
On Hashing-Based Approaches to Approximate
DNF-Counting∗†‡

Kuldeep S. Meel§1, Aditya A. Shrotri2, and Moshe Y. Vardi3

1 National University of Singapore, Singapore, Singapore
meel@comp.nus.edu.sg

2 Rice University, Houston, USA
as128@rice.edu

3 Rice University, Houston, USA
vardi@rice.edu

Abstract
Propositional model counting is a fundamental problem in artificial intelligence with a wide
variety of applications, such as probabilistic inference, decision making under uncertainty, and
probabilistic databases. Consequently, the problem is of theoretical as well as practical interest.
When the constraints are expressed as DNF formulas, Monte Carlo-based techniques have been
shown to provide a fully polynomial randomized approximation scheme (FPRAS). For CNF con-
straints, hashing-based approximation techniques have been demonstrated to be highly successful.
Furthermore, it was shown that hashing-based techniques also yield an FPRAS for DNF count-
ing without usage of Monte Carlo sampling. Our analysis, however, shows that the proposed
hashing-based approach to DNF counting provides poor time complexity compared to the Monte
Carlo-based DNF counting techniques. Given the success of hashing-based techniques for CNF
constraints, it is natural to ask: Can hashing-based techniques provide an efficient FPRAS for
DNF counting? In this paper, we provide a positive answer to this question. To this end, we in-
troduce two novel algorithmic techniques: Symbolic Hashing and Stochastic Cell Counting, along
with a new hash family of Row-Echelon hash functions. These innovations allow us to design a
hashing-based FPRAS for DNF counting of similar complexity (up to polylog factors) as that
of prior works. Furthermore, we expect these techniques to have potential applications beyond
DNF counting.

1998 ACM Subject Classification G.1.2 Special Function Approximation, F.4.1 Logic and Con-
straint Programming

Keywords and phrases Model Counting, Approximation, DNF, Hash Functions

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.41

1 Introduction

Propositional model counting is a fundamental problem in artificial intelligence with a wide
range of applications including probabilistic inference, databases, decision making under

∗ The author list has been sorted alphabetically by last name; this should not be used to determine the
extent of authors’ contributions.

† The full version of this paper is available at https://arxiv.org/abs/1710.05247.
‡ Work supported in part by NSF grants CCF-1319459 and IIS-1527668 and by NSF Expeditions in

Computing project "ExCAPE: Expeditions in Computer Augmented Program Engineering".
§ Kuldeep S. Meel is supported by the IBM PhD Fellowship and the Lodieska Stockbridge Vaughn

Fellowship.

© Kuldeep S. Meel, Aditya A. Shrotri, and Moshe Y. Vardi;
licensed under Creative Commons License CC-BY

37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017).
Editors: Satya Lokam and R. Ramanujam; Article No. 41; pp. 41:1–41:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.41
https://arxiv.org/abs/1710.05247.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 On Hashing-Based Approaches to Approximate DNF-Counting

uncertainty, and the like [1, 6, 7, 23]. Given a Boolean formula φ, the problem of propositional
model counting , also referred to as #SAT, is to compute the number of solutions of φ [28].
Depending on whether φ is expressed as a CNF or DNF formula, the corresponding model
counting problems are denoted as #CNF or #DNF, respectively. Both #CNF and #DNF
have a wide variety of applications. For example, probabilistic-inference queries reduce to
solving #CNF instances [1, 20, 21, 23], while evaluation of queries for probabilistic database
reduce to #DNF instances [6]. Consequently, both #CNF and #DNF have been of theoretical
as well as practical interest over the years [16, 18, 22, 24]. In his seminal paper, Valiant [28]
showed that both #CNF and #DNF are #P-complete, a class of problems that are believed
to be intractable in general.

Given the intractability of #CNF and #DNF, much of the interest lies in the approximate
variants of #CNF and #DNF, wherein for given tolerance and confidence parameters ε and
δ, the goal is to compute an estimate C such that C is within a (1+ε) multiplicative factor of
the true count with confidence at least 1−δ. While both #CNF and #DNF are #P-complete
in their exact forms, the approximate variants differ in complexity: approximating #DNF
can be accomplished in fully polynomial randomized time [5, 17, 18], but approximate
#CNF is NP-hard [24]. Consequently, different techniques have emerged to design scalable
approximation techniques for #DNF and #CNF.

In the context of #DNF, the works of Karp, Luby, and Madras [17, 18] led to the
development of highly efficient Monte-Carlo based techniques, whose time complexity is
linear in the size of the formula. On the other hand, hashing-based techniques have emerged
as a scalable approach to the approximate model counting of CNF formulas [3, 4, 10, 13, 24],
and are effective even for problems with existing FPRAS such as network reliability [8].
These hashing-based techniques employ 2-universal hash functions to partition the space of
satisfying solutions of a CNF formula into cells such that a randomly chosen cell contains
only a small number of solutions. Furthermore, it is shown that the number of solutions
across the cells is roughly equal and, therefore, an estimate of the total count can be obtained
by counting the number of solutions in a cell and scaling the obtained count by the number
of cells. Since the problem of counting the number of solutions in a cell when the number of
solutions is small can be accomplished efficiently by invoking a SAT solver, the hashing-based
techniques can take advantage of the recent progress in the development of efficient SAT
solvers. Consequently, algorithms such as ApproxMC [3, 4] have been shown to scale to
instances with hundreds of thousands of variables.

