
Streaming for Aibohphobes: Longest Palindrome
with Mismatches
Elena Grigorescu1, Erfan Sadeqi Azer2, and Samson Zhou3

1 Department of Computer Science, Purdue University, West Lafayette, USA
elena-g@purdue.edu.

2 School of Informatics and Computing, Indiana University, Bloomington, USA
esadeqia@indiana.edu.

3 Department of Computer Science, Purdue University, West Lafayette, USA
samsonzhou@gmail.com.

Abstract
A palindrome is a string that reads the same as its reverse, such as “aibohphobia” (fear of
palindromes). Given a metric and an integer d > 0, a d-near-palindrome is a string of Hamming
distance at most d from its reverse.

We study the natural problem of identifying the longest d-near-palindrome in data streams.
The problem is relevant to the analysis of DNA databases, and to the task of repairing recursive
structures in documents such as XML and JSON.

We present the first streaming algorithm for the longest d-near-palindrome problem that re-
turns a d-near-palindrome whose length is within a multiplicative (1 + ε)-factor of the longest
d-near-palindrome. Our algorithm also returns the set of mismatched indices in the d-near-
palindrome, and uses O

(
d log7 n
ε log(1+ε)

)
bits of space, and O

(
d log6 n
ε log(1+ε)

)
update time per arrival

symbol. We show that for d = o(
√
n), any randomized algorithm with multiplicative approxima-

tion (1 + ε) that succeeds with probability at least 1− 1/n requires Ω(d logn) space.
We further obtain a streaming algorithm that returns a d-near-palindrome whose length is

within an additive E-error of the longest d-near-palindrome. The algorithm uses O
(
dn log6 n

E

)
bits of space and O

(
dn log5 n

E

)
update time. As before, we show that any randomized streaming

algorithm that solves the longest d-near-palindrome problem for additive error E with probability
at least 1− 1

n , uses Ω
(
dn
E

)
space.

Finally, we give an exact two-pass algorithm that solves the longest d-near-palindrome prob-
lem using O

(
d2√n log6 n

)
bits of space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Longest palindrome with mismatches, Streaming algorithms, Hamming
distance

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.31

1 Introduction

A palindrome is a string that reads the same as its reverse, such as the common construct
“racecar”, or the deliberate construct “aibohphobia”. Given a metric and an integer d > 0,
we say that a string is a d-near-palindrome if it is at distance at most d from its reverse.
In this paper, we study the problem of identifying the longest d-near-palindrome substring
in the streaming model, under the Hamming distance. In the streaming model, the input
data is streamed one symbol at a time, and we are allowed to perform computation using

© Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou;
licensed under Creative Commons License CC-BY

37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 31; pp. 31:1–31:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Streaming for Aibohphobes: Longest Palindrome with Mismatches

only a small amount of working memory. Specifically, our goal is to approximate the length
of the longest near-palindrome in a string of length n, using only o(n) space. A related
question regarding approximating the length of the longest palindrome in RNA sequences
under removal of elements was explicitly asked at the Bertinoro Workshop on Sublinear
Algorithms 2014 [1].

Finding near-palindromes is widely motivated in string processing of databases relevant
to bioinformatics.

Specifically, since the development of the Human Genome Project, advances in biological
algorithms have quickened the sequencing for genes and proteins, leading to increasingly
large databases of strings representing both nucleic acids for DNA or RNA, and amino acids
for proteins. Tools to analyze these sequences, such as the basic local alignment search
tool (BLAST) [2] often require the removal of “low-complexity” regions (long repetitive or
palindromic structures). However, these long sequences frequently contain small perturba-
tions through mutation or some other form of corruption (including human error), so that
identifying “near”-palindromes under either Hamming distance or edit distance is important
for preprocessing sequences before applying the heuristic tools. In particular, the streaming
model is relevant to contemporary data-sequencing technologies for near-palindromes, as
further discussed in [9, 12].

Our contributions
We initiate the study of finding near-palindromes in the streaming model, and provide several
algorithms for the longest near-palindrome substring.

Given a stream S of length n and an integer d = o(
√
n), let `max be the length of a

longest d-near-palindrome substring in S.

I Theorem 1. There exists a one-pass streaming algorithm that returns a d-near-palindrome
of length at least 1

1+ε · `max, with probability 1− 1
n . The algorithm uses O

(
d log7 n
ε log(1+ε)

)
bits of

space and update time O
(

d log6 n
ε log(1+ε)

)
per arriving symbol.

I Theorem 2. There exists a one-pass streaming algorithm that returns a d-near-palindrome
of length at least `max − E, with probability 1− 1

n . The algorithm uses O
(
dn log6 n

E

)
bits of

space and update time O
(
dn log5 n

E

)
per arriving symbol.

If two passes over the stream are allowed, one can find an exact longest d-near-palindrome.

