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Abstract
We design a polynomial time algorithm that for any weighted undirected graph G = (V,E,w)
and sufficiently large δ > 1, partitions V into subsets V1, . . . , Vh for some h ≥ 1, such that

at most δ−1 fraction of the weights are between clusters, i. e.

w(E − ∪hi=1E(Vi)) .
w(E)
δ

;

the effective resistance diameter of each of the induced subgraphs G[Vi] is at most δ3 times
the inverse of the average weighted degree, i. e.

max
u,v∈Vi

ReffG[Vi](u, v) . δ3 · |V |
w(E) for all i = 1, . . . , h.

In particular, it is possible to remove one percent of weight of edges of any given graph such that
each of the resulting connected components has effective resistance diameter at most the inverse
of the average weighted degree.

Our proof is based on a new connection between effective resistance and low conductance
sets. We show that if the effective resistance between two vertices u and v is large, then there
must be a low conductance cut separating u from v. This implies that very mildly expanding
graphs have constant effective resistance diameter. We believe that this connection could be of
independent interest in algorithm design.
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41:2 Graph Clustering using Effective Resistance

1 Introduction

Graph decomposition is a useful algorithmic primitive with various applications. The general
framework is to remove few edges so that the remaining components have nice properties,
and then specific problems are solved independently in each component. Several types of
graph decomposition results have been studied in the literature. The most relevant to this
work are low diameter graph decompositions and expander decompositions. We refer the
reader to Section 2 for notation and definitions.

Low Diameter Graph Decompositions: Given a weighted undirected graph G = (V,E,w)
and a parameter ∆ > 0, a low diameter graph decomposition algorithm seeks to partition
the vertex set V into sets V1, . . . , Vh with the following two properties:

Each component G[Vi] has bounded shortest path diameter, i. e. maxu,v∈Vi
distw(u, v) ≤

∆, where distw(u, v) is the shortest path distance between u and v using the edge weight
w.
There are not too many edges between the sets Vi, i. e.

∣∣∣E −⋃hi=1E(Vi)
∣∣∣ ≤ D(G)

∆ · |E|,
where D(G) is the “distortion” that depends on the input graph.

This widely studied [39, 31, 11, 38, 1] primitive (and its generalization to decomposition
into padded partitions) has been very useful in designing approximation algorithms [17,
15, 21, 22, 35, 9, 37]. This approach is particularly effective when the input graph is of
bounded genus g or Kr-minor free, in which case D(G) = O(log g) [38] and D(G) = O(r) [1].
For these special graphs, this primitive can be used to proving constant flow-cut gaps [31],
proving tight bounds on the Laplacian spectrum [12, 26], and obtaining constant factor
approximation algorithms for NP-hard problems [9, 4]. However, there are graphs for which
D(G) is necessarily Ω(logn) where n is the number of vertices, and this translates to a
Ω(logn) factor loss in applying this approach to general graphs. For example, in a hypercube,
if we only delete a small constant fraction of edges, some remaining components will have
diameter Ω(logn).

Expander Decompositions: Given an undirected graph G = (V,E) and a parameter φ > 0,
an expander decomposition algorithm seeks to partition the vertex set V into sets V1, . . . , Vh
with the following two properties.

Each component G[Vi] is a φ-expander, i. e. Φ(G[Vi]) ≥ φ, where Φ(G[Vi]) is the conduct-
ance of the induced subgraph G[Vi]; see Section 2 for the definition of conductance.
There are not too many edges between the sets Vi, i. e.

∣∣∣E −⋃hi=1E(Vi)
∣∣∣ ≤ δ(G,φ) · |E|,

where δ(G,φ) is a parameter depending on the graph G and φ.
This decomposition is also well studied [25, 44, 7, 42], and is proved useful in solving
Laplacian equations, approximating Unique Games, and designing clustering algorithms. It is
of natural interest to minimize the parameter δ(G,φ). Similar to the low diameter partitioning
case, there are graphs where δ(G,φ) ≥ Ω(φ · log(n)). For example, in a hypercube, if we
delete a small constant fraction of edges, some remaining components will have conductance
O(1/ logn).

Motivations: In some applications, we could not afford to have an Ω(logn) factor loss in
the approximation ratio. One motivating example is the Unique Games problem. It is known
that Unique Games can be solved effectively in graphs with constant conductance [8] and
more generally in graphs with low threshold rank [32, 24, 10], and in graphs with constant
diameter [23]. Some algorithms for Unique Games on general graphs are based on graph
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decomposition results that remove a small constant fraction of edges so that the remaining
components are of low threshold rank [7] or of low diameter [4], but the Ω(logn) factor loss
in the decomposition is the bottleneck of these algorithms. This leads us to the question of
finding a property that is closely related to low diameter and high expansion, so that every
graph admits a decomposition into components with such a property without an Ω(logn)
factor loss.