While Monte Carlo techniques introduced in the works of Karp et al. have shown to not be
applicable in the context of approximate #CNF [18], it was not known whether hashing-based
techniques could be employed to obtain efficient algorithms for #DNF. Recently, significant
progress in this direction was achieved by Chakraborty, Meel and Vardi [4], who showed
that hashing-based framework of ApproxMC could be employed to obtain FPRAS for #DNF
counting1. There is, however, no precise complexity analysis in [4]. In this paper, we provide
a complexity analysis of the proposed scheme of Chakraborty et al., which is worse than
quartic in the size of formula. In comparison, state-of- the-art approaches achieve complexity
linear in the number of variables and cubes for #DNF counting. This begs the question:
How powerful is the hashing-based framework in the context of DNF counting? In particular,
can it lead to algorithms competitive in runtime complexity with state-of-the-art?

1 It is worth noting that several hashing-based algorithms based on [10, 27] do not lead to FPRAS schemes
for #DNF despite close similarity to Chakraborty et al.’s approach

K. S. Meel, A. A. Shrotri, and M.Y. Vardi 41:3

In this paper, we provide a positive answer to this question. To achieve such a significant
reduction in complexity, we offer three novel algorithmic techniques: (i) A new class of
2-universal hash functions that enable fast enumeration of solutions using Gray Codes, (ii)
Symbolic Hashing, and (iii) Stochastic Cell Counting. These techniques allow us to achieve the
complexity of Õ(mn log(1/δ)/ε2), which is within polylog factors of the complexity achieved
by Karp et al. [18]. Here, m and n are the number of cubes and variables respectively while
ε and δ are the tolerance and confidence of approximation. Furthermore, we believe that
these techniques are not restricted to #DNF. Given recent breakthroughs achieved in the
development of hashing-based CNF-counting techniques, we believe our techniques have the
potential for a wide variety of applications.

The rest of the paper is organized as follows: we introduce notation in section 2 and
discuss related work in section 3. We describe our main contributions in section 4, analyze
the resulting algorithm in section 5 and discuss future work and conclude in section 6.

2 Preliminaries

DNF Formulas and Counting
We use Greek letters φ, θ and ψ to denote boolean formulas. A formula φ over boolean
variables x1, x2, . . . , xn is in Disjunctive Normal Form (DNF) if it is a disjunction over
conjunctions of variables or their negations. We use X to denote the set of variables appearing
in the formula. Each occurrence of a variable or its negation is called a literal. Disjuncts in the
formula are called cubes and we denote the ith cube by φCi. Thus φ = φC1 ∨ φC2 ∨ ... ∨ φCm

where each φCi is a conjunction of literals. We will use n and m to denote the number of
variables and number of cubes in the input DNF formula, respectively. The number of literals
in a cube φCi is called its width and is denoted by width[φCi].

An assignment to all the variables can be represented by a vector x ∈ {0, 1}n with 1
corresponding to true and 0 to false. U = {0, 1}n is the set of all possible assignments,
which we refer to as the universe or state space interchangeably. An assignment x is called
a satisfying assignment for a formula φ if φ evaluates to true under x. In other words x

satisfies φ and is denoted as x |= φ. Note that an assignment x will satisfy a DNF formula
φ if x |= φCi for some i. The DNF-Counting Problem is to count the number of satisfying
assignments of a DNF formula.

Next, we formalize the concept of a counting problem. Let R ⊆ {0, 1}∗ × {0, 1}∗ be a
relation which is decidable in polynomial time and there is a polynomial p such that for
every (s, t) ∈ R we have |t| ≤ p(|s|). The decision problem corresponding to R asks if for a
given s there exists a t such that (s, t) ∈ R. Such a problem is in NP. Here, s is a called the
problem instance and t is called the witness. We denote the set of all witnesses for a given s
by Rs. The counting problem corresponding to R is to calculate the size of the witness set
|Rs| for a given s. Such a problem is in #P[28]. The DNF-Counting problem is an example
of this formalism: A formula φ is a problem instance and a satisfying assignment x is a
witness of φ. The set of satisfying assignments or the solution space is denoted Rφ and the
goal is to compute |Rφ|. It is known that the problem is #P-Complete, which is believed
to be intractable [26]. Therefore, we look at what it means to efficiently and accurately
approximate this problem.

A fully polynomial randomized approximation scheme (FPRAS) is a randomized algorithm
that takes as input a problem instance s, a tolerance ε ∈ (0, 1) and confidence parameter
δ ∈ (0, 1) and outputs a random variable c such that Pr[1

1+ε |Rs| ≤ c ≤ (1 + ε)|Rs|] ≥ 1− δ
and the running time of the algorithm is polynomial in |s|, 1/ε, log(1/δ) [17]. Notably,

FSTTCS 2017

41:4 On Hashing-Based Approaches to Approximate DNF-Counting

while exact DNF-counting is inter-reducible with exact CNF-counting, the approximate
versions of the two problems are not because multiplicative approximation is not closed under
complementation.

Matrix Notation
We use x,y, z, . . . to denote scalar variables. We use subscripts x1, x2, . . . as required. In
this paper we are dealing with operations over the boolean ring, where the variables are
boolean, ’addition’ is the XOR operation (⊕) and ’multiplication’ is the AND operation (∧).
We use the letters i,j,k, l as indices or to denote positions. We denote sets by non-boldface
capital letters. We use capital boldface letters A,B, . . . to denote matrices, small boldface
letters u, v, w, . . . to denote vectors. A[p×q] denotes a matrix of p rows and q columns,
while u[q] denotes a vector of length q. 0[q] and 1[q] are the all 0s and all 1s vectors of
length n, respectively. We omit the dimensions when clear from context. x[i] denotes the
ith element of x, while A[i, j] denotes the element in the ith row and jth column of A.
A[r1 : r2, c1 : c2] denotes the sub-matrix of A between rows r1 and r2 excluding r2 and
columns c1 and c2 excluding c2. Similarly v[i : j] denotes the sub-vector of v between index
i and index j excluding j. The ith row of A is denoted A[i, :] and jth column as A[:, j]. The
p× (q1 + q2) matrix formed by concatenating rows of matrices A[p×q1] and B[p×q2] is written
in block notation as [A | B], while [A

B] represents concatenation of columns. Similarly the
(q1 + q2)-length concatenation of vectors v[q1] and w[q2] is [v | w]. The dot product between
matrix A and vector x is written as A.x. The vector formed by element-wise XOR of vectors
v and w is denoted v ⊕w.

