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Abstract
We study 2-ary constraint satisfaction problems (2-CSPs), which can be stated as follows: given
a constraint graph G = (V,E), an alphabet set Σ and, for each edge {u, v} ∈ E, a constraint
Cuv ⊆ Σ× Σ, the goal is to find an assignment σ : V → Σ that satisfies as many constraints as
possible, where a constraint Cuv is said to be satisfied by σ if (σ(u), σ(v)) ∈ Cuv.

While the approximability of 2-CSPs is quite well understood when the alphabet size |Σ| is
constant (see e.g. [37]), many problems are still open when |Σ| becomes super constant. One
open problem that has received significant attention in the literature is whether it is hard to
approximate 2-CSPs to within a polynomial factor of both |Σ| and |V | (i.e. (|Σ||V |)Ω(1) factor).
As a special case of the so-called Sliding Scale Conjecture, Bellare et al. [5] suggested that the
answer to this question might be positive. Alas, despite many efforts by researchers to resolve
this conjecture (e.g. [39, 4, 20, 21, 35]), it still remains open to this day.

In this work, we separate |V | and |Σ| and ask a closely related but weaker question: is it hard
to approximate 2-CSPs to within a polynomial factor of |V | (while |Σ| may be super-polynomial
in |V |)? Assuming the exponential time hypothesis (ETH), we answer this question positively:
unless ETH fails, no polynomial time algorithm can approximate 2-CSPs to within a factor of
|V |1−1/ logβ |V | for some β > 0. Note that our ratio is not only polynomial but also almost linear.
This is almost optimal since a trivial algorithm yields an O(|V |)-approximation for 2-CSPs.

Thanks to a known reduction [25, 16] from 2-CSPs to the Directed Steiner Network (DSN)
problem, our result implies an inapproximability result for the latter with polynomial ratio in
terms of the number of demand pairs. Specifically, assuming ETH, no polynomial time algorithm
can approximate DSN to within a factor of k1/4−o(1) where k is the number of demand pairs. The
ratio is roughly the square root of the approximation ratios achieved by best known polynomial
time algorithms [15, 26], which yield O(k1/2+ε)-approximation for every constant ε > 0.

Additionally, under Gap-ETH, our reduction for 2-CSPs not only rules out polynomial time
algorithms, but also fixed parameter tractable (FPT) algorithms parameterized by the number
of variables |V |. These are algorithms with running time g(|V |) · |Σ|O(1) for some function g.
Similar improvements apply for DSN parameterized by the number of demand pairs k.
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1 Introduction

We study 2-ary constraint satisfaction problems (2-CSPs): given a constraint graph G =
(V,E), an alphabet Σ and, for each edge {u, v} ∈ E, a constraint Cuv ⊆ Σ × Σ, the goal
is to find an assignment σ : V → Σ that satisfies as many constraints as possible, where a
constraint Cuv is satisfied by σ if (σ(u), σ(v)) ∈ Cuv. Throughout the paper, we use k to
denote the number of variables |V |, n to denote the alphabet size |Σ|, and N to denote nk.

Constraint satisfaction problems (CSPs) and their inapproximability have been studied
extensively since the proof of the PCP theorem in the early 90’s [3, 2]. Most of the effort
has been directed towards understanding the approximability of CSPs with constant arity
and constant alphabet size, leading to a reasonable if yet incomplete understanding of the
landscape [27, 31, 37, 12]. When the alphabet size grows, the Sliding Scale Conjecture
(SSC) [5] predicts that the hardness of approximation ratio will grow as well, and be at
least a constant power of the alphabet size n. This has been confirmed for values of n up to
2(logN)1−δ (see [39, 4, 20]). Proving the same for n that is itself a constant power of N is the
so-called polynomial SSC and is still open. Before we proceed, let us note that the results of
[39, 4, 20] work only for arity larger than two and, hence, do not imply inapproximability for
2-CSPs. We will discuss the special case of 2-CSPs in more details below.

The polynomial SSC has been approached from different angles. In [21] the authors try
to find the smallest arity and alphabet size such that the hardness factor is a constant power
of n, and in [19] the conjecture is shown to follow (in some weaker sense) from the Gap-ETH
hypothesis, which we discuss in more details later. In this work we focus on yet another angle,
which is to separate n and k and ask whether it is hard to approximate constant arity CSPs
to within a factor that is a constant power of k (but possibly not a constant power of n).
Observe here that obtaining NP-hardness of kΩ(1) factor is likely to be as hard as obtaining
one with NΩ(1); this is because CSPs can be solved exactly in time nO(k), which means that,
unless NP *

⋂
ε>0 DTIME(2nε), NP-hard instances of CSPs must have k = poly(N).

This motivates us to look for hardness from assumptions stronger than P 6= NP. Spe-
cifically, our result will be based on the Exponential Time Hypothesis (ETH), which states
that no subexponential time algorithm can solve 3-SAT (Conjecture 5). We show that,
assuming ETH, no polynomial time algorithm can approximate 2-CSPs to within an almost
linear ratio in k, as stated below. This is almost optimal since there is a straightforward
(k/2)-approximation for 2-CSPs, by simply satisfying all constraints that touch a variable
with highest degree.

I Theorem 1 (Main Theorem). Assuming ETH, there exists a constant β > 0 such that, no
algorithm can, given a 2-CSP instance Γ with alphabet size n and k variables such that the
constraint graph is complete, distinguish between the following two cases in polynomial time:

(Completeness) val(Γ) = 1, and,
(Soundness) val(Γ) < 2(log k)1−β

/k.
Here val(Γ) denotes the maximum fraction of edges satisfied by any assignment.

To paint a full picture of how our result stands in comparison to previous results, let
us state what is known about the approximability of 2-CSPs; due to the vast literature
regarding 2-CSPs, we will focus only the regime of large alphabets which is most relevant to
our setting. In terms of NP-hardness, the best known inapproximability ratio is (logN)c for
every constant c > 0; this follows from Moshkovitz-Raz PCP [36] and the Parallel Repetition
Theorem for the low value regime [24]. Assuming a slightly stronger assumption that NP is
not contained in quasipolynomial time (i.e. NP *

⋃
c>0 DTIME(n(logn)c)), 2-CSP is hard to
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approximate to within a factor of 2(logN)1−δ for every constant δ > 0; this can be proved
by applying Raz’s original Parallel Repetition Theorem [38] to the PCP Theorem. In [19],
the author observed that running time for parallel repetition can be reduced by looking at
unordered sets instead of ordered tuples. This observation implies that1, assuming ETH,
no polynomial time N1/(log log logN)c-approximation algorithm exists for 2-CSPs for some
constant c > 0. Moreover, under Gap-ETH (which will be stated shortly), it was shown
that, for every sufficiently small ε > 0, any Nε-approximation algorithm must run in time
NΩ(exp(1/ε)). Note that, while this latest result comes close to the polynomial sliding scale
conjecture, it does not quite resolve the conjecture yet. In particular, even the weak form
of the conjecture which postulates that there exists δ > 0 for which no polynomial time
algorithm can approximate 2-CSPs to within Nδ factor of the optimum does not follow
from [19]. Nevertheless, the Gap-ETH-hardness of [19] does imply that, for any function
f = o(1), no polynomial time algorithm can approximate 2-CSPs to within a factor of Nf(N).

In all results mentioned above, the constructions give 2-CSP instances in which the
alphabet size n is smaller than the number of variables k. In other words, even if we aim for
an inapproximability ratio in terms of k instead of N , we still get the same ratios as stated
above. Thus, our result is the first hardness of approximation for 2-CSPs with kΩ(1) factor.
Note again that our result rules out any polynomial time algorithm and not just NO(exp(1/ε))-
time algorithm ruled out by [19]. Moreover, our ratio is almost linear in k whereas the result
of [19] only holds for ε that is sufficiently small depending on the parameters of Gap-ETH.