Effective Resistance Diameter: The property that we consider in this paper is having low
effective resistance diameter. We interpret the graph G = (V,E,w) as an electrical circuit
by viewing every edge e ∈ E as a resistor with resistance 1/w(e). The effective resistance
distance Reff(u, v) between the vertices u and v is then the potential difference between u
and v when injecting a unit of electric flow into the circuit from the vertex u and removing
it out of the circuit from the vertex v. We define

Rdiam(G) := max
u,v∈V

Reff(u, v)

as the effective resistance diameter of G. Both the properties of low diameter and of high
expansion have the property of low effective resistance diameter as a common denominator:
The effective resistance distance Reff(u, v) is upper bounded by the shortest path distance
for any graph, and so every low diameter component has low effective resistance diameter.
Also, a d-regular graph with constant expansion has effective resistance diameter O(1/d)
[14, 16], and so an expander graph also has low effective resistance diameter. See Section 2
for more details.

In this paper, we study the connection between effective resistance and graph conductance.
Roughly speaking, we show if all sets have mild expansion (see Theorem 1), then the effective
resistance diameter is small. We use this observation to design a graph partitioning algorithm
to decompose a graph into clusters with effective resistance diameter at most the inverse of
the average degree (up to constant losses) while removing only a constant fraction of edges.
This shows that although we cannot partition a graph into Ω(1)-expanders by removing a
constant fraction of edges, we can partition it into components that satisfy the “electrical
properties” of expanders.

Applications of Effective Resistance: Besides the motivation from the Unique Games
problem, we believe that effective resistance is a natural property to be investigated on
its own. The effective resistance distance between two vertices u, v ∈ V has many useful
probabilistic interpretations, such as the commute time [16], the cover time [41], and the
probability of an edge being in a random spanning tree [29]. See Section 2 for more details.
Recently, the concept of effective resistance has found surprising applications in spectral
sparsification [43], in computing maximum flows [19], in finding thin trees [6], and in
generating random spanning trees [27, 40, 20]. The recent algorithms in generating a random
spanning tree are closely related to our work. Madry and Kelner [27] showed how to sample
a random spanning tree in time Õ(m ·

√
n) where m is the number of edges, faster than the

worst case cover time Õ(m · n) (see Section 2). A cruicial ingredient of their algorithm is the
low diameter graph decomposition technique, which they use to ensure that the resulting
components have small cover time. In subsequent work, Madry, Straszak and Tarnawski
[40] have improved the time complexity of their algorithm to Õ(m4/3) by working with the
effective resistance metric instead of the shortest path metric. Indeed, their technique of
reducing the effective resistance diameter is similar to our technique – even though it cannot
recover our result.

ITCS 2018



41:4 Graph Clustering using Effective Resistance

1.1 Our Results
Our main technical result is the following connection between effective resistance and graph
partitioning.

I Theorem 1. Let G = (V,E) be a weighted graph with weights w ∈ RE≥0. Suppose for any
set S ⊆ V with vol(S) ≤ vol(G)/2 we have

Φ(S) ≥ c

vol(S)1/2−ε (mild expansion)

for some c > 0 and 1/2 ≥ ε ≥ 0. Then, for any pair of vertices s, t ∈ V , we have

Reff(s, t) .
(

1
deg(s)2ε + 1

deg(t)2ε

)
· 1
ε · c2

, (resistance bound)

where deg(v) =
∑
u:uv∈E w(u, v) is the weighted degree of v.

In [16], Chandra et al. proved that a d-regular graph with constant expansion has effective
resistance diameter O(1/d). They also proved that the effective resistance diameter of a
d-dimensional grid is O(1/d) when d > 2 even though it is a poor expander. Theorem 1 can
be seen as a common generalization of these two results, using the mild expansion condition as
a unifying assumption. Chandra et al. [16] also showed that the effective resistance diameter
of a 2-dimensional grid is Θ(logn). Note that for a

√
n×
√
n grid, Φ(S) ≈ 1/ vol(S)1/2 for

any k × k square. This shows that the mild expansion assumption of the theorem cannot be
weakened in the sense that if ε = 0 for some sets S, then Reff(s, t) may grow as a function of
|V |.

The proof of Theorem 1 also provides an efficient algorithm to find such a sparse cut. The
high-level idea is to prove that if all level sets of the st electric potential vector satisfy the
mild expansion condition, then the potential difference between s and t must be small, i. e.,
Reff(s, t) is small. Combining with a fast Laplacian solver [45], we show that the existence of
a pair of vertices u, v ∈ V with high effective resistance distance implies the existence of a
sparse cut which can be found in nearly linear time.