Hash Functions
A hash function h : {0, 1}q → {0, 1}p partitions the elements of of the domain {0, 1}q into 2p

cells. h(x) = y implies that h maps the assignment x to the cell y. h−1(y) = {x|h(x) = y}
is the set of assignments that map to the cell y. In the context of counting, 2-universal
families of hash functions, denoted by H(q, p, 2), are of particular importance. When h is
sampled uniformly at random from H(q, p, 2), 2-universality entails
1. Pr[h(x1) = h(x2)] ≤ 2−p for all x1 6= x2
2. Pr[h(x) = y] = 2−p for every x ∈ {0, 1}q and y ∈ {0, 1}p.

Of particular interest is the random XOR family of hash functions, which is defined as
HXOR(q, p) = {A.x⊕b | A[i, j] ∈ {0, 1} and b[i] ∈ {0, 1} ; 0 ≤ i < p, 0 ≤ j < q}. Selecting
A[i, j]s and b[i]s randomly from {0, 1} is equivalent to drawing uniformly at random from this
family. A pair A and b now defines a hash function hA,b as follows: hA,b(x) = A.x⊕b. This
family was shown to be 2-universal in [2]. For a hash function h ∈ HXOR(q, p), we have that
h(x) = y is a system of linear equations modulo 2: A.x⊕ b = y. From another perspective,
it can be viewed as a boolean formula ψ =

∧p
i=1(

⊕q
j=1(A[i, j] ∧ x[j])) ⊕ b[i] = y[i]. The

solutions to this formula are exactly the elements of the set h−1(y).

Gaussian Elimination
Solving a system of linear equations over q variables and p constraints can be done by row
reduction technique known variously as Gaussian Elimination or Gauss-Jordan Elimination.
A matrix is in Row-Echelon form if rows with at least one nonzero element are above any
rows of all zeros. The matrix is in Reduced Row-Echelon form if, in addition, every leading
non-zero element in a row is 1 and is the only nonzero entry in its column. We refer to the

K. S. Meel, A. A. Shrotri, and M.Y. Vardi 41:5

technique for obtaining the Reduced Row-Echelon form of a matrix as Gaussian Elimination.
We refer the reader to any standard text on linear algebra (cf., [25]) for details. For a matrix
in Reduced Row-Echelon form, the row-rank is simply the number of non-zero rows.

For a system of linear equations A.x⊕ b = y, if the row-rank of the augmented matrix
is same as row-rank of A, then the system is consistent and the number of solutions is
2q−rowrank(A) where q is the number of variables in the system of equations. Moreover, if A

is in Reduced Row-Echelon form, then the values of the variables corresponding to leading 1s
in each row are completely determined by the values assigned to the remaining variables. The
variables corresponding to the leading 1’s are called dependent variables and the remaining
variables are free. Let XF and X \ XF denote the set of free and dependent variables
respectively. Let f = |XF |. Clearly f = q− rowrank(A). For each possible assignment to
the free variables we get an assignment to the dependent variables by propagating the values
through the augmented matrix in O(q2) time. Thus we can enumerate all 2f satisfying
assignments to a system of linear equations A.x⊕ b = y if A in Reduced Row-Echelon form.

Gray Codes
A Gray code [14] is an ordering of 2l binary numbers for some l ≥ 1 with the property that
every pair of consecutive numbers in the sequence differ in exactly one bit. Thus starting
from 0l we can iteratively construct the entire Gray code sequence by flipping one bit in each
step. We assume access to a procedure nextGrayBit that in each call returns the position
of the next bit that is to be flipped. Such a procedure can be implemented in constant time
by a trivial modification of Algorithm L in [19].

3 Related Work

Propositional model counting has been of theoretical as well as practical interest over the
years [16, 17, 22, 26]. Early investigations showed that both #CNF and #DNF are #P-
complete [28]. Consequently, approximation algorithms have been explored for both problems.
A major breakthrough for approximate #DNF was achieved by the seminal work of Karp
and Luby [17], which provided a Monte Carlo-based FPRAS for #DNF. The proposed
FPRAS was improved by follow-up work of Karp, Luby and Madras [18] and Dagum et
al. [5], achieving the best known complexity of O(mn log(1/δ)/ε2). In this work, we bring
certain ideas of Karp et al. into the hashing framework with significant adaptations.

