than $1/2 + \Omega(\varepsilon)/n$ fraction of the inputs by some function c'' which is not much more complicated than c. First, by Yao’s next-bit predictor lemma, there exists an $i \in [n]$ and constants $a_s, \ldots, a_n, b \in \{0,1\}$ such that

$$\Pr_{x \in \{0,1\}^n} [c'(f(x_{S_i}), f(x_{S_{j-1}}), \ldots, f(x_{S_{n-1}}), a_i, \ldots, a_n) \oplus b = f(x_{S_i})] \geq \frac{1}{2} + \frac{\Omega(\varepsilon)}{n}.$$ \hspace{1cm} (1)

Since the class of function with sensitivity s is closed under restrictions (i.e., fixing the input variables to constant values) and negations we have that $c'(z_1, \ldots, z_{i-1}) := c(z_1, \ldots, z_{i-1}, a_i, \ldots, a_n) \oplus b$ is of sensitivity at most s. We get

$$\Pr_{x \in \{0,1\}^n} [c'(f(x_{S_i}), f(x_{S_{j-1}}), \ldots, f(x_{S_{n-1}})) = f(x_{S_i})] \geq \frac{1}{2} + \frac{\Omega(\varepsilon)}{n}.$$ \hspace{1cm} (2)

Next, we wish to fix all values in $[r] \setminus S_i$. By averaging there exists an assignment y to the variables in $[r] \setminus S_i$ such that

$$\Pr_{x \in \{0,1\}^{S_i}} [c'(f((x \circ y)_{S_j}), f((x \circ y)_{S_{j-1}}), \ldots, f((x \circ y)_{S_{n-1}})) = f(x_{S_i})] \geq \frac{1}{2} + \frac{\Omega(\varepsilon)}{n}.$$ \hspace{1cm} (3)

Note that for $j = 1, \ldots, i - 1$, the value of $f((x \circ y)_{S_j})$ depends only on the variables in $S_j \cap S_i$ and there aren’t too many such variables (at most α). The next step is to consider $c'' : \{0,1\}^{S_i} \rightarrow \{0,1\}$, defined by $c''(x) = c'(f((x \circ y)_{S_i}), f((x \circ y)_{S_{j-1}}), \ldots, f((x \circ y)_{S_{n-1}}))$, that have agreement at least $1/2 + \Omega(\varepsilon)/n$ with $f(x_{S_i})$. If c'' is a “simple” function then we get a contradiction as f is average-case hard.

It seems that c'' is simple, since it is the composition of c' with α-juntas. However, the point that we want to make is that even if c'' is low-sensitivity and even if $\alpha = 1$, we are not guaranteed that c'' is of low-sensitivity.

To see this, suppose that $\alpha = 1$, i.e., all $|S_j \cap S_i| \leq 1$ for $j < i$. This means that as a function of x, each $f((x \circ y)_{S_j})$ depends on at most one variable, i.e., $f((x \circ y)_{S_j}) = a_j \cdot x_{k_j} \oplus b_j$ for some index $k_j \in S_i$ and some constants $a_j, b_j \in \{0,1\}$. We get that

$$c''(x) = c'(a_1 \cdot x_{k_1} \oplus b_1, a_2 \cdot x_{k_2} \oplus b_2, \ldots, a_2 \cdot x_{k_{i-1}} \oplus b_{i-1}).$$

Next, we argue that c'' could potentially have very high sensitivity. To see that, observe that flipping one bit x_i in the input to c'' results in changing a block of variables in the input to c', as there may be several j for which $k_j = i$. In the worst-case scenario, the sensitivity of c'' could be as big as the block sensitivity of c'. However, the best known bound is only $bs(f) \leq 2^{O(f^{(1+o(1))})}$ for any Boolean function f [4]. This means that we can only guarantee that $s(c'') \leq bs(c') \leq 2^{O(1+o(1))}$, and we do not have average-case hardness for such high-sensitivity functions.

Remark. The above argument shows that the standard analysis of the Nisan-Wigderson generator applied to low-sensitivity Boolean functions breaks, but it does not mean that the generator does not ultimately fool $\text{Sens}(s)$. Indeed, assuming the sensitivity conjecture, the argument will follow through.
Acknowledgements. We would like to thank Li-Yang Tan for bringing the problem to our attention and for stimulating and helpful discussions. We also thank the anonymous referee who pointed out a better PRG under the sensitivity conjecture using the decision tree complexity as opposed to the degree as used in a previous version of the paper.