An interesting feature of our reduction is that it produces 2-CSP instances with the
alphabet size n that is much larger than k. This is reminiscent of the setting of 2-CSPs
parameterized by the number of variables k. In this setting, the algorithm’s running time is
allowed to depend not only polynomially on N but also on any function of k (i.e. g(k)·poly(N)
running time for some function g); such algorithm is called a fixed parameter tractable (FPT)
algorithm parameterized by k. The question here is whether this added running time can
help us approximate the problem beyond the O(k) factor achieved by the straightforward
algorithm. We show that, even in this parameterized setting, the trivial algorithm is still
essentially optimal (up to lower order terms). This result holds under the Gap Exponential
Time Hypothesis (Gap-ETH), a strengthening of ETH which states that, for some ε > 0,
even distinguishing between a satisfiable 3-CNF formula and one which is not even (1− ε)-
satisfiable cannot be done in subexponential time (see Conjecture 7). Moreover, under this
stronger assumption, we improve the lower order term in our inapproximability ratio from
2(log k)1−β for some β > 0 to 2(log k)1/2+ρ for any ρ > 0. This result is stated formally below.

I Theorem 2. Assuming Gap-ETH, for any constant ρ > 0 and any function g, no algorithm
can, given a 2-CSP instance Γ with alphabet size n and k variables such that the constraint
graph is complete, distinguish between the following two cases in g(k) · (nk)O(1) time:

(Completeness) val(Γ) = 1, and,
(Soundness) val(Γ) < 2(log k)1/2+ρ

/k.

To the best of our knowledge, the only previous inapproximability result for para-
meterized 2-CSPs is from [16]. There the authors showed that, assuming Gap-ETH, no
ko(1)-approximation g(k) · (nk)O(1)-time algorithm exists; this is shown via a simple reduction
from parameterized inapproximbability of Densest-k Subgraph from [11] (which is in turn
based on a construction from [33]). Our result is a direct improvement over this result.

1 In [19], only the Gap-ETH-hardness result is stated. However, the ETH-hardness result follows easily
by invoking a PCP theorem (Theorem 6 below) to get a gap instance.
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We end our discussion on 2-CSPs by noting that, while our results suggest that the trivial
algorithm achieves an essentially optimal ratio in terms of k, non-trivial approximation is
possible when we measure the ratio in terms of N instead of k: in particular, a polynomial
time O(N1/3)-approximation algorithm is known for the problem [14].

Direct Steiner Network

As a corollary of our hardness of approximation results for 2-CSPs, we obtain an inapprox-
imability result for Directed Steiner Network with polynomial ratio in terms of the number
of demand pairs. In the Directed Steiner Network (DSN) problem (sometimes referred to
as the Directed Steiner Forest problem [26, 17]), we are given an edge-weighed directed
graph G and a set D of k demand pairs (s1, t1), . . . , (sk, tk) ∈ V × V and the goal is to find
a subgraph H of G with minimum weight such that there is a path in H from si to ti for
every i ∈ [k]. DSN was first studied in the approximation algorithms context by Charikar
et al. [13] who gave a polynomial time Õ(k2/3)-approximation algorithm for the problem.
This ratio was later improved to O(k1/2+ε) for every ε > 0 by Chekuri et al. [15]. Later, a
different algorithm with similar approximation ratio was proposed by Feldman et al. [26].

Algorithms with approximation ratios in terms of the number of vertices n have also been
devised [26, 9, 17, 1]. In this case, the best known algorithm is that of Berman et al. [9],
which yields an O(n2/3+ε)-approximation for every constant ε > 0 in polynomial time.

On the hardness side, there exists a known reduction from 2-CSP to DSN that preserves
approximation ratio to within polynomial factor2 [25]. Hence, known hardness of approx-
imation of 2-CSPs translate immediately to that of DSN: it is NP-hard to approximate to
within any polylogarithmic ratio, it is hard to approximate to within 2log1−ε n factor unless
NP ⊆ QP, and it is Gap-ETH-hard to approximate to within no(1) factor. Note that, since
k is always bounded above by n2, these hardness results also hold when n is replaced by
k in the ratios. Recently, this reduction was also used by Chitnis et al. [16] to rule out
ko(1)-FPT-approximation algorithm for DSN parameterized by k assuming Gap-ETH. Alas,
none of these results achieve ratios that are polynomial in either n or k and it remains open
whether DSN is hard to approximate to within a factor that is polynomial in n or in k.

By plugging our hardness results for 2-CSPs into the reduction, we immediately get
(Gap)-ETH-hardness of approximating DSN to within a factor of k1/4−o(1) as stated below.

I Corollary 3. Assuming ETH, there exists a constant β′ > 0 such that, there is no polynomial
time k1/4

2(log k)1−β′
-approximation algorithm for DSN.

I Corollary 4. Assuming Gap-ETH, for any constant ρ′ > 0 and any function g, there is no
g(k) · (nk)O(1)-time k1/4

2(log k)1/2+ρ′ -approximation algorithm for DSN.

In other words, if one wants a polynomial time approximation algorithm with ratio
depending only on k and not n, then the approximation ratios from the algorithms of [15, 26]
are roughly within a square of the best possible approximation ratio. To the best of our
knowledge, these are the first inapproximability results of DSN whose ratios are polynomial
in k.

2 That is, for any non-decreasing function ρ , if DSN admits ρ(nk)-approximation in polynomial time,
then 2-CSP also admits ρ(nk)c-approximation polynomial time for some absolute constant c.
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Agreement tests

Our main result is proved through an agreement testing argument. In agreement testing
there is a universe V , a collection of subsets S1, . . . , Sk ⊆ V , and for each subset Si we are
given a local function σSi : Si → {0, 1}. A pair of subsets are said to agree if their local
functions agree on every element in the intersection. The goal is, given a non-negligible
fraction of agreeing pairs, to deduce the existence of a global function g : V → {0, 1} that
coincides with many of the local functions. For a more complete description see [22].

Agreement tests capture a natural local to global statement and are present in essentially
all PCPs, for example they appear explicitly in the line vs. line and plane vs. plane low
degree tests [40, 4, 39]. Our reduction is based on a combinatorial agreement test, where
the universe is [n] and the subsets S1, . . . , Sk have Ω(n) elements each and are “in general
position”, namely they behave like subsets chosen independently at random. A convenient
feature about this setting is that every pair of subsets intersect.

Since we are aiming for a large gap, the agreement test must work (i.e., yield a global
function) with a very small fraction of agreeing pairs, which in our case is close to 1/k.

In this small agreement regime the idea, as pioneered in the work of Raz-Safra citeRazS97,
is to zero in on a sub-collection of subsets that is (almost) perfectly consistent. From this
sub-collection it is easy to recover a global function and show that it coincides almost perfectly
with the local functions in the sub-collection. A major difference between our combinatorial
setting and the algebraic setting of Raz-Safra is the lack of “distance” in our case: we can
not assume that two distinct local functions differ on many points (in contrast, this is a key
feature of low degree polynomials). We overcome this by considering different “strengths” of
agreement, depending on the fraction of points on which the two subsets agree. This notion
too is present in several previous works on combinatorial agreement tests [28, 23].

Hardness of Approximation through Subexponential Time Reductions

Our result is one of the many results in recent years that show hardness of approximation
via subexponential time reductions. These results are often based on ETH and its variants.
Proposed by Impagliazzo and Paturi [29], ETH can be formally stated as follows:

I Conjecture 5 (Exponential Time Hypothesis (ETH) [29]). There exist constants δ > 0 such
that no algorithm can decide whether any given 3-CNF formula is satisfiable in time O(2δm)
where m denotes the number of clauses3.

A crucial ingredient in most reductions in this line of work is a nearly-linear size PCP
Theorem. For the purpose of our work, the PCP Theorem can be viewed as a polynomial
time transformation of a 3-SAT instance Φ̃ to another 3-SAT instance Φ that creates a gap
between the YES and NO cases. Specifically, if Φ̃ is satisfiable, Φ remains satisfiable. On
the other hand, if Φ̃ is unsatisfiable, then Φ is not only unsatisfiable but it is also not even
(1 − ε)-satisfiable for some constant ε > 0 (i.e. no assignment satisfies (1 − ε) fraction of
clauses). The “nearly-linear size” part refers to the size of the new instance Φ compared to
that of Φ̃. Currently, the best known dependency in this form of the PCP Theorem between
the two sizes is quasi-linear (i.e. with a polylogarithmic blow-up), as stated below.