For #CNF, early work on approximate counting resulted in hashing-based schemes
that required polynomially many calls to an NP-oracle [24, 27]. No practical algorithms
materialized from the these schemes due to the impracticality of the underlying NP queries.
Subsequent attempts to circumvent hardness led to the development of several hashing
and sampling-based approaches that achieved scalability but provided very weak or no
guarantees [13, 11]. Due to recent breakthroughs in the design of hashing-based techniques,
several tools have been developed recently that can handle formulas involving hundreds
of thousands of variables while providing rigorous formal guarantees. Overall, these tools
can be broadly classified by their underlying hashing-based technique as: (i) obtain a
constant factor approximation and then use identical copies of the input formula to obtain
ε approximations [10], or (ii) directly obtain ε guarantees[3, 4]. The first technique when
applied to DNF formulas is not an FPRAS. In contrast, Chakraborty, Meel and Vardi [4]
recently showed that tools based on the latter approach, such as ApproxMC2, do provide
FPRAS for #DNF counting. Chakraborty et al. did not analyze the complexity of the
algorithm in their work. We now provide a precise complexity analysis of ApproxMC2 for

FSTTCS 2017

41:6 On Hashing-Based Approaches to Approximate DNF-Counting

#DNF. To that end, we first describe the ApproxMC framework on which ApproxMC2 is
built.

3.1 ApproxMC Framework
Chakraborty et al. introduced in [3] a hashing-based framework called ApproxMC that
requires linear (in n) number of SAT calls. Subsequently in ApproxMC2, the number of
SAT calls was reduced from linear to logarithmic (in n). The core idea of ApproxMC is to
employ 2−universal hash functions to partition the solution space into roughly equal small
cells, wherein a cell is called small if it has less than or equal to hiThresh solutions, such
that hiThresh is a function of ε. A SAT solver is employed to check if a cell is small by
enumerating solutions one-by-one until either there are no more solutions or we have already
enumerated hiThresh + 1 solutions. Following the terminology of [3], we refer to the above
described procedure as BSAT (bounded SAT). To determine the number of cells, ApproxMC
performs a search that requires O(log n) steps and the estimate is returned as the count of
the solutions in a randomly picked small cell scaled by the total number of cells. To amplify
confidence to the desired levels of 1− δ, ApproxMC invokes the estimation routine O(log 1

δ)
times and reports the median of all such estimates. Hence, the number of BSAT invocations
is O(log n log(1

δ)).

FPRAS for #DNF
The key insight of Chakraborty et al. [4] is that the BSAT procedure can be done in
polynomial time when the input formula to ApproxMC is in DNF. In particular, the input to
every invocation of BSAT is a formula that is a conjunction of the input DNF formula and a
set of XOR constraints derived from the hash function. Chakraborty et al. observed that one
can iterate over all the cubes of the input formula, substitute each cube into the set of XOR
constraints separately, and employ Gaussian Elimination to enumerate the solutions of the
simplified XOR constraints. Note that at no step would one have to enumerate more than
hiThresh solutions. Since Gaussian Elimination is a polynomial-time procedure, BSAT can
be accomplished in polynomial time as well. Chakraborty et al. did not provide a precise
complexity analysis of BSAT. We now provide such an analysis. For lack of space we defer
all proofs to the full version. The following lemma states the time complexity of the BSAT
routine.

I Lemma 1. The complexity of BSAT when the input formula to ApproxMC2 is in DNF is
O(mn3 + mn2/ε2).

We can now complete the complexity analysis:

I Lemma 2. The complexity of ApproxMC2 is O((mn3 + mn2/ε2) log n log(1/δ)) when the
input formula is in DNF.

4 Efficient Hashing-based DNF Counter

We now present three key novel algorithmic innovations that allow us to design hashing-based
FPRAS for #DNF with complexity similar to Monte Carlo-based state-of-the-art techniques.
We first introduce a new family of 2-universal hash functions that allow us to circumvent the
need for expensive Gaussian Elimination. We then discuss the concept of Symbolic Hashing,
which allows us to design hash functions over a space different than the assignment space,
allowing us to achieve significant reduction in the complexity of search procedure for the

K. S. Meel, A. A. Shrotri, and M.Y. Vardi 41:7

Algorithm 1 enumNextREX(D,u,v, k)
1: v′ ← v;
2: v′[k]← ¬v[k];
3: u′ ← u⊕D[., k];
4: return (u′,v′)

number of the cells. Finally, we show that BSAT can be replaced by an efficient stochastic
estimator. These three techniques allow us to achieve significant reduction in the complexity
of hashing-based DNF counter without loss of theoretical guarantees.

4.1 Row-Echelon XOR Hash Functions
The complexity analysis presented in Section 3 shows that the expensive Gaussian Elimination
contributes significantly to poor time complexity of ApproxMC2. Since the need for Gaussian
Elimination originates from the usage of HXOR, we seek a family of 2-universal hash functions
that circumvents this need. We now introduce a Row-Echelon XOR family of hash functions
defined as HREX(q, p) = {A.x⊕ b | A[p×q] = [I [p×p] : D[p×(q−p)]]} where I is the identity
matrix, D and b are random 0/1 matrix and vector respectively. In particular, we ensure
that for every D[i, j] and b[i] we have Pr[D[i, j] = 1] = Pr[D[i, j] = 0] = 0.5 and also
Pr[b[i] = 1] = Pr[b[i] = 0] = 0.5. Note that D and b completely define a hash function from
HREX . The following theorem establishes the desired properties of universality for HREX .
The proof is deferred to full version for lack of space.

I Theorem 3. HREX is 2-universal.

The naive way of enumerating satisfying assignments for a given D[p×(q−p)], b[p], and y[p]

is to iterate over all 2f assignments to the free variables in sequence starting from 0[f] to
1[f], where f = (q − p). For each assignment v[f] to the free variables, the corresponding
assignment to the dependent variables u[q−f] can be calculated as u = (D.v)⊕ b⊕ y, which
requires O(pq) time. Can we do better?