I Theorem 3. There exists a two-pass streaming algorithm that returns a d-near-palindrome
of length `max, with probability 1− 1

n . It uses O
(
d2√n log6 n

)
bits of space and O

(
d2√n log5 n

)
update time per arriving symbol.

We complement our results with lower bounds for randomized algorithms.

I Theorem 4. Let d = o(
√
n). Then any randomized streaming algorithm that returns a

d-near-palindrome of length at least `max
1+ε with probability at least 1− 1

n must use Ω (d logn)
bits of space.

I Theorem 5. Let d = o(
√
n) and E > d be an integer. Then any randomized streaming

algorithm that returns a d-near-palindrome of length at least `− E, with probability at least
1− 1

n must use Ω
(
dn
E

)
bits of space.

A summary of our results and comparison with related work appears in Table 1.

E. Grigorescu, E. Sadeqi Azer, and S. Zhou 31:3

Table 1 Summary of our results and comparison to related work

Space for Algorithms Lower Bounds
Model d-Near-Palindrome Palindrome d-Near-Palindrome Palindrome

1-Pass, Multiplicative (1 + ε) O
(

d log7 n
ε log(1+ε)

)
O
(

log2 n
ε log(1+ε)

)
[5] Ω(d logn) Ω

(
logn

log(1+ε)

)
[10]

1-Pass, Additive E O
(
dn log6 n

E

)
O
(
n logn
E

)
[5] Ω

(
dn
E

)
Ω
(
n
E

)
[5]

2-Pass, Exact O
(
d2√n log6 n

)
O
(√

n logn
)
[5] - -

Background and Related Work
Our techniques extend previous work on the Longest Palindromic Substring Problem, the
Pattern Matching Problem, and the d-Mismatch Problem in the streaming model.

In the Longest Palindromic Substring Problem, the goal is to output a longest palindromic
substring of an input of length n, while minimizing the computation space. Manacher [14]
introduces a linear-time online algorithm, which reports whether all symbols seen at the
time of query form a palindrome. Berenbrink et al. [5] achieve O

(
log2 n

ε log(1+ε)

)
space for

multiplicative error (1 + ε), and show a space lower bound for algorithms with additive
error. Gawrychowski et al. [10] recently generalize the aforementioned lower bounds for
additive error, and also produce a space lower bound of Ω

(
logn

log(1+ε)

)
for algorithms with

multiplicative error (1 + ε), which is essentially tight.
In the Pattern Matching Problem, one is given a pattern of length m and the goal is

to output all occurrences of the pattern in the input string, while again minimizing space
or update time. In order to achieve space sublinear in the size of the input, many pattern
matching streaming algorithms use Karp-Rabin fingerprints [13]. Porat and Porat [15] present
a randomized algorithm for exact pattern matching using O (logm) space and O (logm)
update time, which Breslauer and Galil [6] further improve to constant update time.

In the d-Mismatch Problem, one is given a pattern and the goal is to find all substrings
of the input that are at most Hamming distance d from the pattern. A line of exciting
work (e.g., [3, 15, 7, 4]) culminates in a recent algorithm by Clifford et al. [8] that uses
O
(
d2polylogm

)
space and O

(√
d log d+ polylogm

)
update time per arriving symbol.

2 Preliminaries

We denote by [n] the set {1, 2, . . . , n}. We assume an input stream of length n over alphabet
Σ. Given a string S[1, n], we denote its length by |S|, its ith character by S[i], and the
substring between locations i and j (inclusive) by S[i, j].

The Hamming distance between S and T , denoted HAM(S, T) is the number of indices
whose symbols do not match: HAM(S, T) =

∣∣∣{i | S[i] 6= T [i]}
∣∣∣. We denote the concatenation

of S and T by S ◦ T . Each index i such that S[i] 6= S[n− i+ 1] is a mismatch. We say S is
a d-near-palindrome if HAM(S, SR) ≤ d. Without loss of generality, our algorithms assume
the lengths of d-near-palindromes are even, since for any odd length d-near-palindrome, we
may apply the algorithm to S[1]S[1]S[2]S[2] · · ·S[n]S[n] instead of S[1, n].

I Definition 6 (Karp-Rabin Fingerprint). For a string S, a prime P and an integer B with
1 ≤ B < P , the Karp-Rabin forward and reverse fingerprints [13] are defined as follows:

φF (S) =

 |S|∑
x=1

S[x] ·Bx
 mod P, φR(S) =

 |S|∑
x=1

S[x] ·B−x
 mod P.

FSTTCS 2017

31:4 Streaming for Aibohphobes: Longest Palindrome with Mismatches

S:

φF1,3(S): φF2,3(S): φF3,3(S):

Figure 1 Karp-Rabin Fingerprints for first-level subpattern.

S:

φF1,3(S):

φF1,9(S): φF4,9(S): φF7,9(S):

Figure 2 Karp-Rabin Fingerprints for second-level subpattern.