3 The original conjecture states the lower bound as exponential in terms of the number of variables not
clauses. However, thanks to the sparsification lemma [30], these two versions are equivalent.
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I Theorem 6 (Quasi-Linear Size PCP [8, 18]). For some constants ε,∆, c > 0, there is a
polynomial time algorithm that, given any 3-CNF formula Φ̃ with m clauses, produces another
3-CNF formula Φ with O(m logcm) clauses such that

(Completeness) if val(Φ̃) = 1, then val(Φ) = 1, and,
(Soundness) if val(Φ̃) < 1, then val(Φ) < 1− ε, and,
(Bounded Degree) each variable in Φ appears in at most ∆ clauses.

ETH-hardness of approximation proofs usually proceed in two steps. First, the PCP
Theorem is invoked to reduce a 3-SAT instance Φ̃ of size m to an instance of the gap
version of 3-SAT Φ of size m′ = O(m logcm). Second, the gap version of 3-SAT is reduced
in subexponential time to the problem at hand. As long as the reduction takes time
2o(m′/ logcm′) = 2o(m), we can obtain hardness of approximation result for the latter problem.
This is in contrast to proving NP-hardness of approximation for which a polynomial time
reduction is required.

Another related but stronger version of ETH that we will also employ is Gap-ETH, which
states that even the gap version of 3-SAT cannot be solved in subexponential time:

I Conjecture 7 (Gap Exponential Time Hypothesis (Gap-ETH) [19, 34]). There exist constants
δ, ε,∆ > 0 such that no algorithm can, given any 3-CNF formula Φ such that each of its
variable appears in at most ∆ clauses4, distinguish between the following two cases in time
O(2δm) time where m denotes the number of clauses:

(Completeness) val(Φ) = 1.
(Soundness) val(Φ) < 1− ε.

By starting with Gap-ETH instead of ETH, there is no need to apply the PCP Theorem
and hence a polylogarithmic loss in the size of the 3-SAT instance does not occur. As
demonstrated in previous works, this allows one to improve the ratio in hardness of approx-
imation results [19, 34, 33] and, more importantly, prove inapproximability results for some
parameterized problems [10, 11, 16], which are not known to be hard to approximate under
ETH. Specifically, for many parameterized problems, the reduction from the gap version
of 3-SAT to the problem has size 2m′/f(k) for some function f that grows to infinity with
k, where m′ is the number of clauses in the 3-CNF formula and k is the parameter of the
problem. For simplicity, let us focus on the case where f(k) = k. If one wishes to derive
a meaningful result starting form ETH, 2m′/k must be subexponential in terms of m, the
number of clauses in the original (no-gap) 3-CNF formula. This means that the term k must
dominate the logcm factor blow-up from the PCP Theorem. However, since FPT algorithms
are allowed to have running time of the form g(k) for any function g, we can pick g to be
22k . In this case, the algorithm runs in 2ω(m) time and we cannot deduce anything regarding
the algorithm. On the other hand, if we start from Gap-ETH, we can pick k to be a large
constant independent of m, which indeed yields hardness of the form claimed in Theorem 2
and Corollary 4.

Finally, we remark that Gap-ETH would follow from ETH if a linear-size (constant-query)
PCP exists. While constructing short PCPs has long been an active area of research [6, 8,
18, 36, 7], no such PCP is yet known. For a more in-depth discussion, please refer to [19].

Organization of the Paper. In the next section, we describe our reduction and give an
overview of the proof. After defining additional notations in Section 3, we proceed to provide

4 This bounded degree assumption can be assumed without loss of generality; see [34] for more details.
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the soundness analysis of our construction in Section 4. In Section 5, we briefly discuss the
setting of parameters that give the desired inapproximability results for 2-CSPs and DSN.
Finally, we conclude our work with some discussions and open questions in Section 6.

2 Proof Overview

Like other (Gap-)ETH-hardness of approximation results, our proof is based on a subexpo-
nential time reduction from the gap version of 3-SAT to our problem of interest, 2-CSPs.
Before we describe our reduction, let us define more notations for 2-CSPs and 3-SAT.

2-CSPs. For notational convenience, we will modify the definition of 2-CSPs slightly so
that each variable is allowed to have different alphabets; this definition is clearly equivalent
to the more common definition used above. Specifically, an instance Γ of 2-CSP now consists
of (1) a constraint graph G = (V,E), (2) for each vertex (or variable) v ∈ V , an alphabet set
Σv, and, (3) for each edge {u, v} ∈ E, a constraint Cuv ⊆ Σu × Σv. Additionally, to avoid
confusion with 3-SAT, we refrain from using the word assignment for 2-CSPs and instead
use labeling, i.e., a labeling of Γ is a tuple σ = (σv)v∈V such that σv ∈ Σv for all v ∈ V .
An edge {u, v} ∈ E is said to be satisfied by a labeling σ if (σu, σv) ∈ Σu ×Σv. The value
of a labeling σ, denoted by val(σ), is defined as the fraction of edges that it satisfies, i.e.,
|{{u, v} ∈ E | (σu, σv) ∈ Cuv}|/|E|. The goal of 2-CSPs is to find σ with maximum value;
we denote the such optimal value by val(Γ), i.e., val(Γ) = maxσ val(σ).

3-SAT. An instance Φ of 3-SAT consists of a variable set X and a clause set C where
each clause is a disjunction of at most three literals. For any assignment ψ : X → {0, 1},
val(ψ) denotes the fraction of clauses satisfied by ψ. The goal is to find an assignment ψ that
satisfies as many clauses as possible; let val(Φ) = maxψ val(ψ) denote the fraction of clauses
satisfied by such assignment. For each C ∈ C, we use var(C) to denote the set of variables
whose literals appear in C and, for each S ⊆ C, we use var(S) to denote

⋃
C∈S var(C).

Our Construction
Before we state our reduction, let us again reiterate the objective of our reduction. Given a
3-SAT instance Φ = (X, C), we would like to produce a 2-CSP instance ΓΦ such that

(Completeness) If val(Φ) = 1, then val(ΓΦ) = 1,
(Soundness) If val(Φ) < 1− ε, val(ΓΦ) < ko(1)/k where k is number of variables of ΓΦ,
(Reduction Time) The time it takes to produce ΓΦ should be 2o(m) where m = |C|,

where ε > 0 is some absolute constant.
Observe that, when plugging a reduction with these properties to Gap-ETH, we directly

arrive at the claimed k1−o(1) inapproximability for 2-CSPs. However, for ETH, since we start
with a decision version of 3-SAT without any gap, we have to first invoke the PCP theorem to
produce an instance of the gap version of 3-SAT before we can apply our reduction. Since the
shortest known PCP has a polylogarithmic blow-up in the size, the running time lower bound
for gap 3-SAT will not be exponential anymore, rather it will be of the form 2Ω(m/polylogm)

instead. Hence, our reduction will need to produce ΓΦ in 2o(m/polylogm) time. As we shall
see below, this will also be possible with appropriate settings of parameters.

We now move on to state our reduction. In addition to a 3-CNF formula Φ, the reduction
also takes in a collection S of subsets of clauses of Φ. For now, the readers should think
of the subsets in S as random subsets of C where each element is included in each subset
independently at random with probability α, which will be specified later. As we will see

ITCS 2018
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below, we only need two simple properties that the subsets in S are “well-behaved” enough
and we will later give a deterministic construction of such well-behaved subsets. With this in
mind, our reduction can be formally described as follows.

I Definition 8 (The Reduction). Given a 3-CNF formula Φ = (X, C) and a collection S of
subsets of C, we define a 2-CSP instance ΓΦ,S = (G = (V,E),Σ, {Cuv}{u,v}∈E) as follows:

The graph G is the complete graph where the vertex set is S, i.e., V = S and E =
(S

2
)
.

For each S ∈ S, the alphabet set ΣS is the set of all partial assignments to var(S) that
satisfies every clause in S, i.e., ΣS = {ψS : var(S)→ {0, 1} | ∀C ∈ S, ψS satisfies C}.
For every S1 6= S2 ∈ S, (ψS1 , ψS2) is included in CS1S2 if and only if there are consistent,
i.e., CS1S2 = {(ψS1 , ψS2) ∈ ΣS1 × ΣS2 | ∀x ∈ var(S1) ∩ var(S2), ψS1(x) = ψS2(x)}.