We answer the above question positively by iterating over the 2f assignments to the
free variables out of sequence. In particular, we iterate using the Gray code sequence for f
bits. The procedure is outlined in enumNextREX (Algorithm 1). The algorithm takes the
hash matrix D, an assignment to the free variables v, and an assignment to the dependent
variables u as inputs, and outputs the next free-variable assignment v′ in the Gray sequence
and the corresponding assignment u′ to the dependent variables. k represents the position
of the bit that is changed between v and v′. Thus enumNextREX constructs a satisfying
assignment to a Row-Echelon XOR hash function in each invocation in O(q) time.

4.2 Symbolic Hashing
For DNF formulas, Rφ can be exponentially sparse compared to U , which is undesirable2. It
is possible, however, to transform U to another space U ′ and the solution space Rφ to R′φ such
that the ratio |U ′|/|R′φ| is polynomially bounded and |Rφ| = |R′φ|. For DNF formulas, the
new universe U ′ is defined as U ′ = {(x, φCi) | x |= φCi}. Thus, corresponding to each x |= φ

that satisfies cubes φCi1 , ..φCix in φ, we have the states {(x, φCi1), (x, φCi2)..(x, φCix)} in

2 Number of steps of ApproxMC2 search procedure increases with sparsity

FSTTCS 2017

41:8 On Hashing-Based Approaches to Approximate DNF-Counting

Algorithm 2 SymbolicDNFApproxMCCore(φ, hiThresh)
1: w← width of cubes;
2: q← n− w + log m;
3: sI ← n− w − log hiThresh;
4: (D̂

[(q−1)×(q−sI)]
, b̂,ŷ)← SampleBase(q, sI);

5: p← LogSATSearch(φ, D̂, b̂, ŷ, hiThresh, sI, q− 1);
6: solCount← BSAT(φ, D̂, b̂, ŷ, hiThresh, p, q, sI);
7: return (2p, solCount)

U ′. Next, the solution space is defined as R′φ = {(x, φCi) | x |= φCi and ∀j < i,x 6|= φCj}
for a fixed ordering of the cubes. The definition of R′φ ensures that |Rφ| = |R′φ|. This
transformation is due to Karp and Luby [17].

The key idea of Symbolic Hashing is to perform 2-universal hashing symbolically over the
transformed space. In particular, the sampled hash function partitions the space U ′ instead
of U . Therefore, we employ hash functions from HREX(q, p) over q = n−w + log m variables
instead of n variables. Note that the variables of a satisfying assignment z ∈ {0, 1}q to the
hash function are now different from the variables to a satisfying assignment x ∈ {0, 1}n of
the input formula φ. We interpret z as follows: the last log m bits of z are converted to a
number i such that 1 ≤ i ≤ m. Now φCi corresponds to a partial assignment of width[φCi]
variables in that cube. For simplicity, we assume that each cube is of the same width w.3
The remaining n− w bits of z are interpreted to be the assignment to the n− w variables
not in φCi giving a complete assignment x. Thus we get a pair (x, φCi) from z such that
x |= φCi. For a fixed ordering of variables and cubes we see that there is a bijection between
(x, φCi) and z and hence the 2-universality guarantee holds over the partitioned space of U ′.

4.3 Stochastic Cell-Counting
To estimate the number of solutions in a cell, we need to check for every tuple (x, φCi)
generated using symbolic hash function as described above: if (x, φCi) ∈ R′φ. Such a check
would require iteration over cubes φCj for 1 ≤ j ≤ (i− 1) and returning no if x |= φCj for
some j and yes otherwise. This would result in procedure with O(mn) complexity.

Our key observation is that a precise count of the number of solutions in a cell is not
required and therefore, one can employ a stochastic estimator for the number of solutions in
a cell. We proceed as follows: we define the coverage of an assignment x as cov(x) = {j|x |=
φCj}. Note that

∑
(x,φCi)∈U ′

1
|cov(x)| = |Rφ|.

We define a random variable cx as the number of steps taken to uniformly and independ-
ently sample from {1, 2, . . . ,m}, a number j such that x |= φCj . For a randomly chosen j,
the probability Pr[x |= φCj] = |cov(x)|/m, which follows the Bernoulli distribution. The
random variable cx is the number of Bernoulli trials for the first success, which follows
the geometric distribution. Therefore, E[cx] = m/|cov(x)|, and E[cx/m] = 1/|cov(x)|. The
estimator cx/m has been previously employed by Karp et al. [18]. Here, we show that it
can also be used for Stochastic Cell-Counting: we define the estimator for the number of
solutions in a cell as Ωy =

∑
(x,φCi)∈h−1(y) cx/m.

3 We can handle non-uniform width cubes by sampling φCi with probability 2n−width[φCi]∑m

j=1
2n−width[φCj]

instead of

uniformly

K. S. Meel, A. A. Shrotri, and M.Y. Vardi 41:9

Algorithm 3 SymbolicDNFApproxMC(φ, ε, δ)

1: hiThresh← 2 ∗ (1 + 9.84
(

1 + ε
1+ε

) (
1 + 1

ε

)2);
2: t← d17 log2(3/δ)e;
3: EstimateList← emptyList; iter← 0;
4: repeat
5: iter← iter + 1;
6: (cellCount, solCount)←SymbolicDNFApproxMCCore(φ, hiThresh);
7: if (cellCount 6= ⊥) then AddToList(EstimateList, solCount× cellCount);
8: until (iter ≥ t);
9: finalEstimate← FindMedian(EstimateList);

10: return finalEstimate

Algorithm 4 SampleBase(q, sI)

1: Sample G uniformly from {0, 1}[sI×(q−sI)];
2: Sample uniformly an upper triangular matrix E[(q−sI−1)×(q−sI)] with E[i, i] = 1 for all i.
3: D̂← [G

E];
4: Sample b̂ and ŷ uniformly from {0, 1}q−1;
5: return D̂, b̂, ŷ

4.4 The Full Algorithm
We now incorporate the above techniques into ApproxMC2 and call the revised algorithm
SymbolicDNFApproxMC, which is presented as Algorithm 3. First, note that expression
for hiThresh is twice that for ApproxMC2. Then, in line 4, a matrix D̂ and vectors b̂ and
ŷ are obtained, which are employed to construct an appropriate hash function and cell
during the search procedure of SymbolicDNFApproxMCCore. SymbolicDNFApproxMC makes
t = O(log(1/δ)) calls to SymbolicDNFApproxMCCore (line 4-8) and returns median of all the
estimates (lines 9-10) to boost the probability of success to 1− δ .