I Corollary 2. Let G = (V,E,w) be a weighted undirected graph. If deg(v) ≥ 1/α for all
v ∈ V , then for any 0 < ε < 1/2, there is a subset of vertices U ⊆ V such that

Φ(U) . αε√
Rdiam · ε

· vol(U)ε−1/2.

Furthermore, the set U can be found in time Õ
(
m · log

(
w(E)

mine w(e)

))
.

Using Corollary 2 repeatedly, we can prove the following graph decomposition result.

I Theorem 3 (Main). Given a weighted undirected graph G = (V,E,w), and a large enough
parameter δ > 1, there is an algorithm with time complexity Õ

(
m · n · log

(
w(E)

mine w(e)

))
that

finds a partition V =
⋃h
i=1 Vi satisfying

w

(
E −

h⋃
i=1

E(Vi)
)

.
w(E)
δ

(loss bound)

and

Rdiam(G[Vi]) . δ3 · n

w(E) (resistance bound)

for all i = 1, . . . , h.
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Let G be a d-regular unweighted graph. Theorem 3 implies that it is possible to remove a
constant fraction of the edges of G and decompose G into components with effective resistance
diameter at most O(1/d). Note that d-regular Ω(1)-expanders with Rdiam = O(1/d) have
the least effective resistance diameter among all d-regular graphs. So, even though it is
impossible to decompose d-regular graphs into graphs with Ω(1)-expansion while removing
only a constant fraction of edges, we can find a decomposition with analogous “electrical
properties”.

We can also view Theorem 3 as a generalization of the following result: Any d-regular
graph can be decomposed into Ω(d)-edge connected subgraphs by removing only a constant
fraction of edges. This is because if the effective resistance diameter of an unweighted graph
G is ε, then G must be 1/ε-edge connected. Recall that a graph is k-edge connected, if the
size of every cut in that graph is at least k.

2 Preliminaries

In this section, we will first define the notations used in this paper, and then we will review the
background in effective resistances, Laplacian solvers, and graph expansions in the following
subsections.

Given an undirected graph G = (V,E) and a subset of vertices U ⊆ V , we use the
notation EG(U) for the set of edges with both endpoints in U , i.e. EG(U) = {{u, v} ∈ E(G) :
u, v ∈ U}. We write U c for the complement of U with respect to V (G), i. e. U c = V \U . The
variables n and m stand for the number of vertices and the edges of the graph respectively,
i. e. n = |V | and m = |E|. We use the notation ∂GU for the edge boundary of U ⊆ V ,
i.e. ∂GU = EG(U,U c) = {{u, v} ∈ E : u ∈ U, v ∈ U c}. For a graph G = (V,E) with weights
w ∈ RE≥0, we write degG(v) =

∑
u:uv∈E w(u, v) for the weighted degree of v. For S ⊆ V , the

volume volG(S) of S is defined to be volG(S) =
∑
s∈S deg(s). When the graph is clear in

the context we may drop the subscript in all aforementioned notation.
Scalar functions and vectors are typed in bold, i.e. x ∈ RV , or w ∈ RE . For a subset

A ⊆ E, the notation w(A) stands for the sum of the weights of all edges in A, i. e. w(A) =∑
e∈A w(e). The j-th canonical basis vector is denoted by ej ∈ RV . Matrices are typed in

serif, i. e. A ∈ RV×V .
Time complexities are given in asymptotic notation. We employ the notation Õ(f(n)) to

hide polylogarithmic factors in n, i.e. Õ(f(n)) = O(f(n) · polylog(n)). We use the notation
f . g for asymptotic inequalities, i. e. f = O(g); and the notation f � g for asymptotic
equalities, i. e. f = Θ(g).

2.1 Electric Flow, Electric Potential, and Effective Resistance

Let G = (V,E) be a given graph with non-negative edge weights w ∈ RE≥0. The notion of
an electric flow arises when one interprets the graph G as an electrical network where every
edge e ∈ E represents a resistor with resistance 1/w(e).

We fix an arbitrary orientation E± of the edges E and define a unit st flow in this network
as a function f ∈ RE±

≥0 (where for e 6∈ E± we define f(e) = −f(−e)) satisfying the following:

∑
w∈δ+(v)

f(vw)−
∑

u∈δ−(v)

f(uv) =


1 if v = s

−1 if v = t

0 otherwise,
(flow conservation)

ITCS 2018



41:6 Graph Clustering using Effective Resistance

where δ+(v) is the set of edges having v as the head in our orientation, and δ−(v) is the set
of edges having v as tail. Let e = uv ∈ E± be an oriented edge. The flow f has to obey
Ohm’s law

f(e) = w(e) ·∆e p = w(e) · (p(u)− p(v)) (Ohm’s law)

for some vector p ∈ RV which we call the potential vector. The electrical flow between the
vertices s and t is the unit st flow that satisfies flow conservation and Ohm’s law.