Karp-Rabin Fingerprints have the following easily verifiable properties:
1. φR(S) ·B|S|+1 = φ(SR) mod P
2. φF (S[x, y]) = B1−x(φF (S[1, y])− φF (S[1, x− 1])) mod P
3. φR(S[x, y]) = Bx−1(φR(S[1, y])− φR(S[1, x− 1])) mod P
We use Karp-Rabin Fingerprints for certain subpatterns of S, as in [8]. For a string S
and integers a ≤ b, define the first-level subpattern Sa,b to be the subsequence S[a]S[a +
b]S[a+ 2b] In this case, define SRa,b = (Sa,b)R (as opposed to (SR)a,b). Similarly, define
Sa,b[x, y] = Sa,b ∩ S[x, y] (as opposed to (S[x, y])a,b). Then for 1 ≤ a ≤ b, define the
fingerprints for Sa,b and its reverse:

φFa,b(S) = φF (Sa,b) =
(∑
x≡a mod b

S[x] ·Bdx/be
)

mod P

φRa,b(S) = φR(Sa,b) =
(∑
x≡a mod b

S[x] ·B−dx/be
)

mod P

For an example, see Figure 1.
Given a first-level subpattern T = Sa,b = S[a]S[a + b]S[a + 2b] . . . and integers r ≤ s,

define the second-level subpattern Tr,s = T [r]T [r+s]T [r+2s] Observe that Tr,s = Sa+rb,sb
and thus, second-level subpatterns are simply more refined first-level subpatterns. For an
example, see Figure 2.

Observe the following properties of fingerprints on first-level and second-level subpatterns:
1. φRa,b(S) ·B|S|+1 = φ|S|−a+1,b(SR) mod P
2. φFa,b(S[x, y]) = Bd(1−x)/be(φFa,b(S[1, y])− φFa,b(S[1, x− 1])) mod P
3. φRa,b(S[x, y]) = Bd(x−1)/be(φRa,b(S[1, y])− φRa,b(S[1, x− 1])) mod P

We also use the following application of the Prime Number Theorem:

I Lemma 7. (Adaptation of Lemma 4.1 [8]) Given two distinct integers a, b ∈ [1, n] and a
random prime number p ∈

[
d
β log2 n, 34d

β log2 n
]
where β = 1

16 , then Pr
[
a ≡ b mod p

]
≤ β

32d .

E. Grigorescu, E. Sadeqi Azer, and S. Zhou 31:5

ci b

NearPalindrome(ci, b)

Longest d-near-palindrome

y zcj

NearPalindrome(cj, a)

a

Accept:

Reject:

Figure 3 The longest d-near-palindrome will be sandwiched within checkpoints to provide a
(1 + ε)-approximation of `max. That is, (1 + ε)(a− cj) ≥ (z − y).

Finally, we remark that problems in bioinformatics, such as the RNA Folding Problem [1],
use the following notion of complementary palindromes:

I Definition 8. Let f :
∑
→
∑

be a pairing of symbols in the alphabet. A string S ∈
∑n

is a complementary palindrome if S[x] = f(S[n+ 1− x]) for all 1 ≤ x ≤ n.

Our algorithms can be modified to recognize complementary palindromes with the same
space usage and update time. Indeed, we only need to modify the forward fingerprints to use
f(S[x]) instead of S[x]:

φFa,b(S) =
(∑
x≡a mod b

f(S[x]) ·Bdx/be
)

mod P.

3 Overview and Techniques

One-pass Multiplicative Approximation Algorithm
Our algorithm combines and extends ideas and techniques from the solution to the d-Mismatch
Problem in [8] and the solution to the Longest Palindrome Problem in [5]. For additional
clarity, we provide several figures in [11].

As the stream progresses, we keep a set of checkpoints C, where c ∈ C is the beginning of
potential d-near-palindromes that we output. We also maintain a sliding window that contains
the 2d most recently seen symbols. The sliding window identifies any d-near-palindrome of
length at most 2d. It also guesses that the midpoint of the sliding window is the midpoint of
a potential d-near-palindrome of length > 2d.

We keep an estimate ˜̀of the length `max of the longest d-near-palindrome seen throughout
the stream, as well as the starting index cstart of the d-near-palindrome, and the locations of
the mismatches, a set of size at most d. Upon reading symbol S[x] of the stream, we call
procedure NearPalindrome to see if S[ci, x] is a d-near-palindrome, for each checkpoint ci such
that x− ci > ˜̀. Using the framework of [5], we create and update checkpoints throughout
the stream so that we find a d-near-palindrome of length at least `max

1+ε , as in Figure 3.
The algorithm in [5] maintains a list of potential midpoints associated with each checkpoint.

This list can be linear in size, however it satisfies nice structural results that can be used
to succinctly represent the list of candidate midpoints. Directly adapting these structural
results to our setting would incur an extra factor of d in our space complexity. We avoid
this extra factor by circumventing the list of candidate midpoints in the one-pass algorithms
altogether.