We now discuss the subroutine SymbolicDNFApproxMCCore, which is an adaptation of
ApproxMC2Core but with significant differences. First, for DNF formulas with cube width
w, the number of solutions is lower bounded by 2n−w. Therefore, instead of starting with 1
hash constraint, we can safely start with sI = n− w − log hiThresh constraints (lines 3-4).
Thereafter, SymbolicDNFApproxMCCore calls LogSATSearch in line 5 to find the right number
p of constraints. The cell count with p constraints is calculated in line 6 and the estimate
(2p, solCount) is returned in line 7.

SampleBase algorithm constructs the base matrix D̂ and base vectors b̂ and ŷ required
for sampling from HREX family. G is a random matrix of dimension sI × (q − sI) and E
is a random upper triangular matrix of dimension (q− sI − 1)× (q− sI) with all diagonal
elements 1. In line 3, D̂ is constructed as the vertical concatenation [G

E].
LogSATSearch (algorithm 5) performs a binary search to find the number of constraints p

at which the cell count falls below hiThresh. For DNF formula with cube width of w, since
the number of solutions is bounded between 2n−w and m ∗ 2n−w, we need to perform search
for p between n−w and n−w+log m. Therefore, binary search can take at most O(log log m)
steps to find correct p.

Symbolic Hashing is implemented in Algorithm 6 (BSAT). In line 2, we obtain a hash
function from HREX(q, p) over q = n− w + log m variables by calling Extract. We assume
access to a procedure nextGrayBit in line 10 that returns the position of the bit that is

FSTTCS 2017

41:10 On Hashing-Based Approaches to Approximate DNF-Counting

Algorithm 5 LogSATSearch(φ, D̂, b̂, ŷ, hiThresh, low, hi)
1: lowerFib← 0; upperFib← hi− low + 1; p← low;
2: FailRecord[0]← 1; FailRecord[hi− low + 1]← 0;
3: FailRecord[i]← ⊥ for all i other than 0 and hi− low + 1;
4: while true do
5: CBSAT ← BSAT(φ, D̂, b̂, ŷ, hiThresh, p, q, sI);
6: if (CBSAT ≥ hiThresh) then
7: if (FailRecord[p + 1− low + 1] = 0) then return p + 1;
8: FailRecord[i]← 1 for all i ∈ {1, . . . p− low + 1};
9: lowerFib← p− low + 1;

10: p← (upperFib + lowerFib)/2;
11: else
12: if (FailRecord[p− 1− low + 1] = 1) then return p;
13: FailRecord[i]← 0 for all i ∈ {p, . . . hi− low + 1};
14: upperFib← p− low + 1;
15: p← (upperFib + lowerFib)/2;

Algorithm 6 BSAT(φ, D̂, b̂, ŷ, hiThresh, p, q, sI)
1: count← 0;
2: D, b,y ← Extract(D̂, b̂, ŷ, p, q, sI);
3: up ← b⊕ y;
4: vq−p ← 0q−p;
5: for (j = 0; j < 2q−p; j + +) do
6: z ← [u : v];
7: (x, φCi) = interpret(z);
8: count = count+ CheckSAT(x, φCi, count, hiThresh);
9: if count ≥ hiThresh then return hiThresh;

10: k ← nextGrayBit(q− p, j);
11: (u,v)← enumNextREX(D,u,v, k);
12: return count

flipped between two consecutive assignments. A satisfying assignment z to the hash function
is constructed in line 6. z is interpreted to generate a pair (x, φCi) in line 7 which is checked
for satisfiability in line 8. The final cell count is returned in line 12.

In CheckSAT (algorithm 7), we implement the stochastic cell counting procedure. The
key idea is to sample cubes uniformly at random from {1, 2. . . .m} till a cube φCj is found
such that x |= φCj (lines 2-5). The number of cubes sampled cx divided by total number of
cubes m is the estimate returned (line 6).

Procedure LogSATSearch in SymbolicDNFApproxMC is based upon the LogSATSearch in
ApproxMC2[4]. As noted in the analysis of ApproxMC2, such a logarithmic search procedure
requires that the solution space for a hash function with p + 1 hash constraints is a subset of
the solution space with p hash constraints. Furthermore, we want to preserve Row-Echelon
nature of the resulting hash constraints. To this end, we first construct D[q×(q−p)] and b[q−1]

as follows:
To seed the construction procedure, in SampleBase (algorithm 4) we first randomly sample

a 0/1 vector b̂ of size q− 1 which is the maximum number of hash constraints possible. We

K. S. Meel, A. A. Shrotri, and M.Y. Vardi 41:11

Algorithm 7 CheckSAT(x, φCi, count, hiThresh)
1: cx ← 0;
2: while count+ cx/m < hiThresh do
3: Uniformly sample j from {1, 2, ..,m};
4: cx ← cx + 1;
5: if x |= φCj then
6: return cx/m;
7: return cx/m