Let us now examine the properties of the reduction. The number of vertices in ΓΦ,S is
k = |S|. For this proof overview, α should be thought of as 1/polylog(m) whereas k should
be thought of as much larger than exp(1/α) (e.g. k = exp(1/α2)). For such value of k, all
random sets in S have size O(αm) w.h.p., meaning that the reduction time is 2m/polylogm.

Moreover, when Φ is satisfiable, it is not hard to see that val(ΓΦ,S) = 1; specifically, if
ψ : X → {0, 1} is the assignment that satisfies every clause of Φ, then we can label each
vertex S ∈ S of ΓΦ,S by ψ|var(S), the restriction of ψ on var(S). Since ψ satisfies every
clause, ψ|var(S) satisfies all clauses in S and this is a valid labeling. Moreover, since these are
restrictions of the same global assignment ψ, they are consistent, i.e., every edge is satisfied.

Hence, we are only left to show that, if val(Φ) < 1 − ε, then val(ΓΦ,S) < ko(1)/k;
this is indeed our main contribution. We will show this contrapositively: assuming that
val(ΓΦ,S) > ko(1)/k, we will “decode” back an assignment to Φ that satisfies at least 1− ε
fraction of clauses.

We remark that our task at hand can be viewed as agreement testing. Informally, in
agreement testing, the input is a collection {fT }T of local functions fT : T → {0, 1} where T
is a subset of some universe U such that, for many pairs T1 and T2, fT1 and fT2 agree, i.e.,
fT1(u) = fT2(u) for all u ∈ T1 ∩ T2. An agreement theorem says that there must be a global
function f : U → {0, 1} that coincides (exactly or approximately) with many of the local
functions, and thus explains the pairwise “local” agreements. (See e.g. Section 1.1 [22] for a
formal definition.) In our case, a labeling σ = {σS}S∈S with high value is exactly a collection
of functions σS : S → {0, 1} such that, for many pairs of S1 and S2, σS1 and σS2 agrees. Our
proof of soundness indeed recovers a global function ψ : X→ {0, 1} that coincides with many
of the local functions σS ’s and thus satisfies 1− ε fraction of clauses of Φ.

A Simplified Proof: k1/2−o(1) Ratio Inapproximability
Before we describe how we can decode an assignment for Φ when val(ΓΦ,S) > ko(1)/k, let
us sketch the proof assuming a stronger assumption that val(ΓΦ,S) > Θ(1/α)/k1/2. Since
1/α = ko(1), this already implies a k1/2−o(1) factor ETH-hardness of approximating 2-CSPs.
In the next subsection, we will refine the arguments and arrive at the desired k1−o(1) factor.

Let D be a large constant to be chosen later. Recall that val(ΓΦ,S) > (D/α)/k1/2 implies
that there is a labeling σ = {σS}S∈S that satisfies (D/α)/k1/2 ·

(
k
2
)
>
(
D
4α
)
k3/2 edges.

Let us consider the consistency graph of ΓΦ,S with respect to σ. This is the graph Gσ
whose vertex set is S and there is an edge between S1 and S2 iff σS1 and σS2 are consistent.
Note that the number of edges in Gσ is equal to the number of edges satisfied by σ.

Previous works on agreement testers exploit particular structures of the consistency graph
to decode a global function. One such property that is relevant to our proof is the notion of
almost transitivity defined by Raz and Safra in the analysis of their test [39]. More specifically,
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a graph G = (V,E) is said to be q-transitive for some q > 0 if, for every non-edge {u, v} (i.e.
{u, v} ∈

(
V
2
)
/∈ E), u and v can share at most q common neighbors5. Raz and Safra showed

that their consistency graph is (k1−Ω(1))-transitive where k denote the number of vertices of
the graph. They then proved a generic theorem regarding (k1−Ω(1))-transitive graphs: its
vertex set can be partitioned so that the subgraph induced by each partition is a clique and
the number of edges between different partitions is small. Since a sufficiently large clique
corresponds to a global function in their setting, they immediately arrive at their result.

Observe that, in our setting, a large clique also corresponds to an assignment that satisfies
almost all clauses of Φ. In particular, suppose that there exists S′ ⊆ S of size sufficiently large
size such that S induces a clique in Gσ. Since σS are perfectly consistent among all S ∈ S′,
these local functions induce a function ψ : var(

⋃
S∈S′ S) → {0, 1} that satisfies all clauses

in
⋃
S∈S′ S. If S is larger than Ω(1/(εα)), then, with high probability,

⋃
S∈S′ S contains all

but ε fraction of clauses, which means that ψ satisfies 1− ε fraction of clauses as desired.
Hence, if we could show that our consistency graph Gσ is (k1−Ω(1))-transitive, then we could
use the same argument as Raz and Safra’s to deduce our desired result. Alas, our graph Gσ
does not necessarily satisfy this transitivity property; for instance, consider any two sets
S1, S2 ∈ S and let σS1 , σS2 be such that they disagree on only one variable, i.e., there is
a unique x ∈ S1 ∩ S2 such that σS1(x) 6= σS2(x). It is possible that, for every S ∈ S that
does not contain x, σS agrees with both σS1 and σS2 ; in other words, every such S can be a
common neighbor of S1 and S2. Since each variable x appears roughly in only Θ(α) fraction
of the sets, there can be as many as (1−Θ(α))k = (1− o(1))k common neighbors of S1 and
S2 even when there is no edge between S1 and S2!

Fortunately for us, a weaker statement holds. If σS1 and σS2 disagree on ζn variables
(instead of just one variable as above) where n denotes the number of variables in the 3-CNF
formula, then we say that they strongly disagree. In this case, S1 and S2 can have at most
O(ln(1/ζ)/α) common neighbors in Gσ. Here ζ should be thought of as α2 times a small
constant which will be specified later. To see why this statement holds, observe that, since
every S ∈ S is a random subset that includes each clause C ∈ C with probability α, Chernoff
bound implies that, for every subcollection S̃ ⊆ S of size Ω(ln(1/ζ)/α),

⋃
S∈S̃ S contains all

but O(ζ) fraction of clauses. Let S̃S1,S2 ⊆ S denote the set of common neighbors of S1 and
S2. It is easy to see that S1 and S2 can only disagree on variables that do not appear in
var(

⋃
S∈S̃S1,S2

S). If S̃S1,S2 is of size Ω(ln(1/ζ)/α), then
⋃
S∈S̃S1,S2

S contains all but O(ζ)
fraction of clauses. Hence, assuming that each variable appears in bounded number of clauses,
var(

⋃
S∈S̃S1,S2

S) also contains all but O(ζ) fraction of variables. This means that S1 and S2

disagrees only on O(ζ) fraction of variables. By selecting the constant appropriately inside
O(·), we arrive at the claim statement.

In other words, while the transitive property does not hold for every edge, it holds for the
edges {S1, S2} where σS1 and σS2 strongly disagree. This motives us to define a two-level
consistency graph, where the edges with strong disagreement are referred to as red edges
whereas the original edges in Gσ are now referred to as blue edges, as formalized below.

I Definition 9 (Two-Level Consistency Graph). A red/blue graph is an undirected graph
G = (V,E = Er ∪ Eb) where its edge set E is partitioned into two sets Er, the set of red
edges, and Eb, the set of blue edges. We use prefixes “blue-” and “red-” to refer to quantities
of (V,Eb) and (V,Er) respectively. (E.g. u is a blue-neighbor of v if {u, v} ∈ Eb).

5 In [39], the parameter q denotes the fraction of vertices that are neighbors of both u and v rather than
the number of such vertices. However, we use the latter notion as it is more convenient for us.
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Given a labeling σ of ΓΦ,S and a real number 0 < ζ < 1, the two-level consistency graph
Gσ,ζ = (V σ,ζ , Eσ,ζr ∪ Eσ,ζb ) is a red/blue graph defined as follows.

The vertex set V σ,ζ is simply S.

The blue edges are the pairs {S1, S2} satisfied by σ, i.e., Eb = {{S1, S2} ∈
(S

2
)
|

disagr(σS1 , σS2) = 0}.

