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Abstract
Arithmetic complexity, the study of the cost of computing polynomials via additions and multi-
plications, is considered (for many good reasons) simpler to understand than Boolean complexity,
namely computing Boolean functions via logical gates. And indeed, we seem to have significantly
more lower bound techniques and results in arithmetic complexity than in Boolean complexity.
Despite many successes and rapid progress, however, foundational challenges, like proving super-
polynomial lower bounds on circuit or formula size for explicit polynomials, or super-linear lower
bounds on explicit 3-dimensional tensors, remain elusive.

At the same time (and possibly for similar reasons), we have plenty more excuses, in the
form of “barrier results” for failing to prove basic lower bounds in Boolean complexity than in
arithmetic complexity. Efforts to find barriers to arithmetic lower bound techniques seem harder,
and despite some attempts we have no excuses of similar quality for these failures in arithmetic
complexity. This paper aims to add to this study.

In this paper we address rank methods, which were long recognized as encompassing and ab-
stracting almost all known arithmetic lower bounds to-date, including the most recent impressive
successes. Rank methods (under the name of flattenings) are also in wide use in algebraic geo-
metry for proving tensor rank and symmetric tensor rank lower bounds. Our main results are
barriers to these methods. In particular,

Rank methods cannot prove better than Ωd(nbd/2c) lower bound on the tensor rank of any
d-dimensional tensor of side n. (In particular, they cannot prove super-linear, indeed even
> 8n tensor rank lower bounds for any 3-dimensional tensors.)
Rank methods cannot prove Ωd(nbd/2c) on the Waring rank1 of any n-variate polynomial of
degree d. (In particular, they cannot prove such lower bounds on stronger models, including
depth-3 circuits.)

The proofs of these bounds use simple linear-algebraic arguments, leveraging connections
between the symbolic rank of matrix polynomials and the usual rank of their evaluations. These
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1:2 Barriers for Rank Methods in Arithmetic Complexity

techniques can perhaps be extended to barriers for other arithmetic models on which progress
has halted.

To see how these barrier results directly inform the state-of-art in arithmetic complexity we
note the following. First, the bounds above nearly match the best explicit bounds we know
for these models, hence offer an explanations why the rank methods got stuck there. Second,
the bounds above are a far cry (quadratically away) from the true complexity (e.g. of random
polynomials) in these models, which if achieved (by any methods), are known to imply super-
polynomial formula lower bounds.

We also explain the relation of our barrier results to other attempts, and in particular how they
significantly differ from the recent attempts to find analogues of “natural proofs” for arithmetic
complexity. Finally, we discuss the few arithmetic lower bound approaches which fall outside
rank methods, and some natural directions our barriers suggest.
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1 Introduction

Arithmetic complexity theory (often also called algebraic complexity theory) addresses the
computation of algebraic objects (like polynomials, matrices, tensors) using the arithmetic
field operations (and sometimes other operations like taking roots). Within computational
complexity this field is nearly as old as Boolean complexity theory, which addresses the
computation of discrete functions via logical operations, but of course mathematicians were
interested in arithmetic computation for centuries before computer science was born. Indeed,
Euclid’s algorithm for computing GCD, Gauss’ discovery of the FFT, and Abel’s impossibility
result for solving quintic equations by radicals are all precursors of arithmetic complexity
theory. Today algebraic algorithms pervade mathematics! Extensive surveys of this field
are presented in the books [8, 52], and, more focused on the present material are the recent
monographs [48, 12], as well as the book [33] which offers an algebro-geometric perspective.

Structurally, the Boolean and arithmetic theories, and especially the quest for lower
bounds which we will focus on, progressed almost hand in hand. Shortly after the important
discoveries of reductions and completeness leading to the definitions of P, NP, and complete
problems for them, Valiant [51] developed the arithmetic analog notions of VP, VNP and
complete problems for them. Separating these pairs of classes stand as the long-term
challenges of these fields, and their difficulty has led to the study of a large variety of
restricted models in both. Definitions, techniques and results have propagated back and forth
and inspired progress, but, all in all, we understand the arithmetic models much better. This
of course comes as no surprise. In the arithmetic setting (especially over fields that are large,
of characteristic zero, or are algebraically closed) the diverse tools of algebra are available,
but have no analogs in the Boolean setting. Moreover, as arithmetic computation is mostly
symbolic it is (essentially) more stringent than the Boolean computation of functions2; indeed,
it is known that proving (a non-uniform version of) P 6= NP implies VP 6= VNP when the
underlying field is C [7]. and thus arithmetic lower bounds are also formally easier to prove!

2 For example, the polynomial xp −x over Fp is nontrivial to compute, while the (identically zero) function
it represents is trivial.

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.1
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Despite exciting and impressive progress on arithmetic lower bounds (we will detail many
later), some of the most basic questions remain open, and this seeming weakness of current
techniques begs explanation, which will hopefully lead to new ones. In Boolean complexity
there is a rich interplay between the discovery of the power of new techniques, and then
their limitations, in the form of barrier results. Such results formally encapsulate a set
of lower bound methods, and then prove (unconditional, or sometimes conditionally on
natural assumptions) that these cannot solve basic questions. Well known barriers to large
classes of techniques include the relativization barrier of Baker, Gill and Solovay [6], the
natural proof barrier of Razborov and Rudich [45] and the algebrization barrier of Aaronson
and Wigderson [2]. But there are many other important barriers, to more concrete lower
bound methods, including [42, 43, 38]. Finding analogous barriers for arithmetic complexity
has been much harder; while encapsulation of general lower bound techniques exists, e.g.
in [20, 16, 21], there are really no proofs of their limitations (we will discuss these in the
related works subsection below).

This paper provides, to the best of our knowledge, the first unconditional barrier results
on a very general class of methods, capturing many of the known lower bounds, including
the very exciting recent ones. We now begin to describe, through examples, the techniques
we encompass under rank methods and then explain their limitations.