The electrical energy E(f) of a flow f is defined as the following quantity,

E(f) =
∑
e∈E±

f(e)2

w(e) . (electrical energy)

It is known that the electric flow between s and t is the unit st flow with minimal electrical
energy. The effective resistance Reff(s, t) between the vertices s and t is the potential
difference between the vertices s and t induced by this flow, i.e. Reff(s, t) = p(s)− p(t). It is
known that the potential difference between s and t equals the energy E(fst) of this flow.
This is often referred as Thomson’s principle.

The electric potential vector and the effective resistance are known to have the following
closed form expressions: Let W ∈ RV×V be the weighted adjacency matrix of G, i. e. the
matrix satisfying W (u, v) = 1[uv ∈ E] · w(u, v), and D ∈ RV×V the weighted degree matrix,
i. e. the diagonal matrix satisfying D(v, v) = deg(v) =

∑
u:uv∈E w(u, v). The (weighted)

Laplacian LG ∈ RV×V is defined to be the matrix

LG = D−W. (weighted Laplacian)

It is well-known that this is a symmetric positive semi-definite matrix. We will take

LG =
n∑
i=2

λiviv
>
i

as the spectral decomposition of LG, where λ1 = 0 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of
LG sorted in increasing order. It is easy to verify LG1 = 0 and further it can be shown that
this is the only vector (up to scaling) satisfying this when G is connected. This means if G
is connected, the matrix LG is invertible in the subspace perpendicular to 1. This inversion
will be done by the matrix L†G, the so-called Moore-Penrose pseudo-inverse of LG defined by

L†G =
n∑
j=2

1
λj

viv
>
i . (pseudo-inverse of LG)

Let f? ∈ RE be the st unit electric flow vector. It can be verified that the st electric
potential p? – i.e. the vector satisfying w(uv) · (p?(u)− p?(v)) = f?(uv) for all uv ∈ E± –
satisfies the equation

LGp? = es − et ⇐⇒ p? = L†G(es − et). (2.1)

In particular, this implies the following closed form expression for Reff(s, t)

Reff(s, t) = 〈es − et, L†G(es − et)〉. (st effective resistance)

It can be verified that this defines a (`22) metric on the set vertices V of G [30], as we have
1. Reff(u, v) = 0 if and only if u = v.
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2. Reff(u, v) = Reff(v, u) for all u, v ∈ V .
3. Reff(u, v) + Reff(v, w) ≥ Reff(u,w) for all u, v, w ∈ V .
Further, by routing the unit st flow along the st shortest path we see that the shortest path
metric dominates the effective resistance metric, i. e. Reff(u, v) ≤ dist(u, v) for all the pairs
of vertices u, v ∈ V .

It is known that the commute time distance κ(u, v) between u and v – the expected
number of steps a random walk starting from the vertex u needs to visit the vertex v and
then return to u – is vol(G) times the effective resistance distance Reff(u, v) [16]. Also, the
effective resistance Reff(u, v) of an edge uv ∈ E corresponds to the probability of this edge
being contained in a uniformly sampled random spanning tree [29]. A well-known result of
Matthews [41] relates the effective resistance diameter to the cover time of the graph – the
expected number of steps a random walk needs to visit all the vertices of G. Aldous [2] and
Broder [13] have shown that simulating a random walk until every vertex has been visited
allows one to sample a uniformly random spanning tree of the graph.

2.2 Solving Laplacian Systems
For our algorithmic results, it will be important to be able to compute electric potentials,
and effective resistances quickly. We will do this by appealing to Equation (2.1) and the
definition of the st effective resistance. Both of these equations require us to solve a Laplacian
system. Fortunately, it is known that these systems can be solved in nearly linear time
[45, 33, 34, 28, 36].

I Lemma 4 (The Spielman-Teng Solver, [45]). Let a (weighted) Laplacian matrix L ∈ RV×V ,
a right-hand side vector b ∈ RV , and an accuracy parameter ζ > 0 be given. Then, there is a
randomized algorithm which takes time Õ(m · log(1/ζ)) and produces a vector x̂ that satisfies∥∥x̂− L†b

∥∥
L ≤ ζ · ‖L

†b‖L (accuracy guarantee)

with constant probability, where ‖x‖2A = 〈x,Ax〉.

For our purposes it will suffice to pick ζ inversely polynomial in the size of the graph in
the unweighted case, and 1/ poly(w(E)/mine w(e), 1/m) in the weighted case.