Algorithm 8 Extract(D̂, b̂, ŷ, p, q, sI)

1: D̂′ ← D̂[0 : p, 0 : q− sI]; b← b̂[0 : p];
2: y ← ŷ[0 : p];
3: for (i = sI; i < p; i+ +) do
4: for (j = 0; j < i; j + +) do
5: if D̂′[j, (i− sI)] == 1 then
6: D̂′[j, .]← D̂′[j, .]⊕ D̂′[i, .];
7: b[j]← b[j]⊕ b[i];
8: y[j]← y[j]⊕ y[i];
9: D← D̂′[0 : p, p− sI : q− sI];

10: return D, b,y

then construct a 0/1 matrix D̂ as follows: D̂
[(q−1)×(q−sI)]

= [G
E] where matrix G[sI×(q−sI)] is

a random 0/1 matrix with sI rows, and matrix E[(q−sI)×(q−sI)] is defined as as follows:
E[i, j] = 1 if i = j

E[i, j] = 0 if i > j

Pr[E[i, j] = 1] = Pr[E[i, j] = 0] = 0.5 if i < j

The reason for this definition of D̂ is that for DNF counting we have a good lower bound
on the number of hash constraints we can start with. The number of rows in G corresponds
to this lower bound. The definition of E ensures that the rows of E are linearly independent
which results in a monotonically shrinking solution space.

The Extract procedure (algorithm 8) takes D̂,b̂ and ŷ and a number p as input and returns
D,b and cell y such that (D, b) represents a hash function from HREX with p constraints and
y represents a cell. A precondition for Extract is sI ≤ p ≤ q− 1. In lines 1 and 2, the first p
rows of D̂ and first p elements of b̂ and ŷ are selected as D̂′, b and y respectively. The first
sI rows of D̂′ form the matrix G in the definition of D̂ and the remaining p− sI rows of D̂′

are the first p− sI rows of matrix E. Each row from sI to p is used to reduce the preceding
rows in lines 5 to 8 so that the only non-zero elements of the first p− sI columns are the
leading 1s in rows sI to p. Thus Extract ensures that for a given D̂,b and ŷ, the solution
space of D[p×(q−p)],b[p] and y[p] is a superset of solution space of D[(p+1)×(q−p−1)],b[p+1] and
y[p+1] for all p.

5 Analysis

In order to prove the correctness of SymbolicDNFApproxMC, we first state the following helper
lemma. We defer the proofs to the full version due to lack of space.

FSTTCS 2017

41:12 On Hashing-Based Approaches to Approximate DNF-Counting

I Lemma 4. For every 1 ≤ p ≤ q and let µp = |Rφ|/2p. For every β > 0 and 0 < ε < 1 we
have
1. Pr[|Ωy − µp| > ε

(1+ε)µp] ≤ 2
ε2

(1+ε)2 µp

2. Pr[Ωy ≤ βµp] ≤ 2
2+(1−β2)µp

The difference in lemma 4 and lemma 1 in [4] is that the probability bounds differ by a factor
of 2. We account for this difference by making hiThresh in SymbolicDNFApproxMC twice the
value of hiThresh in ApproxMC2. Therefore the rest of the proof of Theorem 7 (below) is
exactly the same as the proof of Theorem 4 of [4]. For completeness, we first restate lemmas
2 and 3 from [4] below.

In the following, Tp denotes the event (Ωy < hiThresh), and Lp and Up denote the
events (Ωy <

|Rφ|
(1+ε)2p) and (Ωy >

|Rφ|
2p (1 + ε

1+ε)) respectively. p∗ denotes the integer⌊
log2 |Rφ| − log2(4.92(1 + 1

ε)2)
⌋

I Lemma 5. The following bounds hold: 1) Pr[Tp∗−3] ≤ 1
62.5 2) Pr[Lp∗−2] ≤ 1

20.68 3)
Pr[Lp∗−1] ≤ 1

10.84 4) Pr[Lp∗ ∪ Up∗] ≤ 1
4.92

Let B denote the event that SymbolicDNFApproxMC returns a pair (2p, nSols) such that
2p ∗ nSols does not lie in the interval [|Rφ|1+ε , |Rφ|(1 + ε)].

I Lemma 6. Pr[B] ≤ 0.36

I Theorem 7. Let SymbolicDNFApproxMC(φ, ε, δ) return count c. Then Pr[|Rφ|/(1 + ε) ≤
c ≤ (1 + ε)|Rφ|] ≥ 1− δ.

Theorem 7 follows from lemmas 4, 5 and 6 and noting that SymbolicDNFApproxMC boosts
the probability of correctness of the count returned by SymbolicDNFApproxMCCore to 1− δ
by using median of t = O(log(1/δ)) calls.

I Theorem 8. SymbolicDNFApproxMC runs in Õ(mn log(1/δ)/ε2) time.4

6 Conclusion

Hashing-based techniques have emerged as a promising approach to obtain counting al-
gorithms and tools that scale to large instances while providing strong theoretical guarantees.
This has led to an interest in designing hashing-based algorithms for counting problems
that are known to be amenable to fully polynomial randomized approximation schemes.
The prior hashing-based approach [4] provided FPRAS for DNF but with complexity much
worse than state-of-the-art techniques. In this work, we introduced (i) Symbolic Hashing, (ii)
Stochastic Cell-Counting, and (iii) a new 2-universal family of hash functions, and obtained
a hashing-based FPRAS for #DNF with complexity similar to state-of-the-art.