FSTTCS 2017

31:6 Streaming for Aibohphobes: Longest Palindrome with Mismatches

We now overview the procedure NearPalindrome that we use repeatedly in our algorithms.
It returns whether S[ci, x] is a d-near-palindrome, and if so it returns the mismatches.

The procedure NearPalindrome follows along the lines of the d-mismatch streaming
algorithm from [8]. Recall that in the d-Mismatch Problem, we are given a pattern R

and a text S and the algorithm is required to output a string S[x − |R| + 1, x] such that
HAM(R,S[x− |R|+ 1, x]) ≤ d. While in the d-Mismatch Problem the pattern is fixed, here
we essentially use a variable-length pattern. Namely, we check if for checkpoint ci it is
the case that HAM(S[ci, x], SR[ci, x]) ≤ d. To achieve this, we maintain a dynamic set of
fingerprints that we compare against the dynamic set of text fingerprints.

The procedure has two stages. In the first stage it eliminates strings T with HAM(T, TR) ≥
2d, while in the second stage it eliminates strings with d < HAM(T, TR) < 2d. This can
be achieved by estimating the distance between T and TR using fingerprints of equivalence
classes modulo different primes.

Picking random primes should distribute the mismatches into different equivalence classes.
The procedure estimates the number of mismatches by comparing the fingerprints of the sub-
strings whose indices are in the same congruence class modulo p with the reverse fingerprints,
namely Tr,p and TRr,p for all 1 ≤ r ≤ p. Denote by Tr,p and TRr,p the first-level fingerprints.

By the second stage we are only left with the strings with a small number of mismatches.
In order to recover the mismatches, one needs to refine each subpattern T̃ = Tr,p by picking
smaller primes p′, and comparing the fingerprints of the strings T̃r′,p′ and T̃Rr′,p′ for all
1 ≤ r′ ≤ p′. Denote by T̃r′,p′ and T̃Rr′,p′ the second-level fingerprints (see Figure 2).

In the first stage, we sample 2 logn primes uniformly at random from
[
d
β log2 n, 34d

β log2 n
]
,

where β = 1/16. Each prime generates p subpatterns containing positions in the same
equivalence class (mod p). Therefore, there are O

(
d log3 n

)
first-level subpatterns. In the

second stage, we take all primes in [logn, 3 logn] that together with the primes picked in the
first stage generate a total of O

(
d log5 n

)
second-level subpatterns.

Finally, we assume throughout the paper that the fingerprints of any subpattern do not
fail. Since there are at most n3 subpatterns, and the probability that a particular fingerprint
fails is at most 1

n5 for P ∈ [n5, n6] (by Theorem 1 in [6]), then by a union bound, the
probability that no fingerprint fails is least 1− 1

n2 .
Our choice of parameters is more space-efficient compared to the data structure given by

[8], which uses O
(
d2 log7 n

)
space, since we no longer need the sliding functionality provided

by their data structure. Also, the data structure given by [16] does not suffice, as it does not
support concatenation, which is needed for maintaining the checkpoints.

One-pass Additive Approximation and Two-Pass Exact Algorithms
To obtain the one-pass additive approximation, we modify our checkpoints, so that they
appear in every

⌊
E
2
⌋
positions. Hence, the longest d-near-palindrome must have some

checkpoint within
⌊
E
2
⌋
positions of it, and the algorithm will recover a d-near-palindrome

with length at least `max − E.
To obtain the two-pass exact algorithm, we set E =

√
n and modify the additive error

algorithm so that it returns a list L of candidate midpoints of d-near-palindromes. Moreover,
we show a structural result in Lemma 16, which allows us to compress certain substrings in the
first pass, so that the second pass can recover mismatches for any potential d-near-palindromes
within these substrings.

In the second pass, we carefully keep track of the
√
n

2 characters before the starting
positions of long d-near-palindromes identified in the first pass. We use the compressed

E. Grigorescu, E. Sadeqi Azer, and S. Zhou 31:7

information from the first pass to reconstruct the fingerprints and calculate the number
of mismatches within these long d-near-palindromes identified in the first pass. However,
the actual d-near-palindromes may extend beyond the estimate returned in the first pass.
Thus, we compare the

√
n

2 characters after the d-near-palindromes identified in the first
pass with the

√
n

2 characters that we track. This allows us to exactly identify the longest
d-near-palindrome during the second pass.

Lower Bounds
To show lower bounds for randomized algorithms solving the d-near palindrom problem we
use Yao’s Principle [17], and construct distributions for which any deterministic algorithm
fails with significant probability unless given a certain amount of space. We first reduce the
problem of approximating longest d-near-palindromes to the problem of exactly identifying
whether two strings have Hamming distance at most d. We then carefully construct hard
distributions, and show via counting arguments that deterministic algorithms using a little
of space will fail with significant probability on inputs from these distributions. We also use
some ideas from [10] who showed lower bounds for streaming palindromes. Due to space
constraints, the proofs of Theorem 4 and Theorem 5 are detailed in [11].