Extending the ideas of Kyng and Sachdeva [36], Durfee et al. [20] show that it is possible
to compute approximations for effective resistances between a set of given pairs S ⊆ V × V
efficiently.

I Lemma 5. Let G = (V,E,w) be a weighted graph, β > 0 an accuracy parameter, and
S ⊆ V × V . There is an Õ(m+ (n+ |S|)/β2)-time algorithm which returns numbers A(u, v)
for all (u, v) ∈ V satisfying

e−β Reff(u, v) ≤ A(u, v) ≤ eβ Reff(u, v).

This lemma will aid us in computing fast approximations for furthest points in the effective
resistance metric. For our purposes, we only need to pick β as a small enough constant,
i. e. β = ln(3/2). Similar guarantees can also be obtained using the ideas of Spielman and
Srivastava [43].

2.3 Conductance
For a graph G = (V,E) with non-negative edge weights w ∈ RE≥0, we define the conductance
of a set S ⊆ V as

Φ(S) = w(∂S)
vol(S) . (conductance of a set)

ITCS 2018
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The conductance of the graph G is then defined as

Φ(G) = min{Φ(S) : S ⊆ V and 2 vol(S) ≤ vol(G)}. (conductance of a graph)

It is well-known [18, 5] that the conductance of the graph G is controlled by the spectral gap
(second smallest eigenvalue) λ̃2 of the normalised Laplacian matrix D−1/2LGD−1/2, i. e.

λ̃2 . Φ(G) .
√
λ̃2. (Cheeger’s inequality)

Appealing to the closed form formula for the st effective resistance it can be verified that the
spectral gap λ2 of the (unnormalised) Laplacian controls the effective resistance distance, i. e.

max
s,t∈V

Reff(s, t) . 1
λ2
.

By an easy application of Cheeger’s inequality we see that the expansion controls the effective
resistance as well, i. e.

max
s,t∈V

Reff(s, t) . 1
Φ(G)2 .

Indeed, Theorem 1 and Corollary 2 will improve upon this bound.

3 From Well Separated Points to Sparse Cuts

In this section, we are going to prove Theorem 1 and Corollary 2. As previously mentioned,
we will prove that if all the level sets of the potential vector have mild expansion, the effective
resistance cannot be high.

I Theorem 1. Let G = (V,E) be a weighted graph with weights w ∈ RE≥0. Suppose for any
set S ⊆ V with vol(S) ≤ vol(G)/2 we have

Φ(S) ≥ c

vol(S)1/2−ε (mild expansion)

for some c > 0 and 1/2 ≥ ε ≥ 0. Then, for any pair of vertices s, t ∈ V , we have

Reff(s, t) .
(

1
deg(s)2ε + 1

deg(t)2ε

)
· 1
ε · c2

, (resistance bound)

where deg(v) =
∑
u:uv∈E w(u, v) is the weighted degree of v.

Proof. In the following let f ∈ RE be a unit electric flow from s to t, and p ∈ RV be the
corresponding vector of potentials where we assume without loss of generality that p(t) = 0.
We direct our attention to the following threshold sets

Sp = {v ∈ V : p(v) ≥ p}.

Then, we have∑
e∈∂Sp

|f(e)| = 1.

Using Ohm’s law, we can rewrite this into∑
e∈∂Sp

w(e) · |∆e p| = 1, (3.1)
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where ∆e p is the potential difference along the endpoints of the edge e. Normalizing
this, we get∑

e∈∂Sp

w(e)
w(∂Sp)

· |∆e p| = 1
w(∂Sp)

. (3.2)

Now, set µ(e) = w(e)/w(∂Sp). Restricted over the set of edges ∂Sp, µ is a probability
distribution and the LHS of (3.2) corresponds to the expected potential drop when edges
e ∈ ∂Sp are sampled with respect to the probability distribution µ, i. e. we have

Eµ|∆e p| = 1
w(∂Sp)

.

Then, by Markov’s inequality, we get a set F ⊆ ∂Sp such that
all edges f ∈ F satisfy

|∆f p| ≤ 2
w(∂Sp)

;

Pµ(e ∈ F ) ≥ 1/2, equivalently

w(F ) =
∑
e∈F

w(e) =
∑
e∈F

w(∂Sp) · µ(e) = w(∂Sp) · µ(F ) ≥ w(∂Sp)
2 .

Using the observation that the endpoint of an edge f ∈ F that is not contained in Sp should
have potential at least p− 2/w(∂Sp), we obtain

vol(Sp−2/w(∂Sp)) ≥ vol(Sp) + w(F ) ≥ vol(Sp) + w(∂Sp)
2 .