Given the recent interest in hashing-based techniques and generality of our contributions,
we believe concepts introduced in this paper can lead to design of hashing-based techniques
for other classes of constraints. For example, all prior versions of ApproxMC relied on
deterministic SAT solvers for exactly counting the solutions in a cell for #CNF. The technique
of Stochastic Cell-Counting opens up the door for the usage of probabilistic SAT solvers for
#CNF. Furthermore, a salient feature of the HREX family is the sparsity of its hash functions.
In fact, the sparsity increases with the addition of constraints. Sparse hash functions have
been shown to be desirable for efficiently solving CNF+XOR constraints [15, 9, 12]. An
interesting direction for future work is to test HREX family with CNF formulas.

4 We say f(n) ∈ Õ(g(n)) if ∃k : f(n) ∈ O(g(n) logk(g(n))

K. S. Meel, A. A. Shrotri, and M.Y. Vardi 41:13

Acknowledgements. The authors thank Jeffrey Dudek, Supratik Chakraborty and Dror
Fried for valuable discussions.

References
1 Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and complexity results

for #sat and bayesian inference. In 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 340–351.
IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238208.

2 J Lawrence Carter and Mark NWegman. Universal classes of hash functions. In Proceedings
of the ninth annual ACM symposium on Theory of computing, pages 106–112. ACM, 1977.

3 S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable approximate model counter. In
Proc. of CP, pages 200–216, 2013.

4 S. Chakraborty, K. S. Meel, and M. Y. Vardi. Algorithmic improvements in approximate
counting for probabilistic inference: From linear to logarithmic SAT calls. In Proc. of
IJCAI, 2016.

5 Paul Dagum, Richard Karp, Michael Luby, and Sheldon Ross. An optimal algorithm for
monte carlo estimation. SIAM Journal on computing, 29(5):1484–1496, 2000.

6 Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. The
VLDB Journal—The International Journal on Very Large Data Bases, 16(4):523–544, 2007.

7 C. Domshlak and J. Hoffmann. Probabilistic planning via heuristic forward search and
weighted model counting. Journal of Artificial Intelligence Research, 30(1):565–620, 2007.

8 Leonardo Duenas-Osorio, Kuldeep S Meel, Roger Paredes, and Moshe Y Vardi. Counting-
based reliability estimation for power-transmission grids. In AAAI, pages 4488–4494, 2017.

9 S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Low-density parity constraints for
hashing-based discrete integration. In Proc. of ICML, pages 271–279, 2014.

10 Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Taming the curse
of dimensionality: Discrete integration by hashing and optimization. In Proc. of ICML,
pages 334–342, 2013.

11 V. Gogate and R. Dechter. Approximate counting by sampling the backtrack-free search
space. In Proc. of the AAAI, volume 22, page 198, 2007.

12 C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman. Short XORs for Model Counting;
From Theory to Practice. In SAT, pages 100–106, 2007.

13 C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: A new strategy for obtaining
good bounds. In Proc. of AAAI, volume 21, pages 54–61, 2006.

14 Frank Gray. Pulse code communication, 17 1953. US Patent 2,632,058.
15 Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y. Vardi. On computing

minimal independent support and its applications to sampling and counting. Constraints,
21(1):41–58, 2016. doi:10.1007/s10601-015-9204-z.

16 M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of combinatorial struc-
tures from a uniform distribution. Theoretical Computer Science, 43(2-3):169–188, 1986.
URL: http://portal.acm.org/citation.cfm?id=11534.11537.

17 R.M. Karp and M. Luby. Monte-carlo algorithms for enumeration and reliability problems.
Proc. of FOCS, 1983.

18 R.M. Karp, M. Luby, and N. Madras. Monte-Carlo approximation algorithms for enumer-
ation problems. Journal of Algorithms, 10(3):429–448, 1989.

19 Donald E Knuth. Generating all n-tuples. The Art of Computer Programming, 4, 2004.
20 James D Park and Adnan Darwiche. Complexity results and approximation strategies for

map explanations. Journal of Artificial Intelligence Research, pages 101–133, 2006.
21 Dan Roth. On the hardness of approximate reasoning. Artif. Intell., 82(1-2):273–302, 1996.

doi:10.1016/0004-3702(94)00092-1.

FSTTCS 2017

http://dx.doi.org/10.1109/SFCS.2003.1238208
http://dx.doi.org/10.1007/s10601-015-9204-z
http://portal.acm.org/citation.cfm?id=11534.11537
http://dx.doi.org/10.1016/0004-3702(94)00092-1

41:14 On Hashing-Based Approaches to Approximate DNF-Counting

22 T. Sang, F. Bacchus, P. Beame, H. Kautz, and T. Pitassi. Combining component caching
and clause learning for effective model counting. In Proc. of SAT, 2004.

23 T. Sang, P. Beame, and H. Kautz. Performing bayesian inference by weighted model
counting. In Prof. of AAAI, pages 475–481, 2005.

24 L. Stockmeyer. The complexity of approximate counting. In Proc. of STOC, pages 118–126,
1983.

25 Gilbert Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press Welles-
ley, MA, 1993.

26 S. Toda. On the computational power of PP and (+)P. In Proc. of FOCS, pages 514–519.
IEEE, 1989.

27 L. Trevisan. Lecture notes on computational complexity. Notes written in Fall,
2002. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.9877&rep=
rep1&type=pdf.

28 L.G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.9877&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.9877&rep=rep1&type=pdf

	Introduction
	Preliminaries
	Related Work
	ApproxMC Framework

	Efficient Hashing-based DNF Counter
	Row-Echelon XOR Hash Functions
	Symbolic Hashing
	Stochastic Cell-Counting
	The Full Algorithm

	Analysis
	Conclusion