4 One-Pass Streaming Algorithm with Multiplicative Error (1 + ε)

In this section, we prove Theorem 1. Namely, we provide a one-pass streaming algorithm
with multiplicative error (1 + ε), using space O

(
d log7 n
ε log(1+ε)

)
bits of space.

4.1 Algorithm
As described in the overview, similar to [5], we maintain a sliding window of size 2d, along
with master fingerprints, and a series of checkpoints. From the sliding window, we observe
any d-near-palindrome with length at most 2d, as well as any candidate midpoints. Then
prior to seeing element S[x] in the stream, we keep the following in memory:

Initialization:
1. Pick a prime P from [n5, n6] and an integer B < P (the modulo and the base of the

Karp-Rabin fingerprints, respectively).
2. For the first-level fingerprints, create a set P consisting of 2 logn primes p1, p2, . . . ,

p2 logn sampled independently and uniformly at random from
[
d
β log2 n, 34d

β log2 n
]
,

where β = 1
16 .

3. For the second-level fingerprints, let Q be the set of all primes in [logn, 3 logn].
4. Initialize a sliding window of size 2d.
5. Initialize the sets of Master Fingerprints, FF and FR:

a. Set φFr,p(S) = 0, φRr,p(S) = 0 for all p ∈ P and 1 ≤ r ≤ p.
b. Set φFr′,pq(S) = 0, φRr′,pq(S) = 0 for all p ∈ P, q ∈ Q and 1 ≤ r′ ≤ pq.
c. Let FF be the set of all φF (S).
d. Let FR be the set of all φR(S).

6. Set k0 = log(1/α)
log(1+α) , where α =

√
1 + ε− 1.

7. Initialize a list of checkpoints C = ∅.
8. Set the starting index cstart to be 1, the length estimate ˜̀ of the longest d-near-

palindrome found so far to be 0, and the at most d mismatched indicesM = ∅.

FSTTCS 2017

31:8 Streaming for Aibohphobes: Longest Palindrome with Mismatches

We now formalize the steps outlined in the overview. The data structure relies on the
procedure NearPalindrome that we describe and analyze in detail in Section 4.2.

Maintenance:
1. Read S[x]. Update the sliding window to S[x− 2d, x].
2. Update the Master Fingerprints to be FF (1, x) and FR(1, x):

a. Update the first-level fingerprints: for every p ∈ P, let r ≡ x mod p, and incre-
ment φFr,p(S) by S[x] ·Bdx/pe mod P and increment φRr,p(S) by S[x] ·B−dx/pe mod
P .

b. Update the second-level fingerprints: for every p ∈ P and q ∈ Q, let r′ ≡ x

mod pq, and increment φFr′,pq(S) by S[x]·Bdx/(pq)e mod P and increment φRr′,pq(S)
by S[x] ·B−dx/(pq)e mod P .

3. For all k ≥ k0:
a. If x is a multiple of

⌊
α(1 + α)k−2⌋, then add the checkpoint c = x to C. Set

level (c) = k, fingerprints (c) = FF (1, x) ∪ FR(1, x).
b. If there exists a checkpoint c with level (c) = k and c < x− 2(1 +α)k, then delete
c from C.

4. For every checkpoint c ∈ C such that x− c > ˜̀, we call NearPalindrome (described in
Section 4.2) to see if S[c, x] is a d-near-palindrome. If S[c, x] is a d-near-palindrome,
then set cstart = c, ˜̀= x− c andM to be the indices returned by NearPalindrome.

5. If x = n, then report cstart, ˜̀, andM.

4.2 NearPalindrome and its analysis
In this section, we describe and analyze the randomized procedure NearPalindrome that
receives as input a string, and decides whether it is a d-near-palindrome or not. Moreover, if
the string is a d-near-palindrome, NearPalindrome returns the locations of the mismatched
indices. As mentined, NearPalindrome adapts ideas from [8] for solving the d-mismatch
problem. Our proofs of the properties of NearPalindrome follow almost verbatim from the
statements in [8], with the only difference being that we make the magnitudes of the chosen
primes as large as to withstand patterns of length O (n). For completeness, we include all
the proofs in [11].

Before formally describing NearPalindrome we introduce some notation. Given a string
S[x, y], and prime pj let ∆j(x, y) be the number of r ∈ [pj] such that the subpatterns Sr,pj [x, y]
and SRr,pj [x, y] are different. Note that we can compute ∆j(x, y) from the fingerprints FF (x, y)
and FR(x, y) as the number of indices r such that φFr,pj [x, y] 6= Bk+1 ·φRr,pj [x, y] mod P , where
k is the length of Sr,pj [x, y]. Define ∆(x, y) = maxj ∆j(x, y). We may assume throughout
that S[x, y] has even length. Next we summarize some useful properties of ∆(x, y).