1.1 Sub-Additive Measures, Rank Bounds and Barriers
Throughout, we will discuss the computation of multivariate polynomials over any field, by
arithmetic circuits of various forms, in a way that will not necessitate too many specific details;
we will give these as needed, and give formal details in the technical sections. The examples
we start with below will demonstrate many “cheap” computations may be encompassed by
writing the output polynomial as a “short” sum of simpler ones. Thus lower bounds on the
number of summands can yield (important) complexity lower bounds. We continue with
discussing classes of such lower bound techniques, and then barrier results that put a limit
on how large lower bounds such classes of techniques can prove.

Sub-additive measures

Let us start with some examples and then generalize them.
One of the earliest basic results in arithmetic complexity, due to Hyafil [26] states the
following: if a homogeneous circuit of size s computes an n-variate polynomial f of degree
d, then

f = g1 + g2 + · · ·+ gs

where each gi is simple, which here means highly reducible: gi = pi · qi, where the degrees
of pi, qi do not exceed 2d/3. This result was developed towards parallelizing arithmetic
computation, but can also be used for lower bounds: if we could find any sub-additive
measure µ on polynomials, which is small on all possible gi but is large on f , we would have
a lower bound on the minimum circuit size s of f ! In particular, Hyafil’s theorem implies
that if the ratio of “large” and “small” values of µ is super-polynomial in n, d, this would
imply3 VP 6= VNP! We note that Hyafil’s theorem is today only one example of numerous
other decomposition theorems of similar nature used in lower bounds, e.g. [37, 36, 41, 24]
to mention a few.

3 Since homogenous computation can efficiently simulate non-homogeneous one.
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1:4 Barriers for Rank Methods in Arithmetic Complexity

An even simpler example, where a similar decomposition follows directly from the
definition, is tensor rank. Assume that a d-dimensional tensor (with n variables in each
dimension) has rank s. This means4 that

f = g1 + g2 + · · ·+ gs

where each gi is simple, which here means of rank 1 : gi = `
(1)
i ⊗ `

(2)
i · · · ⊗ `

(d)
i , where `(j)

i

is a linear form in the variables of dimension j. Again, any sub-additive measure µ on
tensors which is small on all possible rank 1 tensors gi, but is large on f would yield a
lower bound on its tensor rank. This question is no less important than the previous one
even though tensor rank seems like a more restricted complexity measure: Raz [40] proved
that presenting an explicit tensor f of super-constant dimension d ≤ logn/ log logn, with
a nearly-tight tensor rank lower bound of nd(1−o(1)) (which holds for most tensors) will
imply VPe 6= VNP (namely, explicit super-polynomial lower bounds on formulas)! We
note that a similar example as tensor rank, where a decomposition suggests itself by
definition, is Waring rank, where each gi is a d-power of a linear form.
A third set of examples which directly gives such decompositions of computations is when
considering bounded-depth circuits. In almost all computations one can assume without
loss of generality that the top (output) gate is a plus gate, and so if a polynomial f is
computed by a depth-h circuit of size s, then

f = g1 + g2 + · · ·+ gs

where each gi is simple in being of depth h− 1 (and moreover, with a top product gate).
Sub-additive measures small on such simple polynomials and large on f were the key
to the many successes on remarkably tight lower bounds for depth-3 and then depth-4
circuits [36, 28, 22, 27, 17, 30, 29]. These include the breakthrough of (nd)

√
d explicit

lower bounds [22] on the size of homogeneous depth-4 circuits, which again seem much
more restricted than it is: any super-constant improvement of the exponent will imply
VP 6= VNP!

There are many other examples in which obtaining such decompositions as above uses
extra tools like approximations, random restrictions, or iterations. Abstracting all these
examples and indeed most known lower bounds in arithmetic complexity5, can be done
in a simple way. Let S be a set of simple polynomials, and let Ŝ be their linear span.
The S-complexity cS(f) of a polynomial f ∈ Ŝ is simply the smallest number s such that
f = g1 + g2 + · · ·+ gs and each gi ∈ S. A sub-additive measure µ is a function µ : Ŝ → R+

such that

µ(g + h) ≤ µ(g) + µ(h)

for any g, h ∈ Ŝ. Extending µ to sets, denoting µ(T ) = max{µ(g) : g ∈ T}, we can
immediately derive a lower bound on cS(f) for any polynomial f by

cS(f) ≥ µ(f)/µ(S).

Let ∆S denote all possible sub-additive measures on Ŝ. It is a triviality that cS itself is
a sub-additive measure in ∆S , and hence this method can in principle provide tight lower

4 Directly generalizing matrix rank, which is the case d = 2.
5 The discussion below is quite general and indeed applies to lower bounds and barriers that use sub-
additive measures in practically any computational model.



K. Efremenko and A. Garg and R. Oliveira, and A. Wigderson 1:5

bound on the complexity cS(f) for every f . However, the difficulty of proving lower bounds
precisely means that cS is hard to understand, and so we try to “approximate it” with simpler
measures µ ∈ ∆ for some family ∆ ⊆ ∆S of sub-additive measures which are hopefully
simpler to understand, compute and reason about.

Barriers for sub-additive measures

This brings us to the topic of this paper: barriers, or limits to the power of such class of
lower bound methods. A barrier result for any such class of sub-additive measures ∆ ⊆ ∆S

simply asserts that µ(f) is small for every µ ∈ ∆ and any f ∈ Ŝ (whenever µ(S) is small).
The quantity

c(∆) = µ(Ŝ)/µ(S)

upper bounds the best lower bound which can be proven using any µ ∈ ∆ on any polynomial
f ∈ Ŝ, simply as µ(f) ≤ c(∆) · µ(S) for all of them.