The red edges are the pairs {S1, S2} whose the assignments to the two endpoints disagree
on more than ζn variables, i.e., Er = {{S1, S2} ∈

(S
2
)
| disagr(σS1 , σS2) > ζn}.

Here disagr(σS1 , σS2) denotes the number of variables that σS1 , σS2 disagree on, i.e.,
disagr(σS1 , σS2) = |{x ∈ var(S1) ∩ var(S2) | σS1(x) 6= σS2(x)}|.

Note that, when disagr(σS1 , σS2) ∈ [1, ζn], S1, S2 constitute neither a blue nor a red edge.
Now, the transitivity property above can be stated as follows: for every red edge {S1, S2}

of Gσ,ζ , there are at most O(ln(1/ζ)/α) different S’s such that both {S, S1} and {S, S2} are
blue edges. For brevity, let us call any red/blue graph G = (V,Er ∪Eb) q-red/blue-transitive
if, for every red edge {u, v} ∈ Er, u and v have at most q common blue-neighbors. We will
now argue that in any q-red/blue-transitive of average blue-degree d, there exists a subset
U ⊆ V of size Ω(d) such that, only O(qk/d2) fraction of pairs of vertices in U form red edges.

Before we prove this, let us state why this is useful for decoding a good assignment for
the 3-CNF formula Φ. Observe that such a subset U of vertices in the two-level consistency
graph translates to a subcollection S′ ⊆ S such that, for all but O(qk/d2) fraction of pairs
of sets S1, S2 ⊆ S′, {S1, S2} does not form a red edge, meaning that σS1 and σS2 disagrees
on at most ζn variables. In other words, S′ is similar to a clique in the (not two-level)
consistency graph, except that (1) O(qk/d2) fraction of pairs {S1, S2} are allowed to disagree
on as many variables as they like, and (2) even for the rest of pairs, the guarantee now
is that they agree on all but at most ζn variables, instead of total agreement as in the
previous case of clique. Fortunately, when S′ satisfies a certain uniformity condition (which
random subsets satisfy w.h.p.), this still suffices to find an assignment to Φ that satisfies
1−O(qk/d2)−O(ζ/α2) fraction of the clauses. One way construct a good assignment is to
simply assign each variable x ∈ X according to the majority of σS(x) for all S ∈ S′ such that
x ∈ var(S). Our actual proof proceeds slightly differently for technical reasons. Note that
in our case q = O(ln(1/ζ)/α) and d = Ω(Dk1/2/α); if we pick ζ � εα2 and D � 1/

√
ε, we

indeed get an assignment that satisfies 1− ε fraction of clauses.
We now move on to sketch how one can find such a clique-like subgraph. For simplicity,

let us assume that every vertex has the same blue-degree (i.e. (V,Eb) is d-regular). Let
us count the number of red-blue-blue triangle (or rbb triangle), which is a 3-tuple (u, v, w)
of vertices in V such that {u, v}, {v, w} are blue edges whereas {u,w} is a red edge. An
illustration of a rbb triangle can be found in Figure 1a. The red/blue transitivity can be used
to bound the number of rbb triangles as follows. For each (u∗, w∗) ∈ V 2, since the graph is
q-red/blue-transitive there are at most q rbb triangle with u = u∗ and w = w∗. Hence, in
total, there can be at most qk2 rbb triangles. As a result, there exists v∗ ∈ V such that the
number of rbb triangles (u, v, w) such that v = v∗ is at most qk. Let us now consider the set
U = Nb(v∗) that consists of all blue-neighbors of v∗. There can be at most qk red edges with
both endpoints in Nb(v∗) because each such edge corresponds to a rbb triangle with v = v∗.
From our assumption that every vertex has blue degree d, we indeed have that |U | = d and
that the fraction of pairs of vertices in U that are linked by red edges is O(qk/d2) as desired.
This completes our overview for k1/2−o(1) factor inapproximability result for 2-CSPs.
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(a) a red-blue-blue triangle
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v2
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v4

v5

(b) a red-filled 4-walk
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v2

v3

v4 v′2

v′3

v′4

(c) disjoint red-filled 4-walks

Figure 1 Illustrations of red-filled walks. Figures 1a and 1b demonstrate a red-filled 2 walk (rbb
triangle) and a red-filled 4-walk respectively. Figure 1c shows two disjoint red-filled 4-walks.

Towards Nearly Linear Ratio Inapproximability

To improve our inapproximability ratio from k1/2−o(1) to k1−o(1), we need to first understand
why the approach above fails to work beyond the k1/2 ratio regime. To do so, note that the
above proof sketch can be summarized into three main steps as follows:
(1) Show that the two-level consistency graph Gσ,ζ is q-red/blue-transitive for some q = ko(1).
(2) Use red/blue transitivity to find a large subgraph of Gσ,ζ with few induced red edges.
(3) Decode a good assignment to Φ from such “clique-like” subgraph.

The reason that we need d > k1/2 lies in Step 2. Although not stated as such above, our
argument in this step can be described as follows. Consider all length-2 blue-walks, i.e., all
(u, v, w) ∈ V 3 such that {u, v} and {v, w} are both blue edges. Using the red/blue transitivity
of the graph, we argue that, for almost of all these walks, {u,w} is not a red edge (i.e. (u, v, w)
is not a rbb triangle), which then allows us to find the “clique-like” subgraph. For this
argument to work, we need the number of length-2 blue-walks to exceed the number of rbb
triangles. The former is kd2 whereas the latter is bounded by k2q in q-red/blue-transitive
graphs. This means that we need kd2 > k2q, which implies that d > k1/2.

To overcome this limitation, we will instead consider length-` blue-walks for ` > 2 and
define a “rbb-triangle-like” structure on these walks. Our goal is again to show that this
structure appears rarely in random length-` blue-walks and then use this to find a subgraph
that allows us to decode a good assignment for Φ. Observe that the number of length-` blue
walks is kd`. We hope that the number of “rbb-triangle-like” structures is still small; in
particular, we will still get a similar bound k2+o(1) for such generalized structure, similar
to our previous bound for the red-blue-blue triangles. When this is the case, we need
kd` > k2+o(1), meaning that when ` = ω(1) it suffices to select d = ko(1), which yields k1−o(1)

factor inapproximability as desired. To facilitate our discussion, let us define notations for
`-walks here.

I Definition 10 (`-Walks). For any red/blue graph G = (V,Er ∪Eb) and any integer ` > 2,
an `-blue-walk, abbreviated as an `-walk, in G is an (`+1)-tuple of vertices (v1, v2, . . . , v`+1) ∈
V `+1 such that every pair of consecutive vertices is joined by a blue edge, i.e., {vi, vi+1} ∈ Eb
for every i ∈ [`]. We use WG

` to denote the set of all `-walks in G.

The structure we will consider is a natural generalization of rbb triangles to an `-walk in
which every pair of non-consecutive vertices of the walk must be joined by a red edge. We
call such a walk a red-filled `-walk (see Figure 1b):
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I Definition 11 (Red-Filled `-Walks). For any red/blue graph G = (V,Er ∪ Eb), a red-filled
`-walk is an `-walk (v1, v2, . . . , v`+1) such that every pair of non-consecutive vertices is joined
by a red edge, i.e., {vi, vj} ∈ Er for every i, j ∈ [`+1] such that j > i+1. Let ŴG

` denote the
set of all red-filled `-walks in G. Moreover, for every u, v ∈ V , let ŴG

` (u, v) denote the set of
all red-filled `-walks from u to v, i.e., WG

` (u, v) = {(v1, . . . , v`+1) ∈ ŴG
` | v1 = u∧ v`+1 = v}.

As mentioned earlier, we will need a generalized transitivity property for our new structure.
This can be defined analogously to q-red/blue transitivity as follows.

I Definition 12 ((q, `)-Red/Blue Transitivity). For any q, ` ∈ N, a red/blue graph G =
(V,Er ∪ Eb) is said to be (q, `)-red/blue-transitive if, for every pair of u, v ∈ V that is joined
by a red edge, there are at most q red-filled `-walks from u to v, i.e., |ŴG

` (u, v)| 6 q.