I Lemma 9. (Adaptation of Lemma 5.1 and Lemma 5.2 [8]) Let β = 1/16.
1. If HAM(S[x, y], SR[x, y]) ≤ d, then ∆(x, y) ≤ d.
2. If HAM(S[x, y], SR[x, y]) ≥ 2d, then ∆(x, y) > (1 + β) · d with probability at least 1− 1

n3 .

A position i ∈ [x, y] is an isolated mismatch under pj if there exists some r ≤ pj for
which the subpatterns Sr,pj [x, y] and SRr,pj [x, y] differ only in position i. Let Ij(x, y) be the
number of isolated mismatches in S[x, y] under pj , and let I(x, y) be the union of Ij(x, y),
over all primes pj . The next lemma shows that if HAM(S[x, y], SR[x, y]) ≤ 2d , then I(x, y)
is precisely HAM(S[x, y], SR[x, y]) with high probability over the set of primes.

I Lemma 10. (Adaptation of Lemma 4.2 [8]) If HAM(S[x, y], SR[x, y]) ≤ 2d, then
HAM(S[x, y], SR[x, y]) = I(x, y) with probability at least 1− 1

n7 .

E. Grigorescu, E. Sadeqi Azer, and S. Zhou 31:9

I Lemma 11. The set of mismatches can be identified using the second-level fingerprints.

We are now ready to present the algorithm in full.

NearPalindrome(ci, x): (determines if S[ci, x] is a d-near-palindrome)
1. For each j ∈ [2 logn], initialize ∆j = 0.
2. For each j ∈ [2 logn] and r ∈ [pj]:

If φFr,pj (S[ci, x]) 6= Bk+1 ·φRr,pj (S[ci, x]) mod P , where k is the length of Sr,pj [ci, x],
then increment ∆j(ci, x) = ∆j(ci, x) + 1.

3. Let ∆(ci, x) = maxj{∆j(ci, x)}.
4. If ∆(ci, x) > (1 + β) · d, then we immediately reject S[ci, x]. (Recall that β = 1

16 .)
5. Initialize I = ∅.
6. For each mismatch in S[ci, x], if there exists q ∈ Q and such that φFr′,q(Sr,p[ci, x]) 6=

Bk
′+1 · φRr′,q(Sr,p[ci, x]) mod P , where k′ is the length of Sr′+rp,pq[ci, x], for exactly

one r ∈ [p], r′ ∈ [q], then insert the mismatch into I(ci, x). (This is the set of isolated
mismatches.)

7. If |I(ci, x)| > d, then we reject S[ci, x].
8. Else, if |I(ci, x)| ≤ d, then we accept S[ci, x] and return I(ci, x).

I Theorem 12. With probability at least 1− 1
n3 , procedure NearPalindrome returns whether

S[ci, x] is a d-near-palindrome.

Proof of Theorem 12. If HAM(S[ci, x], SR[ci, x]) > 2d, then by Lemma 9, ∆(ci, x) > (1 +
β) ·2d with probability at least 1− 1

n3 and so NearPalindrome will reject S[ci, x]. Conditioned
on HAM(S[ci, x], SR[ci, x]) ≤ 2d, by Lemma 10 I(ci, x) = HAM(S[ci, x], SR[ci, x]) with
probability at least 1− 1

n5 , and so if HAM(S[ci, x], SR[ci, x]) > d the algorithm safely rejects,
and otherwise it accepts. Finally, by Lemma 11 the entire set of mismatches I(ci, x) can be
computed from the second-level subpattern fingerprints. J

4.3 Correctness and Space Complexity
In this section, we finish the proof of Theorem 1 by claiming correctness and analyzing the
space used by the one-pass streaming algorithm described in Section 4.1. Since we used the
spacing of the checkpoints as in [5], we have the following properties.

I Observation 13. ([5], Observation 16, Lemma 17) At reading S[x], for all k ≥ k0 =
log
(

(1+α)2
α

)
log(1+α)

, let Cx,k = {c ∈ C | level (c) = k}.

1. Cx,k ⊆ [x− 2(1 + α)k, x].
2. The distance between two consecutive checkpoints of Cx,k is

⌊
α(1 + α)k−2⌋.

3. |Cx,k| =
⌈

2(1+α)k
bα(1+α)k−2c

⌉
.

4. At any point in the algorithm, the number of checkpoints is O
(

logn
ε log(1+ε)

)
.

I Corollary 14. The total space used by the algorithm is O
(

d log7 n
ε log(1+ε)

)
bits. The update time

per arriving symbol is also O
(

d log6 n
ε log(1+ε)

)
.