Of course, concrete lower bounds are obtained using specific measures µ, and there is
always hope that a clever variant of such a choice will give even better bounds; indeed, much
of the progress in lower bounds is of this nature. The quality of barrier result is in classifying
as large as possible a class of measures ∆, which captures many complexity measures, such
that either c(∆) is close to the best known lower bounds, or it is well separated with a
“desired” lower bound (e.g. one that would approach the complexity of a random polynomial,
or that would significantly improve the state of art). In this paper we focus on rank methods,
which we turn to describe now.

Rank methods

The rank function of matrices, is at once extremely well studied and understood in linear
algebra, and is sub-additive. This has made numerous (implicit and explicit) choices of
sub-additive measures, for a variety of computational models, to be defined via matrix rank,
as follows. Fix a field F, and let Matm(F) denote the set of all m×m matrices over F. Fix
the set of (simple) polynomials S, (and thereby also their span Ŝ) as before. Define the class
∆S

0 ⊆ ∆S to be the set of sub-additive measures µ which arise in the following way. Let
L : S → Matm(F) be any linear map for some integer m. Namely, for all g, h ∈ S (and hence
also in Ŝ) we have L(g + h) = L(g) +L(h), and that L(bg) = L(g) for any non-zero constant
b ∈ F. Define

µL(f) = rankF(L(f)).

Clearly, all these µL ∈ ∆S
0 are sub-additive measures on S. We call the elements of ∆S

0 as
rank methods for S.

As mentioned, rank methods abound in arithmetic (and other) lower bounds. The
possibly familiar names including partial derivatives, shifted partial derivatives, evaluation
dimension, coefficient dimension which are used e.g. in these lower bounds for monotone,
non-commutative, homogeneous, multilinear, bounded-depth and other models [37, 49, 42,
36, 28, 22, 27, 15, 17, 30, 29] are all rank methods, and in many of these papers are explicitly
stated as such. Moreover, in algebraic geometry, rank methods (usually called flattenings) are
responsible for almost all tensor rank and symmetric tensor rank lower bounds (see e.g. [33]).

What should be stressed is that rank methods are extremely general. We do not restrict
the size m of matrices used in any way (and indeed in some applications, like shifted partial
derivatives [22], m grows super exponentially in the basic size parameters n, d). Moreover,
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1:6 Barriers for Rank Methods in Arithmetic Complexity

we demand no explicitness in the specification of the linear map L (and indeed, in some
applications, like the multilinear formula lower bounds in [39, 41] the map is chosen at
random). The barrier results hold for all.

We prove barrier results for two classes of very weak computational models, tensor rank
and Waring rank, which are very special cases of (respectively) multilinear and homogeneous
depth-3 circuits (which themselves are the weakest class of circuits studied6. As with all
barrier results, the weaker the model for which they are proved, the better, as they scale up
for stronger models automatically! As discussed above, we will compare our barriers both to
the state-of-art lower bounds in these models, as well to the best one can hope for, namely
the complexity of random polynomials.

1.2 Main results
Our results below work for infinite fields F.7 We start with tensor rank, and proceed with
Waring rank, which may be viewed as a symmetric version of tensor rank. In both cases,
our barrier results nearly match (up to a function of d, the degree8) the best explicit lower
bounds (obtained by rank methods), and are roughly quadratically away from the (desired)
lower bounds that hold for random polynomials.

Tensor rank

Tensors abound in mathematics and physics, and have been studied for centuries. We refer
the reader to the book [32] for one good survey. From a computational perspective tensors
have been extremely interesting as well, as many problems naturally present themselves
in tensor form. In arithmetic complexity they are often called set-multilinear polynomials.
While 2-dimensional tensors, namely matrices, are very well understood, d-dimensional
tensors possess far less structure, and one way this is manifested is that the problem of
computing tensor rank of 3-dimensional tensors is already NP-complete [23]. Many special
cases, approximations and related decompositions of tensors were studied, especially recently
with machine learning applications [11, 35, 5, 25, 18]. Let us define the model and problem
formally.

Fix n, d. The family of polynomials of interest here is Ŝ = Tenn,d(F), namely degree d
polynomials in d sets of n variables (so, total of nd variables), in which each monomial has
precisely one variable from each set. The coefficients of a tensor are naturally described
by an [n]d box with entries from F. The simple polynomials S are rank-1 tensors, namely
those which are products of d linear forms, one in each set of variables (equivalently, the
coefficients are described by the tensor product of d vectors). The tensor rank of a tensor f
is the smallest number of rank-1 tensors which add up to it.

Most tensors have rank about nd−1/d. Explicit lower bounds are way worse. It is trivial
to construct an explicit d-dimensional tensor of rank nbd/2c, and the best known lower bound
is only a factor of 2 larger. Specifically, [4] give an explicit tensor with 0,1 coefficients of
tensor rank at least 2nbd/2c + n− d logn. Note in particular that the best lower bound for
d = 3 is about 3n. Although the lower bounds of [4] are not attained via a rank method,
many other lower bounds for tensor rank are attained via a rank method in ∆T

0 (T for

6 As depth-2 circuits simply represent polynomials trivially, as sums of monomials.
7 Our results below hold for all large enough fields F (polynomial in n, m, d), however, in most cases the

dimension m of the matrices is exponentially large in the parameters of interest – that is, n, d.
8 Which is a constant in the very interesting cases where the degree d is a constant!
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Tensor), namely using a sub-additive measure in the class of rank methods [34, 31]. Our
barrier result proves that no bound better 2d · nbd/2c can be proven by rank methods, and in
particular for d = 3, they cannot beat 8n (a factor 8/3 away from the best explicit lower
bound!).

I Theorem 1 (Statement of Theorem 3). c(∆T
0 ) ≤ 2d · nbd/2c.