Similar to before, we can argue that, when S consists of random subsets where each
element is included in a subset w.p. α, the two-level agreement graph is (q, `)-red/blue
transitive for some parameter q that is a function of only α and `. When 1/α and ` are both
small enough in terms of k, q can made to be ko(1). The details of the proof can be found in
Section 4.1.

Once this is proved, it is not hard (using a similar argument as before) to show that,
when d� (kq)1/`, most `-walks are not red-filled, i.e., |WG

` | � |ŴG
` |. Even with this, it is

still unclear how we can get back a “clique-like” subgraph; in the case of ` = 2 above, this
implies that a blue-neighborhood induces few red edges, but the argument does not seem
to generalize to larger `. Fortunately, it is still quite easy to find a large subgraph that a
non-trivial fraction of pairs of vertices do not form red edges; specifically, we will find two
subsets U1, U2 ⊆ V each of size d such that for at least 1/`2 fraction of (u1, u2) ∈ U1 × U2,
{u1, u2} is not a red edge. To find such sets, observe that, if |WG

` | > 2|ŴG
` |, then for a

random (v1, . . . , v`+1) ∈ WG
` the probability that there exists non-consecutive vertex vi, vj in

the walk that are joined by a red edge is at least 1/2. Since there are less than `2/2 such i, j,
union bound implies that there must be non-consecutive i∗, j∗ such that the probability that
vi∗ , vj∗ are not joined by a red edge is at least 1/`2. Let us assume without loss of generality
that i∗ < j∗; since they are not consecutive, we have i∗ + 1 < j∗.

Let us consider vi∗+1, vj∗−1. There must be u∗ and w∗ such that, conditioning on
vi∗+1 = u∗ and vj∗+1 = w∗, the probability that {vi∗ , vj∗} /∈ Er is at least 1/`2. However,
this conditional probability is exactly equal to the fraction of (u1, u2) ∈ Nb(u∗)×Nb(w∗) such
that u1, u2 are not joined by a red edge. (Recall that Nb(v) is the set of all blue-neighbors of
v.) As a result, U1 = Nb(u∗) and U2 = Nb(w∗) are the sets with desired property.

We are still not done yet since we have to use these sets to decode back a good assignment
for Φ. This is still not obvious: the guarantee we have for our sets U1, U2 are rather weak
since we only know that at least 1/`2 of the pairs of vertices from the two sets do not form
red edges. This is in contrast to the ` = 2 case where we have a subgraph such that almost
all induced edges are not red. Fortunately, there is a well-known fact in combinatorics called
the Kővári-Sós-Turán Theorem [32] which roughly states that every bipartite graph that is
not too sparse has a reasonably large biclique (a complete bipartite subgraph). We apply this
theorem on the bipartite graph between U1 and U2 where there is an edge between u1 ∈ U1
and u2 ∈ U2 iff {u1, u2} is not a red edge. This gives us V1 ⊆ U1, V2 ⊆ U2 of reasonably
large sizes such that for all (u1, u2) ∈ V1 × V2, u1 and u2 are not joined by a red edge.

Once we have such a “non-red biclique”, we can decode a good assignment of Φ by taking
the majority assignment on one side of the biclique. A simple counting argument again shows
that, when V1 and V2 are “sufficiently uniform”, this majority assignment cannot violate too
many clauses of Φ. This wraps up our proof overview.
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3 Preliminaries

We next define two properties of collections of subsets, which will be useful in our analysis.
First, recall that, in our proof overview for the weaker k1/2−o(1) factor hardness, we need the
following to show the red/blue transitivity of the consistency graph: for any r subsets from
the collection, their union must contain almost all clauses. Here r is a positive integer that
effects the red/blue transitivity parameter. Collections with this property are sometimes
called dispersers. For walks with larger lengths, we need a stronger property that any union
of r intersections of ` subsets are large. We call such collections intersection dispersers:

I Definition 13 (Intersection Disperser). Given a universe U , a collection S of subsets of U is
an (r, `, η)-intersection disperser if, for any r disjoint subcollections S1, . . . ,Sr ⊆ S each of
size at most `, we have

∣∣⋃r
i=1
(⋂

S∈Si S
)∣∣ > (1− η)|U|.

Another property we need is that any sufficiently large subcollection S̃ of S is “sufficiently
uniform”. This is used when we decode a good assignment from a non-red biclique. More
specifically, the uniformity condition requires that almost all clauses appear in not too small
number of subsets in S̃, as formalized below.

I Definition 14 (Uniformity). For a universe U , a collection S̃ of subsets of U is (γ, µ)-uniform
if, for at least (1−µ) fraction of elements u ∈ U , u appears in at least γ fraction of the subsets
in S̃. In other words, S̃ is (γ, µ)-uniform iff |{u ∈ U | |{S ∈ S̃ | u ∈ S}| > γ|S̃|}| > (1− µ)|U|.

Using standard concentration bounds, it is not hard to show that, when m is sufficiently
large, a collection of random subsets where each element is included in each subset inde-
pendently with probability α is an (O(α`), `, O(1))-disperser and every subcollection of size
Ω(1/α) is (α,O(1))-uniform. The exact parameter dependencies are shown in the lemma
below.

I Lemma 15 (Deterministic Construction of Well-Behaved Set). For any 0 < α, µ, η < 1 and
any k, ` ∈ N, let m0 be 1000(log k log(1/µ)/(αµ2) + ` log(1/η) log k/(α`η) + 1/α + 1). For
any integer m > m0 and any m-element universe U , there exists a collection S of subsets of
U with the following properties.

(Size) Every subset in S has size at most 2αm.
(Intersection Disperser) S is a (dln(2/η)/α`e, `, η)-disperser.
(Uniformity) Any subcollection S̃ ⊆ S of size d8 ln(2/µ)/αe is (α/2, µ)-uniform.

Moreover, such a collection S can be deterministically constructed in time poly(m)2O((m0)3).

The deterministic construction is via a standard technique of using random variables with
limited independence instead of total independence; we defer the full proof of Lemma 15 to
the full version of the paper.

4 Soundness Analysis

Let us now turn our focus back to the soundness analysis, which is our main technical
contribution. As stated in the proof overview, our main goal is to show that, if a 3-CNF Φ
has small value, then, for any well-behaved collection S of subsets of clauses of Φ, the value
of ΓΦ,S must be small. More precisely, the main theorem of this section is stated below.

I Theorem 16. For any ∆ ∈ N, let Φ be any 3-CNF formula with variable set X and clause
set C such that each variable appears in at most ∆ clauses. Moreover, for any 0 < η, ζ, γ, µ < 1
and r, `, k, h ∈ N such that ` > 2 and h 6 log k/(` log(4`2)), let S be any collection of k
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subsets of C such that S is (r, `, ζ/(3∆))-intersection disperser and every subcollection S̃ ⊆ S
of size h is (γ, µ)-uniform (with respect to the universe C). If val(Φ) < 1 − 2µ − 6∆ζ/γ2,
then val(ΓΦ,S) < 32k1/`(r`)2

k .

To prove this theorem, we follow the general outline as stated in the proof overview. In
particular, the proof contains three main steps, as elaborated below.
(1) First, we will show that when S is an intersection disperser with appropriate parameters,

the two-level consistency graph satisfies red/blue transitivity with certain parameters.
(2) Next, we will argue that, for any red/blue transitive graphs that contains sufficiently

many blue edges, we can find a non-red biclique of large size; recall that non-red biclique
is two subsets V1, V2 of vertices such that there is no red-edge between them.

(3) Finally, we show that, if we can find a large non-red biclique in the two-level consistency
graph such that the two subcollections corresponding to each side of the biclique are
sufficiently uniform, then we can decode a good assignment to our 3-CNF formula Φ.
Each of the next three subsections is dedicated to each part of the proof. The main

lemmas from these subsections (Lemmas 17, 20 and 23) together imply Theorem 16.
Unless stated otherwise, we note that, all results in this section hold for any parameters

∆, `, k ∈ N such that ` > 2, any 0 < η, ζ, γ, µ < 1 and any 3-CNF formula Φ such that each
variables appears in at most ∆ clauses. To avoid notational cumbersomeness, we will leave
these quantifiers out of the lemma statements. Moreover, throughout the section, we use
m and n to denote |C| and |X| respectively. To avoid degeneracy cases, we will also assume
without loss of generality that each variable appears in at least one clause.