Assuming vol(∂Sp) ≤ vol(G)/2, using the mild expansion property, we have w(∂Sp) ≥
c vol(Sp)1/2+ε. So, from above we get

vol(Sp−2/c vol(Sp)1/2+ε) ≥ vol(Sp−2/w(∂Sp)) ≥ vol(Sp) + c vol(Sp)1/2+ε

2 ,

where in the first inequality we also used that vol(Sp) increases as p decreases. Now, iterating
this procedure 2 vol(Sp)1/2−ε/c times we obtain

vol
(
Sp− 4

c2 vol(Sp)2ε

)
= vol

(
S
p− 2

c vol(Sp)1/2+ε
· 2 vol(Sp)1/2−ε

c

)
≥ 2 vol(Sp), (3.3)

as vol(Sp) increases as p decreases. We set p0 = p(s), then vol(Sp0) = deg(s). Inductively
define

pk+1 = pk −
4

c2 vol(Spk
)2ε .

Then, using the inequality (3.3), we have

vol(Spk+1) ≥ 2 · vol(Spk
). (3.4)

Note that we can run the above procedure as long as vol(Sp) ≤ vol(G)/2. Therefore, for
some k? . log vol(G)

deg(s) , we must have

vol(G) ≥ 2 · vol(Spk? ) ≥ vol(G)/2.

ITCS 2018



41:10 Graph Clustering using Effective Resistance

Therefore,

p0 − pk? ≤ 4 ·
k?∑
j=0

1
c2 vol(Spi

)2ε .

Using (3.4) we get

p0 − pk? .
1

c2 vol(S0)2ε ·
k?∑
j=0

1
22jε .

1
deg(s)2ε · c2 · ε

,

where the last inequality is a geometric sum with ratio ≈ 1/(1 + ε).
By a similar argument (sending flow from t to s), we see that more than half of the

vertices have potential smaller than

1
deg(t)2ε ·

1
ε · c2

.

Combining these two bounds, we obtain

Reff(s, t) = p(s) .
(

1
deg(s)2ε + 1

deg(t)2ε

)
· 1
ε · c2

,

where the equality follows since the flow is a unit flow. J

I Remark. For our proof to go through, we do not need the mild expansion condition to be
satisfied by all cuts. It suffices to have this condition satisfied by electric potential threshold
cuts (Sp, Scp) only.

For computational purposes, it will be important to show that our argument is robust
to small perturbations in the potentials, i. e. we need to show that the proof will still go
through when we are working with threshold cuts with respect to a vector p̂ which is close
to the electric potential vector p, rather than working with the potential vector p directly.

This is shown in Appendix A of the arxiv version of our paper [3].

3.1 Finding the Sparse Cuts Algorithmically
Next we prove Corollary 2.

I Corollary 6. Let G = (V,E,w) be a weighted undirected graph. If deg(v) ≥ 1/α for all
v ∈ V , then for any 0 < ε < 1/2, there is a subset of vertices U ⊆ V such that

Φ(U) . αε√
Rdiam · ε

· vol(U)ε−1/2.

Furthermore, the set U can be found in time Õ
(
m · log

(
w(E)

mine w(e)

))
.

Proof. First, we prove the existence of U . Let u, v ∈ V such that

Reff(u, v) = Rdiam. (3.5)

The choice of

c �

√
1

deg(u)2ε + 1
deg(v)2ε

Reff(u, v) · ε ensures Reff(u, v) >
(

1
deg(s)2ε + 1

deg(t)2ε

)
· 1
ε · c2

. (3.6)
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Then, by Theorem 1, there must be a threshold set Sp of the potential vector p corresponding
to sending one unit of electrical flow from u to v such that

Φ(U) . c

vol(U)1/2−ε .
αε√

ε · Rdiam
· vol(U)ε−1/2,

where the last inequality follows from our assumption that deg(v) ≥ 1/α for all v ∈ V . This
proves the first part of the corollary.

It remains to devise a near linear time algorithm to find the set U . First, suppose that we
are given the optimum pair of vertices u, v satisfying (3.5). Using the Spielman-Teng solver
(Lemma 4), we can compute the potential vector p corresponding to sending one unit of
electrical flow from to u to v in time Õ

(
m · log

(
w(E)

mine w(e)

))
. We can then sort the vertices by

their potential values in time O(n logn) = Õ(m). Finally, we simply go over the sorted list
and find the least expanding level set. This can be done in O(m) time in total, since getting
∂Sp(vi) from ∂Sp(vi+1) (resp. vol(Sp(vi)) from vol(Sp(vi+1))) can be done by considering the
deg(vi) edges e ∈ ∂(vi) incident to vi.