Waring rank

The Waring problem has a long history in mathematics, first in its number theoretic form
initiated by Waring [53] in 1770 (writing integers as short sums of d-powers of other integers),
and then in its algebraic form we care about, initiated by Sylvester [50] in 1851 (writing
polynomials as short sums of powers of linear forms). Some of the basic questions (computing
this minimum for monomials and for random polynomials) were only very recently resolved,
using algebraic geometric techniques [10, 3]. In arithmetic complexity this model is often
referred to as depth-3 powering circuits. Let us formalize the problem.

Fix n, d. The family of polynomials of interest here is Ŝ = polyn,d, all n-variate poly-
nomials of total degree d. The simple generating set S we care about here is the set of all
d-powers, namely all polynomials of the form `d, where ` is an affine function in the n given
variables. So, cS(f) is the smallest number s such that f can be written as a sum of such d
powers.

For most polynomials, the Waring rank was settled by [3], and is about (n− 1)d for d
much smaller than n, and is precisely⌈

1
n
·
(
n+ d− 1
n− 1

)⌉
.

It is trivial to find an explicit f ∈ polyn,d whose Waring rank is Ω(nbd/2c), and the best
known lower bound, due to [19] (again via rank method in ∆W

0 ), is only a little better,(
n+ bd/2c − 1
bd/2c

)
+ bn/2c − 1.

Our barrier result proves that rank methods cannot improve this lower bound even by a
factor of roughly d.

I Theorem 2 (Barriers for Waring Rank9). c(∆W
0 ) ≤ (d+ 1) ·

(
n+bd/2c

n

)
.

1.3 High-level ideas of the proof

As mentioned, the proofs of our barrier results use only simple tools of linear algebra (although
their use and combination is a bit subtle). Here are the key ideas of the proof, written
abstractly in the general notation established above (again, we believe that they can be
applied in other settings beyond the two we consider in this paper).

Consider any simple set S of polynomials, and rank methods ∆S
0 for it. Thus, we need to

provide an upper bound on the quantity c(∆S
0 ), namely on the ratio µL(f)/µL(S) for every

f ∈ Ŝ, and every linear map L : S → Matm(F). Set r = µL(S).

9 A proof of this theorem appears in the full version of the paper [14]
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1:8 Barriers for Rank Methods in Arithmetic Complexity

We view linear map L, which gives rise to a sub-additive measure in ∆S
0 , as a matrix

polynomial, namely as a polynomial with matrix coefficients, or equivalently as a symbolic
matrix whose entries are polynomials. The variables of these polynomials will be the
parameters of the family of simple polynomials S (these parameters are the coefficients of
the linear forms appearing in the decompositions in both the tensor rank and Waring
rank settings). Call this symbolic matrix L(S).
Next, the symbolic rank of L(S) (over the field of rational functions in these variables)
is bounded by the maximum rank of any evaluation of this matrix polynomial (this is
the only place we use the fact that the field is large enough). By assumption, as these
evaluations are all in the image of L on the simple polynomials S, this maximum rank is
at most r, and so is the symbolic rank.
The symbolic rank gives rise to a decomposition L(S) = KM withM,K having dimensions
m × r and r ×m respectively, and their entries are rational functions in the variables
appearing in L(S). We show that with a small loss in the dimension r, this affords a
much nicer decomposition L(S) = K ′M ′, with dimensions m× r′ and r′×m respectively,
but now the entries of K ′,M ′ are polynomial functions of the variables. Moreover, the
polynomials in every column of K ′ and every row of M ′ are homogeneous of the same
degree. For tensor rank we obtain r′ = r2d, and for Waring rank we have r′ = r(d+ 1).
As all entries in matrix L(S) are polynomials of degree d, we must have for every i ∈ [r′],
that either the i’th column of K ′ or the i’th row of M ′ have degree at most bd/2c.
The dimension of the space of (vector) coefficients of these vectors of polynomials is an
appropriate function D of n, d (which in both cases we care about is about nbd/2c). Each
such vector of polynomials generates at most D constant vectors of their coefficients.
Combining what we have, we see that for every g ∈ S, we have a decomposition L(g) =
C(g) +R(g), where the columns of C(g) are spanned by at most r′D vectors independent
of g, and the rows of R are spanned by at most r′D vectors independent of g (indeed the
total number of these vectors is r′D). This gives an upper bound of r′D on the rank of
each L(g), which of course is not interesting as we already have an upper bound of r on
each.
The punchline is obtained by using the linearity of L, and the fact that Ŝ is the linear span
of S. Together, these imply that every matrix L(f) with f ∈ Ŝ is also in the linear span
of the matrices {L(g) : g ∈ S}, and so the same decomposition holds for them. Thus,
the rank of each L(f) is at most r′D, which is a bound on µL(Ŝ). Thus, c(∆S

0 ) ≤ r′D/r.
In the two settings we consider, D is roughly the best known explicit lower bound, and
r′/r is a function of d (namely, d+ 1 for Waring rank, and 2d for tensor rank).

1.4 Related Work
We now mention other attempts to provide barriers to arithmetic circuit lower bounds. We
also mention rank lower bounds in Boolean complexity, and barriers for them. As will be
evident, our work is very different than both sets.

All barrier results we are aware of in arithmetic complexity theory attempt to find analogs
of the natural proof barrier in Boolean circuit complexity of Razborov and Rudich [45].
Roughly, a lower bound technique is natural if it satisfies three properties: usefulness,
constructively, largeness which we will not need to define. They show how many Boolean
circuit lower bound techniques satisfy these properties. Now crucially, the barrier results
for natural proofs in the Boolean setting are conditional: they hold under a computational
assumption on the existence of efficient pseudorandom generators. In this setting, this
assumption is widely believed, and is known to follow from e.g. the existence of exponentially
hard one-way functions (one which the world relies for cryptography and e-commerce).
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In several works, starting with [1, 20], and following with the recent [16, 21], it was
understood that an analogous framework with the same three properties is simple to describe
(replacing the representation of Boolean functions by their truth tables by the representation
of low-degree multivariate polynomials by their list of coefficients). And indeed, it captures
essentially all arithmetic lower bounds known. Unfortunately, the main difference from
the Boolean setting is the non-existence of an analogous pseudo-randomness theory, and a
believable complexity assumption. Several suggestions for such an assumption were made
in the works above, and as articulated in [16, 21], they all take the form of the existence
of succinct hitting sets for small arithmetic circuits (indeed, such existence is equivalent
to a barrier result). This assumption is related to PIT (polynomial identity testing) and
GCT (geometric complexity theory), but the confidence in it is still shaky (initial work in
[16] shows succinct hitting sets against extremely weak models of arithmetic circuits). But
regardless how believable this assumption is, note that this barrier is again, conditional!