Proof. The first-level and second-level Karp-Rabin fingerprints consist of integers modulo
P for each of the O

(
d log5 n

)
subpatterns. Since P ∈ [n5, n6], then O

(
d log6 n

)
bits of

FSTTCS 2017

31:10 Streaming for Aibohphobes: Longest Palindrome with Mismatches

space are necessary for each fingerprint. Furthermore, by Observation 13, there are logn
ε log(1+ε)

checkpoints, so the total space used is O
(
d log7 n

)
bits. For each arriving symbol S[x],

the algorithm checks possibly the fingerprints of each checkpoint whether the substring is
a d-near-palindrome. There are O

(
logn

ε log(1+ε)

)
checkpoints, each with fingerprints of size

O
(
d log5 n

)
. Each subpattern of a fingerprint may be compared in constant time, so the

overall update time is O
(

d log6 n
ε log(1+ε)

)
. J

Proof of Theorem 1. Let `max be the length of the longest d-near-palindrome, S[x, x +
`max − 1], with midpoint m. Let k be the largest integer so that 2(1 + α)k−1 < `max, where
α =
√

1 + ε− 1. Let y = m+ (1 + α)k−1 so that x < y < x+ `max − 1. By Observation 13,
there exists a checkpoint in the interval [y − 2(1 + α)k−1, y]. Furthermore, Observation 13
implies consecutive checkpoints of level k − 1 are separated by distance

⌊
α(1 + α)k−2⌋. Thus,

there exists a checkpoint c in the interval
[
y − 2(1 + α)k−1, y − 2(1 + α)k−1 + α(1 + α)k−3].

If procedure NearPalindrome succeeds for this checkpoint on position m+ (m− c), then the
output ˜̀ of the algorithm is at least

2(m− c) ≥ 2m− 2y + 4(1 + α)k−1 − 2α(1 + α)k−3 = 2(1 + α)k−1 − 2α(1 + α)k−3.

Comparing this output with `max,

`max
˜̀ ≤ 2(1 + α)k

2(1 + α)k−1 − 2α(1 + α)k−3 = (1 + α)3

(1 + α)2 − α
≤ (1 + α)2 = 1 + ε.

Thus, if procedure NearPalindrome succeeds for all substrings then ˜̀ ≤ `max ≤ (1 + ε)˜̀.
Taking Theorem 12 and a simple union bound over all O

(
n2) possible substrings, procedure

NearPalindrome succeeds for all substrings with probability at least 1/n, and the result
follows. J

5 Two-Pass Exact Streaming Algorithm

In this section, we prove Theorem 3. Namely, we present a two-pass streaming algorithm
which returns the longest d-near-palindrome with space O

(
d2√n log6 n

)
.

Recall that we assume the lengths of d-near-palindromes are even. Thus, for any substring
S[x, y] of even length, we define its midpoint m =

⌊
x+y

2
⌋
. Upon reading x, we say that

x−
√
n is a candidate midpoint if the sliding window S[x− 2

√
n, x] is a d-near-palindrome.

First, we modify the one-pass streaming algorithm with additive error in Section 4 so
that it returns a list L of candidate midpoints of d-near-palindromes with length at least
`−

√
n

2 , where ` is an estimate of the maximum length output by the algorithm. However, we
show in Lemma 16 that the string has a periodic structure which allows us to keep only O (d)
fingerprints in order to recover the fingerprint for any substring between two midpoints.

In the second pass, we explicitly keep the
√
n

2 characters before the starting positions
and candidate midpoints of long d-near-palindromes identified in the first pass. We use a
procedure Recover to exactly identify the number and locations of mismatches within the
d-near-palindromes identified in the first pass. We then use the

√
n

2 characters to extend the
near-palindromes until the number of mismatches exceeds d+ 1.

For an example, see Figure 4.
We first describe a structural property of a series of overlapping d-near-palindromes,

showing that they are “almost” periodic.

I Definition 15. A string S is said to have period π if S[j] = S[j+π] for all j = 1, . . . , |S′|−π.

E. Grigorescu, E. Sadeqi Azer, and S. Zhou 31:11

ci + longest(ci)ci

All mismatches kept from first-pass

Longest d-near-palindrome

ci −
√
n

2

Characters kept in A Compare these characters with those kept in A

Figure 4 The second pass allows us to find the longest d-near-palindrome by explicitly comparing
characters.

The following structural result is a generalization of a structural result about palindromes
from [5].

I Lemma 16. Let m1 < m2 < . . . < mh be indices in S that are consecutive midpoints of
d-near-palindromes of length `∗, for some integer `∗ > 0. If mh −m1 ≤ `∗, then
1. m1,m2, . . . ,mh are equally spaced in S′, so that |m2−m1| = |mi−mi+1| for all i ∈ [h−1].
2. There exists string Eh with at most d nonzero entries such that Eh + S[m1 + 1,mh] is a

prefix of wwRwwR . . . of length at least `∗, for some string w of length |w| = m2 −m1.

In the first pass, we specify that the algorithm has sliding window size 2
√
n. Thus,

if the longest d-near-palindrome has length less than 2
√
n, the algorithm can identify it.