4.1 Red/Blue-Transitivity of Two-Level Consistency Graph
The first step in our proof is to show that the two-level consistency graph Gσ,ζ is red/blue-
transitive, assuming that S is an intersection disperser, as formalized below.

I Lemma 17. If S is an (r, `, ζ/(3∆))-intersection disperser, then, for any labeling σ of
ΓΦ,S, Gσ,ζ is ((r`)2(`−1), `)-red/blue-transitive.

In other words, we would like to show that, for every S1, S2 ∈ S that are joined by a red
edge in Gσ,ζ , there are at most (r`)2(`−1) red-filled `-walks from S1 to S2. The intersection
disperser does not immediately imply such a bound, due to the requirement in the definition
that the subcollections are disjoint. Rather, it only directly implies a bound on number
of disjoint `-walks from S1 to S2, where two ` walks from S1 to S2, (T1 = S1, . . . , T`+1 =
S2), (T ′1 = S1, . . . , T

′
`+1 = S2) ∈ WGσ,ζ

` (S1, S2), are said to be disjoint if they do not share
any vertex except the starting and ending vertices, i.e., {T2, . . . , T`} ∩ {T ′2, . . . , T ′`} = ∅.
Multiple walks are said to be disjoint if they are mutually disjoint. The following claim is
immediate from the definition of intersection dispersers; its proof is omitted here.

I Claim 18. If S is an (r, `, ζ/(3∆))-intersection disperser, then, for any labeling σ, 2 6 p 6 `

and {S1, S2} ∈ Eσ,ζr , there are less than r disjoint p-walks from S1 to S2 in Gσ,ζ .

Since all 2-walks from S1 to S2 are disjoint, the above claim immediately gives a bound
on the number of red-filled 2-walks from S1 to S2. To bound the number of red-filled
walks of larger lengths, we will use induction on the length of the walks. Suppose that
we have bounded the number of red-filled i-walks sharing starting and ending vertices for
i 6 z − 1. The key idea in the proof is that we can use this inductive hypothesis to show
that, for any S1, S2, S ∈ S, few z-walks from S1 to S2 contain S. Here we say that a z-walk
(T1 = S1, . . . , Tz = S2) from S1 to S2 contains S if S ∈ {T2, . . . , Tz}. In other words, each
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z-walk from S1 to S2 is not disjoint with only few other z-walks from S1 to S2. This allows
us to show that, if there are too many z-walks, then there must also be many disjoint z-walks
as well, which would violate Claim 18. A formal proof of Lemma 17 based on this intuition
is given below.

Proof of Lemma 17. For every integer i such that 2 6 i 6 `, let P (i) denote the following:
for every S1, S2 ∈ S, |ŴGσ,ζ

i (S1, S2)| 6 (ri)2(i−1). For convenient, let Bi = (ri)2(i−1).
P (2) follows from Claim 18. Now, suppose that, for some integer z such that 3 6 z 6 `,

P (2), . . . , P (z − 1) are true. To prove P (z), let us first show that, for any fixed starting and
ending vertices, any vertex cannot appear in too many red-filled z-walks:

I Claim 19. For every S1, S2, S ∈ S, the number of red-filled z-walks from S1 to S2 containing
S in Gσ,ζ is at most Bz/(zr).

Proof. First, observe that the number of red-filled z-walks from S1 to S2 containing S is at
most the sum over all positions 2 6 j 6 z of the number of z-walks from S1 to S2 such that
the j-th vertex in the walk is S, i.e.,

∑z
j=2 |{(T1, . . . , Tz+1) ∈ ŴGσ,ζ

z (S1, S2) | Tj = S}|.
Now, for each 2 6 j 6 z, to bound the number of red-filled z-walks from S1 to S2 whose

j-th vertex is S, let us consider the following three cases based on the value of j:

1. 3 6 j 6 z − 1. Observe that, for any such walk (T1 = S1, T2, . . . , Tj = S, . . . , Tz, Tz+1 =
S2), the subwalk (T1 = S1, . . . , Tj = S) and (Tj = S, . . . , Tz+1 = S2) must be red-filled
walks as well. Since the numbers of red-filled (j − 1)-walks from S1 to S and red-filled
(z + 1 − j)-walks from S to S2 are bounded by Bj−1 and Bz+1−j respectively (from
the inductive hypothesis), there are at most Bj−1 choices of (T1 = S1, . . . , Tj = S) and
Bz+1−j choices of (Tj = S, . . . , Tz−1, Tz = S2). Hence, there are at most Bj−1Bz+1−j
red-filled z-walks from S1 to S2 whose j-th vertex is S.

2. j = 2. In this case, the subwalk (T2, . . . , Tz+1) must be a red-filled (z− 1)-walk from S to
S2. Hence, the number of red-filled z-walks from S1 to S2 where Tj = S is at most Bz−1.

3. j = z. Similar to the previous case, we also have the bound of Bz−1.

Summing the above bounds over all j’s, the number of red-filled z-walks from S1 to S2
containing S is at most

∑z
j=2Bj−1Bz+1−j 6

∑z
j=2(rz)2(z−2) 6 Bz/(zr) as desired. J

Having proved the above claim, it is now easy to show that P (z) is true. Suppose
for the sake of contradiction that there exists S1, S2 ∈ S such that |ŴGσ,ζ

z (S1, S2)| > Bz.
Consider the following procedure of selecting disjoint walks from ŴGσ,ζ

z (S1, S2). First,
initialize U = ŴGσ,ζ

z (S1, S2) and repeat the following process as long as U 6= ∅: select any
(T1, . . . , Tz+1) ∈ U and remove every (T ′1, . . . , T ′z+1) that is not disjoint with (T1, . . . , Tz+1)
from U . Observe that, each time a walk (T1, . . . , Tz+1) is selected, the number of walks
removed from U is at most Bz/r; this is because each removed walk must contain at least
one of T2, . . . , Tz, but, from the above claim, each of these vertices are contained in at most
Bz/(zr) walks. Since we start with more than Bz walks, at least r disjoint walks are picked,
which, due to Claim 18, is a contradiction. Thus, P (z) is true as desired. J

4.2 Finding Non-Red Biclique in Red/Blue-Transitive Graph
In the second step of our proof, we will show that any (q, `)-red/blue transitive graph with
sufficiently many edges must contain a sufficiently large non-red biclique, as stated below.
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I Lemma 20. For every k, q, `, d ∈ N such that d > max{(2qk)1/`, 2`2} and every k-vertex
(q, `)-red/blue-transitive graph G = (V,Er ∪Eb) such that |Eb| > 2kd, there exist V1, V2 ⊆ V
each of size at least log d/ log(4`2)− 1 such that, for every u ∈ V1 and v ∈ V2, {u, v} /∈ Er.

As stated in the outline, we prove Lemma 20 by first finding subsets of vertices U1, U2 ⊆ V
such that for 1/`2 fraction of (u1, u2) ∈ U1 × U2, u1 and u2 are not joined by a red edge and
then use the Kővári-Sós-Turán Theorem to find the desired non-red biclique. Specifically, to
prove Lemma 20, we show the following:

I Lemma 21. For every k, q, `, d ∈ N such that d > (2qk)1/` and every k-vertex (q, `)-
red/blue-transitive graph G = (V,Er∪Eb) such that |Eb| > 2kd, there exists subsets of vertices
U1, U2 ⊆ V each of size at least d such that |{(u, v) ∈ U1 × U2 | {u, v} /∈ Er}| > |U1||U2|/`2.

The Kővári-Sós-Turán Theorem can be stated as follows.

I Theorem 22 (Kővári-Sós-Turán (KST) Theorem [32]). For every t,M,N ∈ N such that
t 6 min{M,N}, any Kt,t-free bipartite graph with N vertices one side and M vertices on
the other contain at most (t− 1)1/t(N − t+ 1)M1−1/t + (t− 1)M edges.