As mentioned earlier, our barrier results are completely unconditional, and moreover
require no constructivity from the lower bound proof (thus capturing methods which are
not strictly natural in the sense above). On the other hand, our framework of rank methods
capture only a large subset, but certainly not all of the known lower bound techniques.

It is interesting that rank methods were used not only in arithmetic complexity, but also
in Boolean complexity. While not directly related to our arithmetic setting, we mention
where it was used, and which barriers were studied. First, Razborov has used the rank of
matrices in an essential way for his lower bound on AC0[2] (although an elegant route around
it was soon after devised by Smolensky [49]). In another work, Razborov [44] has shown how
rank methods can be used to prove superpolynomial lower bounds on monotone Boolean
formulas. His methods were recently beautifully extended to other monotone variants of
other models including span programs and comparator circuits in [46]. The potential of such
methods to proving non-monotone lower bounds for Boolean formulas was considered by
Razborov [42], where he proves a strong barrier result in this Boolean setting. Observing that
rank is a submodular function, he presents a barrier for any submodular progress measure on
Boolean formulae: no such method can prove a super-linear lower bound!. His barrier was
recently made more explicit in [38].

1.5 Organization
In Section A we establish the notation that will be used throughout the paper and provide
some lemmas which we will need in the later sections. In Section B, we establish the main
technical content of our paper: we define three notions of matrix decomposition and relate
these new definitions to commutative rank. In Section 2, we apply the new decompostions
from Section B to obtain the main results of the paper, which are the limitations of the rank
techniques. Finally, in Section 3 we conclude the paper and present some open questions
and future directions of this work.

2 Rank Bounds

In this section, we show how the matrix decomposition techniques developed in Section B
can be used to establish barriers to rank-based methods used to prove lower bounds for
tensor rank.10

10For our results on barriers for Waring rank and constant depth circuits, please see the full version of the
paper [14].
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1:10 Barriers for Rank Methods in Arithmetic Complexity

We show that any linear map, denoted here by L : Tenn,d(F) → Matm(F), for which
rank(L(u1 ⊗ · · · ⊗ ud)) ≤ r for all rank one tensors has the property that rank(L(T )) ≤
r · 2d ·nbd/2c for any tensor T ∈ Tenn,d(F). This in turn, implies that such a technique cannot
yield better lower bounds than

rank(T ) > 2d · nbd/2c

for any explicit tensor T ∈ Tenn,d(F).
To put this matter into perspective, it is very easy to obtain explicit tensors T ∈ Tenn,d(F)

whose tensor rank is lower bounded by rank(T ) ≥ nbd/2c. For instance, one can just take
a full-rank matrix in Matnbd/2c(F). Nevertheless, despite much work on tensor rank lower
bounds, the best lower bounds for the rank of explicit tensors are still of the form Ω(nbd/2c),
as seen in the works [9, 4, 32].

On the other hand, it is well-known, see for instance [33], that a random tensor has rank
on the order of nd−1

d . Thus, our paper shows that rank-based methods for proving tensor
rank lower bounds will not suffice to prove strong tensor lower bounds. We now state the
main theorem of this section.

I Theorem 3 (Tensor Rank Upper Bounds). Let m,n ∈ N be positive integers and L :
Tenn,d(F) → Matm(F) be a linear map such that each rank one tensor u1 ⊗ · · · ⊗ ud is
mapped into a matrix L(u1 ⊗ · · · ⊗ ud) such that

rank(L(u1 ⊗ · · · ⊗ ud)) ≤ r.

Then it holds that

rank(L(f)) ≤ r · 2d · nbd/2c

for any tensor f ∈ Tenn,d(F).

Proof. Let x1 ⊗ · · · ⊗ xd be a generic rank one tensor, where xi = (xi1, . . . , xin), with xij

being variables which take values from F, for all i ∈ [d]. Additionally, let x = (x1, . . . ,xd),
that is, x is the set of all variables involved, taking into account the partitions of the variables.
As the map L : Tenn,d(F)→ Matm(F) is a linear map, we must have that

L(x1 ⊗ · · · ⊗ xd) =
n∑

i1,i2,...,id=1
Ai1,i2,...,id

d∏
j=1

xjij

where each Ai1,i2,...,id
∈ Matm(F) is a complex m ×m matrix.11 Hence, M(x) = L(x1 ⊗

· · · ⊗ xd) is a matrix with set-multilinear polynomial entries, where each polynomial is
set-multilinear over the sets of variables x1, . . . ,xd.

By Lemma 10 and the assumption that rank(L(u1 ⊗ · · · ⊗ ud)) ≤ r for any multiset of
vectors ui ∈ Fn, we have that

rankF(x)(L(x1 ⊗ · · · ⊗ xd)) ≤ r.

In this case, the conditions of Lemma 17 apply and therefore there exist R ≤ r · 2d vectors of
homogeneous set-multilinear polynomials fi(x),gi(x) ∈ F[x] for which

M(x) =
R∑

i=1
fi(x)⊗ gi(x).