Otherwise, if the longest d-near-palindrome has length at least 2
√
n, then the algorithm

finds at most
√
n

2 non-overlapping d-near-palindromes of length at least ` −
√
n. Hence,

O
(
d2√n log6 n

)
is enough space to store the fingerprints for the substrings between any two

candidate midpoints, as well as between checkpoints si ∈ L and midpoints. This concludes
the first pass of the algorithm. Details appear in the [11].

Before we proceed to the second pass, we describe procedure Recover(mi,mj , Lc) which
either outputs that S[mi,mj] is not a d-near-palindrome, or returns the number of mismatches,
as well as their indices. The procedure crucially relies on structural result from Lemma 16
to reconstruct the fingerprints of S[mi,mj] from fingerprints stored by the first pass. From
the reconstructed fingerprints, the subroutine can then determine whether S[mi,mj] is a
d-near-palindrome, and identify the location of the mismatches, if necessary. The details of
procedure Recover appear in [11].

Before the second pass, we first prune the list of checkpoints C to greedily include only
those who are the starting indices for d-near-palindromes of length at least ˜̀−

√
n

2 and do not
overlap with other d-near-palindromes already included in the list. In the second pass, the
algorithm keeps track of the

√
n

2 characters before c, for each starting index c ∈ C. We call
procedure Recover to fully recover the mismatches in a region following c. After reading the
last symbol in the region, we compare each subsequent symbol with the corresponding symbol
before c, counting the total number of mismatches. When the total number of mismatches
reaches d + 1 after seeing character S[c + k + j + 1], where k is the size of the region,
then the previous symbol is the end of the near-palindrome. Hence, the near-palindrome is
S[c− j, c+ k + j], and if k + 2j > l̃, then we update the information for ˜̀ accordingly. For
an example, see Figure 5.

We defer the details of the 2nd pass and the remaining proofs to [11].

FSTTCS 2017

31:12 Streaming for Aibohphobes: Longest Palindrome with Mismatches

mjmi

All mismatches returned by Recover(mi,mj , Lc)

Longest d-near-palindrome

mi −
√
n

2

Characters kept in B Compare these characters with those kept in B

Figure 5 The second pass allows us to find the longest d-near-palindrome by explicitly comparing
characters.

Acknowledgments. We would like to thank Funda Ergün, Tatiana Kuznetsova, and Qin
Zhang for helpful discussions and pointers.

References

1 List of open problems in sublinear algorithms: Problem 61. URL: http://sublinear.
info/61.

2 Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.
Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

3 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching
with k mismatches. J. Algorithms, 50(2):257–275, 2004.

4 Alexandr Andoni, Assaf Goldberger, Andrew McGregor, and Ely Porat. Homomorphic
fingerprints under misalignments: sketching edit and shift distances. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC, pages 931–940,
2013.

5 Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan Sadeqi Azer. Palin-
drome recognition in the streaming model. In 31st International Symposium on Theoretical
Aspects of Computer Science (STACS), pages 149–161, 2014.

6 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. ACM Trans. Algo-
rithms, 10(4):22:1–22:12, 2014.

7 Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A black box for online
approximate pattern matching. Inf. Comput., 209(4):731–736, 2011.

8 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
The k-mismatch problem revisited. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 2039–2052, 2016.

9 Albert A. Conti, Tom Van Court, and Martin C. Herbordt. Processing repetitive sequence
structures with mismatches at streaming rate. In Field Programmable Logic and Application,
14th International Conference , FPL Proceedings, pages 1080–1083, 2004.

10 Pawel Gawrychowski, Oleg Merkurev, Arseny M. Shur, and Przemyslaw Uznanski. Tight
tradeoffs for real-time approximation of longest palindromes in streams. In 27th Annual
Symposium on Combinatorial Pattern Matching, CPM, pages 18:1–18:13, 2016.

11 Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou. Streaming for aibohphobes:
Longest palindrome with mismatches. CoRR, abs/1705.01887, 2017. URL: http://arxiv.
org/abs/1705.01887.

http://sublinear.info/61
http://sublinear.info/61
http://arxiv.org/abs/1705.01887
http://arxiv.org/abs/1705.01887

E. Grigorescu, E. Sadeqi Azer, and S. Zhou 31:13

12 Martin C. Herbordt, Josh Model, Bharat Sukhwani, Yongfeng Gu, and Tom Van Court.
Single pass streaming BLAST on fpgas. Parallel Computing, 33(10-11):741–756, 2007.

13 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

14 Glenn K. Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22(3):346–351, 1975.

15 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS,
pages 315–323, 2009.

16 Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error correcting.
In Combinatorial Pattern Matching, 18th Annual Symposium, CPM Proceedings, pages 173–
182, 2007.

17 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In 18th Annual Symposium on Foundations of Computer Science,
FOCS, pages 222–227, 1977.

FSTTCS 2017

	Introduction
	Preliminaries
	Overview and Techniques
	One-Pass Streaming Algorithm with Multiplicative Error 1+epsilon
	Algorithm
	NearPalindrome and its analysis
	Correctness and Space Complexity

	Two-Pass Exact Streaming Algorithm