It remains to find such an optimal pair of vertices u, v satisfying (3.5). Instead, we find a
pair of vertices u′, v′ such that Reff(u′, v′) ≥ Rdiam/3, which is enough for our purposes as
this only causes a constant factor loss in the conductance of U .

I Lemma 7. Let G be a weighted graph. In time Õ(m), one can compute a pair of vertices
u, v ∈ V satisfying

Reff(u, v) ≥ Rdiam/3.

Proof. By the triangle inequality for effective resistances, we have the following inequality
for any u ∈ V :

Rdiam ≤ 2 max
v∈V

Reff(u, v). (3.7)

Thus, we fix a u ∈ V . Appyling Lemma 5 (with S = {u} × V ), we get the numbers A(u, v)
which multiplicatively approximate Reff(u, v) within a factor eβ . Let v∗ = arg maxv∈V A(u, v).
By combining the inequality (3.7) with

max
v∈V

Reff(u, v) ≤ eβ max
v∈V

A(u, v) = eβA(u, v∗) ≤ e2β Reff(u, v∗),

we obtain Reff(u, v∗) ≥ Rdiam/3 for some β = Θ(1). The algorithm consists of an application
of Lemma 5 with |S| = n, and a linear scan for finding the maximum. Hence, the time bound
follows. J

So, Corollary 2 follows by first using Lemma 7 to find u′, v′ with Reff(u′, v′) ≥ R/3, and
then apply Theorem 1 with the choice of c as described in (3.6). J

I Remark. We have avoided treating the issues caused by working with an approximate
potential vector for the sake of clarity. This issue is addressed in Appendix A of the arxiv
version of our paper [3].

4 Low Effective Resistance Diameter Graph Decomposition

In this section we prove Theorem 3.

ITCS 2018
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I Theorem 3 (Main). Given a weighted undirected graph G = (V,E,w), and a large enough
parameter δ > 1, there is an algorithm with time complexity Õ

(
m · n · log

(
w(E)

mine w(e)

))
that

finds a partition V =
⋃h
i=1 Vi satisfying

w

(
E −

h⋃
i=1

E(Vi)
)

.
w(E)
δ

(loss bound)

and

Rdiam(G[Vi]) . δ3 · n

w(E) (resistance bound)

for all i = 1, . . . , h.

Proof. Let R be the target effective resistance diameter and W be the target sum of the
weights of edges that we are going to cut. We will write the algorithm in terms of R,W , and
we will optimize for these parameters later in the proof. Note that n = |V | is the number of
vertices of the original graph G, and it is fixed throughout the execution of the following
algorithm.

Algorithm 1 Effective Resistance Partitioning

Input A graph H, and parameters R,W, n.
Output A partition P = {Vi | i = 1, . . . , h} of V (H).

1. If there is a vertex v ∈ V (H) such that degH(v) ≤ W/(2n), then delete all the edges
incident to v. Repeat this step until there are no such vertices in the remaining graph H.

2. Use Lemma 7 to find vertices u, v such that Reff(u, v) ≥ Rdiam(H)/3.
3. If Reff(u, v) ≤ R, return {V (H)}.
4. Otherwise, find the cut (U,U c) with ΦH(U) . (n/W )ε

√
ε·R ·volH(U)ε−1/2 by invoking Corollary

2, with minimum degree at least W/(2n) and ε = 1/4.
5. Call the algorithm recursively on H[U ] and H[U c].
6. Return the union of the outputs of both recursive calls.

First of all, by construction, every set Vi in the output partition satisfies Rdiam(G[Vi]) ≤
3R. It is not hard to see that the running time is Õ(n ·m · log(w(E)/mine w(e))), as the
most expensive of the above algorithm takes time Õ(m · log(w(E)/mine w(e))), and we make
at most n recursive calls.

It remains to calculate the sum of the weights of all edges that we cut. Note that we cut
edges either when a vertex has a low degree or when we find a low conductance set U . We
classify the cut edges into two types as follows:
(i) Edges e where e is cut as an incident edge of a vertex v with degH(v) ≤W/2n.
(ii) The rest of the edges, i. e., edges e where e ∈ ∂H(U) for some U where ΦH(U) .

(n/W )ε

√
ε·R volH(U)ε−1/2.

We observe that we are going to remove edges of type (i) for at most n times, because each
such removal isolates a vertex of G. So, the sum of the weights of edges of type (i) that we
cut is at most n ·W/2n ≤W/2. It remains to bound the sum of the weight of edges of type
(ii) that we cut.