11One can see this by looking at the standard basis of the space Tenn,d(F) given by tensoring the standard
basis vectors ei1 ⊗ · · · ⊗ eid .
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Moreover, for all i ∈ [R], there exists a set Si such that fi(x) is set-multilinear with respect to
the partition (xj)j∈Si

and gi(x) is set-multilinear with respect to the partition (xj)j∈[d]\Si
.

Thus, deg(fi) + deg(gi) ≤ d, which implies that min(deg(fi), deg(gi)) ≤ bd/2c, for each
i ∈ [R]. This bound on the minimum degree, combined with Corollary 14 and the fact that
fi(x) and gi(x) are set-multilinear, yield

rank(C(fi(x)⊗ gi(x))) ≤ nbd/2c.

As rank(C(M(x))) ≤
R∑

i=1
rank(C(fi(x)⊗ gi(x))), we have that

rank(C(M(x))) ≤ R · nbd/2c.

To finish the proof, it is enough to show that L(f) ∈ C(M(x)), for any f ∈ Tenn,d(F).
For any rank one tensor u1 ⊗ · · · ⊗ ud, we have that L(u1 ⊗ · · · ⊗ ud) ∈ C(M(x)),

as L(u1 ⊗ · · · ⊗ ud) = M(u). As any element f ∈ Tenn,d(F) can be written as a linear
combination of rank one tensors and by linearity of L, we have that

L(f) ∈ span {L(u1 ⊗ · · ·ud) | u1, . . . ,ud ∈ Fn} ⊆ C(M(x)).

Thus, L(f) ∈ C(M(x)) and we have that

rank(L(f)) ≤ rank(C(M(x))) ≤ R · nbd/2c,

as we wanted. J

The theorem above implies the following barrier on rank-based techniques.
I Corollary 4. Let m,n ∈ N be positive integers and L : Tenn,d(F)→ Matm(F) be a linear
map (i.e., a flattening). Then, any rank methods which use this linear map cannot prove
lower bounds better than

rank(f) > 2d · nbd/2c

for any tensor f ∈ Tenn,d(F).

3 Conclusion and Open Problems

In this paper, we prove the first unconditional barrier for a wide class of lower bound
techniques for tensor rank as well as the Waring rank of a polynomial. In particular, for
3-dimensional tensor rank, we show for the first time that a wide class of techniques cannot
improve a known linear lower bound (of 2n) even beyond 8n. Additionally, we provide an
explicit instantiation of the rank method for depth-3 circuits, suggesting it will either help
prove better lower bounds, or help develop a barrier for this model that explains the difficulty
of proving better lower bounds.

We now provide a list of interesting directions for further research, both on the computa-
tional side as well as on the mathematical side.

1. Expand the set of methods for which unconditional barrier results be proven in arithmetic
complexity theory, beyond the rank methods we study in this paper. In particular, can
they be expanded to the use of non-linear mappings L, possibly of low degree?

2. Expand the set of arithmetic models for which barriers can be established for rank
methods, beyond the two models studied here.

3. In some sense, rank methods “flatten” polynomials of degree d > 2 into matrices (in 2
dimensions), in a similar fashion flattening methods in algebraic geometry are used (for
very similar purposes). Can this connection be further formalized and used?

ITCS 2018
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A Preliminaries

In this section, we establish the notation which will be used throughout the paper and some
important background which we shall need to prove our claims in the next sections.

A.1 General Facts and Notations
For simplicity of exposition, we will work over a field F which is algebraically closed and
of characteristic zero, even though our results also hold over infinite fields which need not
be algebraically closed.12 From now on we will use boldface to denote a vector of variables
or of field elements. For instance, x = (x1, . . . , xn) is the vector of variables x1, . . . , xn and
a = (a1, . . . , an) ∈ Fn is a vector of elements a1, . . . , an from the field F.

For any vector of non-negative integers a ∈ Nn and a vector of n variables x, we define

a! =
n∏

i=1
ai! and xa = 1

a! ·
n∏

i=1
xai

i . Since the monomials xa, a ∈ Nn, form a linear basis for

the ring of polynomials F[x], we can write any polynomial f(x) ∈ F[x] as

f(x) =
∑

a∈Nn

αaxa.

12 In general, we only need a field with characteristic polynomial in the number of variables, the degree of
the polynomials and the dimension of matrices being studied. We cannot work over field extensions, as
we need to use Lemma 10 over the base field.
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We will denote the coefficients of the polynomial f(x) by coeffa(f(x)) = αa.
The degree of a polynomial f(x) ∈ F[x] with respect to a variable xi, denoted by

degi(f(x)) is the maximum degree of xi in a nonzero monomial of f(x). If degi(f(x)) ≤ 1
for every variable xi, we say that the polynomial f(x) is a multilinear polynomial. Moreover,
if f(x) is multilinear and the variables in x can be partitioned into sets x1, . . . ,xd such that
each monomial from f(x) has at most one variable from each of the sets xi, we say that f(x)
is a set-multilinear polynomial.

I Definition 5 (Homogeneous Components). For a polynomial f(x), denote its homogeneous
part of degree t by Ht[f(x)]. Additionally, define

H≤t[f(x)] =
t∑

i=0
Hi[f(x)],

that is, H≤t[f ] is the sum of the homogeneous components of f(x) up to degree t. We can
extend this definition to matrices of polynomials in the natural way. Namely, if f(x) is a
matrix of polynomials of the form (fij(x))i,j , we define Ht[f(x)] = (Ht[fij(x)])i,j , that is,
Ht[f(x)] is the matrix given by the homogeneous components of degree t of each entry of
f(x).

I Definition 6 (Homogeneous Set Multilinear Components). Let x = (x1, . . . ,xd) be a set of
variables, partitioned into d sets of variables x1, . . . ,xd. For a polynomial f(x) of degree d,
let HSM

S [f(x)] denote its homogeneous set-multilinear part corresponding to subpartition
S ⊆ [d]. That is, HSM

S [f(x)] consists of the sum of all monomials (with the appropriate
coefficients) of f(x) of degree exactly |S| which are set-multilinear with respect to the
partition (xi)i∈S .