A simple calculation shows that Lemma 20 follows from Lemma 21 and the KST Theorem.
We now move on to the proof of Lemma 21, which is exactly as sketched earlier in Subsection 2.

Proof of Lemma 21. We start by preprocessing the graph so that every vertex has blue-
degree at least d. In particular, as long as there exists a vertex v whose blue-degree is at
most d, we remove v from G. Let G′ = (V ′, E′r ∪E′b) be the graph at the end of this process.
Note that we remove less than kd blue edges in total. Since at the beginning |Eb| > 2kd, we
have |E′b| > kd. Observe also that G′ remains (q, `)-red/blue-transitive.

Since V ′ is (q, `)-red/blue-transitive, for every u, v ∈ V ′, there can be at most q red-filled
`-walks from u to v. Summing this up over all pairs (u, v)’s implies that the number of
red-filled `-walk in G′ is at most qk2.

Moreover, notice that |WG′

` | > (kd) · d`−1 > 2qk2; this is because there are at least kd
choices for (v1, v2) (i.e. all blue edges) and, for (v1, . . . , vi−1), there are at least d choices for
vi.

Hence, we have |ŴG′

` |/|WG′

` | 6 1/2. This implies that
1/2 6 Pr(v1,...,v`+1)∈WG′

`
[(v1, . . . , v`+1) /∈ ŴG′

` ]. By union bound, this probability is at most∑
i,j∈[`+1]
j>i+1

Pr(v1,...,v`+1)∈WG′
`

[{vi, vj} /∈ E′r].

Now, note that the number of pairs of i, j ∈ [`+ 1] such that j > i+ 1 is
(
`+1

2
)
− ` 6 `2/2.

This implies that there exists one such i, j such that Pr(v1,...,v`+1)∈WG′
`

[{vi, vj} /∈ E′r] > 1/`2.
Observe that the probability Pr(v1,...,v`+1)∈WG′

`
[{vi, vj} /∈ E′r] is bounded above by

max
u,v

Pr
(v1,...,v`+1)∈WG′

`

[{vi, vj} /∈ E′r | vi+1 = u ∧ vj−1 = v]

where the maximization is taken over all u, v ∈ V ′ such that Pr(v1,...,v`+1)∈WG′
`

[vi+1 =
u ∧ vj−1 = v] > 0. Hence, we can conclude that there exists u∗, v∗ ∈ V ′ such that

Pr
(v1,...,v`+1)∈WG′

`

[{vi, vj} /∈ E′r | vi+1 = u∗ ∧ vj−1 = v∗] > 1/`2.

The expression on the left is exactly |{(u, v) ∈ Nb(u∗)×Nb(v∗) | {u, v} /∈ E′r}|/(|Nb(u∗)| ·
|Nb(v∗)|). From this and from every vertex in G′ has blue-degree at least d, U1 = Nb(u∗), U2 =
Nb(v∗) are the desired sets. J
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4.3 Decoding a Good Assignment From Non-Red Biclique
Finally, we will decode a good assignment for Φ from a sufficiently large non-red biclique in
the consistency graph Gσ,ζ . Recall that a non-red biclique in Gσ,ζ simply corresponds to
two subcollections S1, S2 such that, for every (S1, S2) ∈ S1 × S2, disagr(σS1 , σS2) 6 ζn. The
main result of this subsection is that, given such S1,S2, if both S1 and S2 are sufficiently
uniform, then we can find a good assignment for Φ. This is stated more precisely below.

I Lemma 23. Let S1,S2 be any (γ, µ)-uniform collections of subsets of C. If there is a
labeling σ of S1 ∪ S2 such that disagr(σS1 , σS2) 6 ζn for every S1 ∈ S1 and S2 ∈ S2, then
val(Φ) > 1− 2µ− 6∆ζ/γ2.

As outlined earlier, the assignment we take is the majority assignment ψmaj of {σS1}S1∈S1 .
The key to proving that ψmaj violates few clauses is that, if a clause C is violated, then, for
each S2 ∈ S2 that contains C, σS2 and ψmaj must disagree on at least one variable in var(C)
because σS2 satisfies C but ψmaj violates it. Hence, if C appears often in both S1 and S2,
then it contributes to many disagreements between S1 and S2; the uniformity condition help
us ensure that most C indeed appears often in S1 and S2. On the other hand, disagr(σS1 , σS2)
is small for every S1 ∈ S1 and S2 ∈ S2, meaning that there cannot be too many disagreements
in total. Comparing this upper and lower bound gives us the desired result. Due to space
constraint, we omit the full analysis from this version of the paper.

5 Inapproximability Results of 2-CSPs and DSN

The inapproximability results for 2-CSPs can be shown simply by plugging in the appropriate
parameters to Theorem 16. More specifically, for ETH-hardness, since there is a polylogm
loss in the PCP Theorem (Theorem 6), we need to select our α = 1/polylogm so that the size
(and running time) of the reduction is 2o(m). Recall in Lemma 15 that we need m > Ω(α`),
meaning that ` can be at most O(logm/ log logm). We will pick ` to be just

√
logm. We

will finally pick k to be exp(` log `/α) = exp(polylogm); this is so that the non-edge biclique
size log k/(` log(4`2)) (from Theorem 16) is large enough that we can use Lemma 15 to
guarantee its uniformity. Other parameters are chosen accordingly. We omit the full proof,
which consists almost solely of calculations, from this version of the paper.

For the inapproximability based on Gap-ETH, we do not incur a loss of polylogm from
the PCP Theorem anymore. Thus, we can choose α to be any function that converges
to zero as k goes to infinity, e.g., α = 1/ log log k. Now note that the parameter r in
Theorem 16 for the intersection disperser property grows with (1/α)` (see Lemma 15). Since
the soundness guarantee in Theorem 16 is of the form kO(1/`)(r`)O(1)/k = kO(1/`)(1/α)O(`)/k,
it is minimized when ` is roughly

√
log k, which yields the bound 2(log k)1/2+o(1)

/k.
The inapproximability results for DSN can be proved by simply plugging the hardness of

approximation of 2-CSPs to the following known reduction from 2-CSPs to DSN.

I Lemma 24 ([16, Lemma 27]6). There is a polynomial time reduction that, given a 2-
CSP instance Γ where the constraint graph is a complete graph on k variables, produces an
edge-weighted directed graph G and a set of demands D = {(s1, t1), . . . , (sk2−k, tk2−k)} s.t.

If val(Γ) = 1, then there exists a subgraph H of cost 1 that satisfies all demands.
If val(Γ) < γ, then every subgraph satisfying all demand pairs has cost more than

√
2/γ.

6 While the reduction is attributed to Dodis and Khanna [25], the lemma below is extracted from [16]
since, in [25], the full description of the reduction and its properties are left out due to space constraint.
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6 Conclusion and Discussions

We prove ETH-hardness of approximating 2-CSPs within k1−o(1) factor where k denotes
the number of variables. This ratio is nearly tight since a trivial algorithm yields an O(k)-
approximation. Under Gap-ETH, we strengthen our result to rule out not only polynomial
time but also FPT time algorithms parameterized by k. Due to a known reduction, our result
implies k1/4−o(1) factor inapproximability of DSN where k is the number of demand pairs.

Of course the polynomial SSC still remains open and resolving it will advance our
understanding of approximability of many problems. Even without fully resolving the
conjecture, it may still be good to further study the interaction between the number of
variables k and the alphabet size n. For instance, while we show the inapproximability
result with ratio k1−o(1), the dependency between n and k is quite bad; in our ETH-
hardness reduction, n is 22(log k)Θ(1)

. Would it be possible to improve this dependency (say,
to n = kpolylogk)?

Another interesting direction is to try to prove similar hardness results as ours for other
problems. For example, Densest k-Subgraph (DkS) is one such candidate problem; similar to
2-CSPs with k variables, the problem can be approximated trivially to within O(k)-factor and
no polynomial (or even FPT) time k1−ε-approximation algorithm is known for the problem.
Hence, it may also be possible to prove ETH-hardness of factor k1−o(1) for DkS.

Acknowledgments. We would like to thank Prahladh Harsha for useful discussions. Pasin
would also like to thank Rajesh Chitnis and Andreas Emil Feldmann for insightful discussions
regarding DSN.
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