We use an amortization argument: Let Ψ(e) stand for the tokens charged from an edge.
We assume that for each edge e ∈ E, the number of tokens Ψ(e) is initially set to 0. Every
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time we make a cut of type (ii), we assume without loss of generality that volH(U) ≤ vol(H)/2
and we modify the number of tokens as follows

Ψ(e) :=
{

Ψ(e) + w(∂HU)
w(EH(U)) if e ∈ EH(U)

Ψ(e) otherwise.
(4.1)

By definition, after the termination of the algorithm, we have

w(set of cut edges of type (ii)) =
∑
e∈E

Ψ(e) · w(e). (4.2)

Therefore, to bound the total weight of type (ii) edges that are cut, it is enough to show
that no edge is charged with too many tokens provided R is large enough.

I Claim 8. If R & n/(εW ), we will have Ψ(e) . 4√
R·W/8n−1

for all edges e ∈ E after the
termination of the algorithm.

Proof. Fix an edge e ∈ E. Let ∆ Ψ(e) be the increment of Ψ(e) due to a cut (U,U c). We
have

∆ Ψ(e) = w(∂HU)
w(EH(U)) = 2 · w(∂HU)

volH(U)− w(∂HU) = 2 · 1
1

ΦH(U) − 1
.

2c
volH(U)1/2−ε − c

, (4.3)

where c is chosen as in (3.6) in the proof of Corollary 2 so that Φ(U) ≤ c/ vol(U)1/2−ε for
the last inequality to hold. Since the minimum degree is at least W/2n by Step (1) of the
algorithm, we have

c � (2n/W )ε√
ε ·R

.

The minimum degree condition also implies that volH(U) ≥W/(2n). Note that the denomin-
ator of the rightmost term of (4.3) is non-negative as long as volH(U)1/2−ε ≥ (W/2n)1/2−ε ≥ c,
which holds when R & n/(εW ).

Let U0 ⊆ V (H0) be the set for which e was charged for the last time, and in general
Uk ⊆ V (Hk) be the k-th last set for which e was charged. We write ∆kΨ(e) to denote the
increment in Ψ(e) due to Uk.

Note that by (4.1) we have e ∈ EHi
(Ui) for all i. Furthermore, since volHi

(Ui) ≤
vol(Hi)/2 ≤ volHi+1(Ui+1)/2 for all i, we have

volHk
(Uk) ≥ 2k volH0(U0) (4.4)

for all k ≥ 0. Therefore, using (4.3) and (4.4), we can write

Ψ(e) =
∑
k≥0

∆k Ψ(e) ≤
∑
k≥0

2c
volHi

(Ui)1/2−ε − c

≤
∑
k≥0

2c
(2k volH0(U0))1/2−ε − c

≤ 2c
volH0(U0)1/2−ε − c

·
∑
k≥0

1
(21/2−ε)k

,

where the last inequality assumes that ε < 1/2. As argued before, the minimum degree
condition implies that every vertex is of degree at least W/2n and thus volH0(U0) ≥W/(2n).
Therefore, by the geometric sum formula, we have

Ψ(e) ≤ 2
1
c (W/2n)1/2−ε − 1

· 1
1− 2ε−1/2 .
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Plugging the value of c and setting ε = 1/4 < 1/2, we conclude that

Ψ(e) . 2√
ε ·R ·W/2n− 1

≤ 4√
R ·W/8n− 1

. J

Setting R � δ2 · n/W for a sufficiently large δ2 > 1 so that the assumption of Claim 8 is
satisfied, it follows from (4.2) that the sum of the weights of all cut edges is at most

W/2 +
∑
e

Ψ(e) · w(e) .W/2 + w(E)
δ

.

Setting W = w(E)/δ proves the theorem. This completes the proof of Theorem 3. J

5 Conclusions and Open Problems

We have shown that we can decompose a graph into components of bounded effective
resistance diameter while losing only a small number of edges. There are few questions which
arise naturally from this work.
1. Can the decomposition in Theorem 3 be computed in near linear time? Is this decompos-

ition useful in generating a random spanning tree?
2. For the Unique Games Conjecture, Theorem 3 implies that we can restrict our attention to

graphs with bounded effective resistance diameter. Can we solve Unique Games instances
better in such graphs? More generally, are there some natural and nontrivial problems
that can be solved effectively in graphs of bounded effective resistance diameter?

3. Is there a generalization of Theorem 1 to multi-partitioning, i. e. does the existence of k-
vertices with high pairwise effective resistance distance help us in finding a k-partitioning
of the graph where every cut is very sparse?

4. Theorem 1 says that a small-set expander has bounded effective resistance diameter. Is
it possible to strengthen Theorem 3 to show that every graph can be decomposed into
small-set expanders? This may be used to show that the Small-Set Expansion Conjecture
and the Unique Games Conjecture are equivalent, depending on the quantitative bounds.

Acknowledgements. We would like to thank Hong Zhou for helpful discussions and an-
onymous referees for their useful suggestions.
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