The following lemma tells us that any nonzero polynomial cannot vanish on a large
portion of any sufficiently large grid.

I Lemma 7 (Schwartz-Zippel-DeMillo-Lipton [47, 54, 13]). Let F be any field such that |F| > d

and let S ⊆ F be such that |S| > d. If p(x) ∈ F[x] is a nonzero polynomial of degree d, then

Pr
a∈Sn

[p(a) = 0] ≤ d

|S|
.

A.2 Matrix Spaces
In this section, we introduce the concept of matrix spaces and establish some of their
important properties which we will use in the next sections. We begin by establishing some
notations for matrices and tensors.

If V is a vector space of dimension n over a field F, we can identify V = Fn. In this
case, we denote the dth tensor power of V by Tenn,d(F) = V ⊗d. We denote the space of
n× n matrices V ⊗2 by Matn(F) = Tenn,2(F). Sometimes we will abuse notation and write
Matn(R) for the ring of matrices whose entries take value over a ring R.

A tensor T ∈ Tenn,d(F) is a rank-1 tensor if it can be written in the form T = v1⊗· · ·⊗vd,
where each vi ∈ Fn. Given any tensor T ∈ Tenn,d(F), its rank over F (denoted by rankF(T ))
is the minimum number r of rank-1 tensors T1, . . . , Tr such that T = T1 + · · ·+Tr. Whenever
the base field is clear from context, we will denote rankF(T ) simply by rank(T ).

If M1, . . . ,Mk are matrices in Matm(F) and x1, . . . , xk are commuting variables, we
denote rankF(x1,...,xk)(

∑k
i=1 xiMi) the symbolic rank of the matrix

∑k
i=1 xiMi.

ITCS 2018
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I Definition 8 (Rank of a Set of Matrices). IfM⊂ Matm(F) is a set of m×m matrices over
the field F, define

rank(M) = max
M∈M

rank(M).

That is, the rank of the setM is given by the maximum rank (over F) among its elements.

The symbolic rank is important as it characterizes the rank of a linear space of matrices,
as seen in the following proposition.

I Proposition 9. LetM⊆ Matm(F) be a space of matrices. If M1, . . .Mm is a basis forM
and x1, x2 . . . xm are variables then

rank(M) = rankF(x1,...xm)

(
m∑

i=1
xiMi

)
.

The propostion above, together with Lemma 7, imply the following lemma:

I Lemma 10 (Rank Upper Bound on Polynomial Matrices). Let x = (x1, . . . , xn). If M(x) ∈
Matm(F[x]) is a matrix such that rankF(M(a)) ≤ r for all a ∈ Fn, then rankF(x)(M(x)) ≤ r.

The following proposition shows one way in which a linear space of matrices is of low
rank. This decomposition and its variants will be very useful to us throughout the paper.

I Proposition 11. LetM⊂ Matm(F) be a vector space of matrices such thatM = span(U⊗
V ), where U, V ⊂ Fm are vector spaces of dimensions r and s, respectively. Then,

rank(M) = min(r, s).

A.3 Coefficient Spaces and Their Properties
As we saw in Section 1.3, linear spaces of matrices may possess special structure if they are
generated by the coefficients of a matrix of polynomials. This observation, together with the
definition below, are crucial in obtaining upper bounds for the rank techniques which we
study.

I Definition 12 (Coefficient Space). Let M(x) ∈ F[x]m×k be a symbolic matrix of poly-
nomials. Considering the monomial basis {xe}e∈Nn for the space F[x], we can write
M(x) =

∑
e∈Nn

Me · xe, where each Me ∈ Fm×k is a matrix of field elements. We define

the coefficient space of M(x), denoted by C(M(x)), as the vector space spanned by the
vectors Me. That is,

C(M(x)) = span{Me | e ∈ Nn}.

Note that C(M(x)) ⊆ Fm×k.

Having the definition above, we proceed to show some nice properties of the coefficient
space of a matrix of polynomials.

I Proposition 13. Let x = (x1, . . . ,xd) be a set of nd variables, partitioned into d sets of n
variables each, denoted by xi. If f(x) ∈ F[x]m is a vector of homogeneous and set-multilinear
polynomials of degree d, with respect to the partition x = (x1, . . . ,xd), then

dim(C(f(x))) ≤ nd.
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By using this new proposition and Propostion 11, we have the following corollary:

I Corollary 14. Let x = (x1, . . . ,xd) be a set of nd variables, partitioned into d sets of
n variables each, denoted by xi. Additionally, let Sf t Sg = [d] be a partition of the set
[d] such that |Sf | = df and |Sg| = dg. If f(x),g(x) ∈ F[x]m are vectors of homogeneous
set-multilinear polynomials, where f(x) is partitioned with respect to the variables (xi)i∈Sf

and g(x) is partitioned with respect to the variables (xi)i∈Sg
, then we have:

rank(C(f(x)⊗ g(x))) ≤ min
{
ndf , ndg

}
.

B Restricted Forms of Symbolic Matrix Rank Decompositions

If some matrix M over a field F has rank r, then we can write M as sum of r matrices
M = M1 + . . .+Mr, where each Mi is a rank one matrix over F, and thus can be written
as Mi = ui ⊗ vi, where ui,vi are vectors over F. In this section we would like to discus
what happens when we impose additional conditions on the matrix M and on the rank one
matrices Mi.

For instance, let M(x) ∈ Matm(F[x]) be a matrix of homogeneous polynomials of degree
d such that rankF(x)(M) = r. We want to know the minimal r′ such that M(x) can
be written as sum of r′ matrices Mi(x) of rank one, where each Mi(x) decomposes as
ui(x)⊗ vi(x) for ui(x),vi(x) ∈ F[x]m being vectors of homogeneous polynomials. Notice
that this decomposition imposes the condition that the vectors ui(x),vi(x) be vectors of
polynomials, whereas in the general rank decomposition these vectors could be vectors of
rational functions, that is, elements of F(x)m.

In this section, we define one non-standard notion of rank, along with some properties
which will be useful to us in the main sections of the paper. We begin with the definition of
set-multilinear rank.

I Definition 15 (Set-Multilinear Rank). Let x = (x1, . . . ,xd) be a set of variables, partitioned
into sets of variables xi, and M(x) ∈ Matm(F[x]) be a matrix with polynomial entries such
that each entry Mij(x) is a homogeneous set-multilinear polynomial of degree d, where the
partition is given by x.
The set-multilinear rank of M(x), denoted by sm-rank(M(x)), is the smallest integer r for
which there exist r pairs of vectors fi(x),gi(x) ∈ F[x]m such that

M(x) =
r∑

i=1
fi(x)⊗ gi(x), (1)

where:
fi(x) and gi(x) are homogeneous vectors of set-multilinear polynomials,
for each i ∈ [r], there exists a partition Si

f t Si
g = [d] of the set [d] such that fi(x) is

set-multilinear with respect to the variables (xj)j∈Si
f
and gi(x) is set-multilinear with

respect to the variables (xj)j∈Si
g
.

In particular, deg(fi(x)) + deg(gi(x)) = d.

Now that we have a notion of rank, we will need the following decomposition lemma to
prove that low rank matrices must also have low set-multilinear rank. LetM(x) ∈ Matm(F[x])
be a matrix whose entries are homogeneous polynomials of degree d. The following lemma
shows that if rank(M(x)) = r, then it can be written as the homogeneous component of
degree d of a sum of r rank one matrices with polynomial entries.
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I Lemma 16 (Symbolic Matrix Decomposition Lemma). Let M(x) ∈ Matm(F[x]) be a matrix
of homogeneous polynomials of degree d. If rankF(x)(M(x)) = r then there are vectors
f1(x), . . . , fr(x) ∈ F[x]m and g1(x), . . . ,gr(x) ∈ F[x]m such that

M(x) =
r∑

i=1
Hd[fi(x)⊗ gi(x)].

Proof. Since rankF(x)(M(x)) = r, there exist r pairs of vectors of polynomials pi(x),qi(x) ∈
F[x]m and nonzero polynomials ti(x) ∈ F[x] such that

M(x) =
r∑

i=1

1
ti(x)pi(x)⊗ qi(x).

Since ti(x) are nonzero polynomials for all i ∈ [r], the polynomial given by Q(x) =
r∏

i=1
ti(x)

is a nonzero polynomial. By char(F) = 0 and Lemma 7, there exists a ∈ Fn such thatQ(a) 6= 0.
In particular, this implies that we can write ti(x + a) = bi · (1 − t̂i(x)), where bi ∈ F are
nonzero field elements and t̂i(x) are polynomials such that t̂i(0) = 0. Namely, the constant
terms of t̂i(x) are zero, for all i ∈ [r].

Writing p̂i(x) = pi(x + a), q̂i(x) = qi(x + a), and from the power series expansion of
1/(1− x), it follows that

M(x + a) =
r∑

i=1

1
ti(x + a) p̂i(x)⊗ q̂i(x)

=
r∑

i=1

1
bi · (1− t̂i(x))

p̂i(x)⊗ q̂i(x)

=
r∑

i=1

1
bi

[p̂i(x)⊗ q̂i(x)] ·

 ∞∑
j=0

t̂i(x)j

 .

As M(x + a) is a matrix of polynomials of degree no larger than d, the equality above
becomes:

M(x + a) = H≤d[M(x + a)]

= H≤d


r∑

i=1

1
bi

[p̂i(x)⊗ q̂i(x)] ·

 ∞∑
j=0

t̂i(x)j


= H≤d


r∑

i=1

1
bi

[p̂i(x)⊗ q̂i(x)] ·

 d∑
j=0

t̂i(x)j


=

r∑
i=1

H≤d[p̃i(x)⊗ q̃i(x)],

where p̃i(x) = 1
bi

p̂i(x) and q̃i(x) = q̂i(x) ·

 d∑
j=0

t̂i(x)j

.

Moreover, from homogeneity of M(x), we have M(x) = Hd[M(x + a)], which implies

M(x) = Hd[M(x + a)] =
r∑

i=1
Hd[p̃i(x)⊗ q̃i(x)].
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Taking fi(x) = p̃i(x) and gi(x) = q̃i(x) completes the proof. J

With this concept of set-multilinear decomposition and the lemma above, we obtain
the following relationship between the symbolic rank and the set-multilinear rank of a
set-multilinear polynomial matrix.

I Lemma 17 (Set-Multilinear Rank of Polynomial Matrices). Let M(x) ∈ Matm(F[x]) be a
set-multilinear matrix of degree d, with partition x = (x1, . . . ,xd).

If rankF(x)(M(x)) ≤ r then sm-rank(M(x)) ≤ r · 2d.

Proof. W.l.o.g., we can assume that rankF(x)(M(x)) = r. From Lemma 16, there exist
vectors of polynomials p1(x),q1(x), . . . ,pr(x),qr(x) ∈ F[x]m such that

M(x) =
r∑

i=1
Hd[pi(x)⊗ qi(x)]. (2)

Decomposing equality (2) into its homogeneous and set multilinear components, according
to the partition x = (x1, . . . ,xd) we obtain:

M(x) =
r∑

i=1
HSM

[d] [pi(x)⊗ qi(x)] =
r∑

i=1

∑
S⊆[d]

HSM
S [pi(x)]⊗HSM

[d]\S [qi(x)].

The last line of the equality above giving us the decomposition of M(x) into R ≤ r · 2d rank-1
polynomial matrices. J
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