
Report from Dagstuhl Seminar 17342

SLEBOK: The Software Language Engineering Body of
Knowledge
Edited by
Benoît Combemale1, Ralf Lämmel2, and Eric Van Wyk3

1 IRISA – Rennes, FR, benoit.combemale@irisa.fr
2 Universität Koblenz-Landau, DE, laemmel@uni-koblenz.de
3 University of Minnesota – Minneapolis, US, evw@umn.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17342 "SLEBOK:
The Software Language Engineering Body of Knowledge". Software Language Engineering
(SLE) has emerged as a scientific field, with a strong motivation to connect and integrate different
research disciplines such as compiler construction, reverse engineering, software transformation,
model-driven engineering, and ontologies. This seminar supported further integration of said
communities with the clear objective of assembling a Body of Knowledge on SLE (SLEBoK).
The BoK features artifacts, definitions, methods, techniques, best practices, open challenges, case
studies, teaching material, and other components that will afterwards help students, researchers,
teachers, and practitioners to learn from, to better leverage, to better contribute to, and to
better disseminate the intellectual contributions and practical tools and techniques coming from
the SLE field.

Seminar August 20–25, 2017 – http://www.dagstuhl.de/17342
1998 ACM Subject Classification D2.0 Software Engineering: General – Standards, D2.1 Soft-

ware Engineering: Requirements/Specifications – Languages, D2.3 Software Engineering:
Coding Tools and Techniques – Standards

Keywords and phrases body of knowledge, language design and implementation, metaprogram-
ming, software languages

Digital Object Identifier 10.4230/DagRep.7.8.45
Edited in cooperation with Manuel Leduc

1 Executive Summary

Benoît Combemale
Ralf Lämmel
Eric Van Wyk

License Creative Commons BY 3.0 Unported license
© Benoît Combemale, Ralf Lämmel, and Eric Van Wyk

Overview and Motivation
Over the last 10 years, the field of Software Language Engineering (SLE) has emerged
based on a strong motivation to connect and integrate different research disciplines such as
compiler construction, reverse engineering, software transformation, model-driven engineering,
and ontologies. This seminar strives for directly promoting the further integration of
said communities with the clear objective of assembling a Body of Knowledge on SLE
(SLEBoK). The BoK features artefacts, definitions, methods, techniques, best practices, open

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

SLEBOK: The Software Language Engineering Body of Knowledge, Dagstuhl Reports, Vol. 7, Issue 8, pp. 45–54
Editors: Benoît Combemale, Ralf Lämmel, and Eric Van Wyk

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17342
http://dx.doi.org/10.4230/DagRep.7.8.45
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

46 17342 – SLEBOK: The Software Language Engineering Body of Knowledge

challenges, case studies, teaching material, and other components that will afterwards help
students, researchers, teachers, and practitioners to learn from, to better leverage, to better
contribute to, and to better disseminate the intellectual contributions and practical tools
and techniques coming from the SLE field.

The following questions and issues provided the guiding principles for the seminar. The
first two categories reflect on the result of the past decade and the last category looks forward
to the next decade; these categories has been addressed by the seminar attendees in breakout
groups.

Conceptual model of the SLE field: What is a comprehensive and objective (val-
idated) classification of SLE approaches? What are appropriate dimensions of such a
classification? How to otherwise ontologically organize software language engineering,
e.g., in terms of application areas, relationships to other software engineering areas, and
fundamental SLE concepts?
Curriculum contributions by the SLE field: What is the suite of formal notions
and engineering methods, that one could want to see introduced in a computer science
curriculum so that SLE is properly represented? What is a reference curriculum for
SLE? What is an appropriate combination of timeless foundations and relevant (current)
applications and technologies? How to contribute to or otherwise support a computer
science curriculum?
Open SLE challenges: What are the open challenges in SLE and how to lay out a
larger research agenda that the community can refer to in the next 10 years? How to
connect to important developments such as AI and IoT? How to measure the relevance
of the research priorities proposed?

With the SLE field approximately 10 years old, there is a strong support by the community
to analyse the situation and to move to the next level of maturity. This Dagstuhl seminar
provided the ideal format for such a critical analysis and further development of SLE’s
foundation. As a result of the work on the above three pillars, the seminar attendees initiated
the SLEBOK: https://github.com/slebok/slebok.

https://github.com/slebok/slebok

Benoit Combemale, Ralf Lämmel, and Eric Van Wyk 47

2 Table of Contents

Executive Summary
Benoît Combemale, Ralf Lämmel, and Eric Van Wyk 45

Working Groups
Reuse and modularity in specifications of software languages
Peter D. Mosses . 48

Attribute Grammar working group
Anthony Sloane . 48

Software language Survey
Eugene Syriani . 49

Practical Guide to Parsing
Jurgen Vinju . 50

Curriculum WG
Ralf Lämmel . 51

Opinion Pieces
On the need for a SLEBoK
Benoit Combemale . 52

Why SLE
Friedrich Steimann . 53

Participants . 54

17342

48 17342 – SLEBOK: The Software Language Engineering Body of Knowledge

3 Working Groups

3.1 Reuse and modularity in specifications of software languages
Peter D. Mosses (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Peter D. Mosses

Precise and formal specifications of software languages can be used not only as definitions
and documentation, but also for generation of language processing tools. For example, a
context-free grammar can define the syntax of a programming language, and can be used
to generate a parser for the specified language. Similarly, interpreters or compilers can be
generated from semantic specifications.

However, giving and ensuring the correctness of a complete specification of a software
language generally requires a significant effort. The required effort can be greatly reduced by
reusing (parts of) previous language specifications. For example, one language can embed
another one, or languages can extend a base language. In addition, languages evolve, and
their specifications need to co-evolve; the new version might reuse parts of the specifications
of the old version.

The goal of this working group is to define, distinguish and illustrate the approaches to
reuse found in practice. To this end, we investigate examples of reuse, analyse how it is
achieved and extract general patterns and practices. In particular, we consider the role of
modular structure in connection with reuse.

The working group discussions during the seminar focused on clarifying the relevant con-
cepts and terminology. Oscar Nierstrasz produced a MindMap that reflected the outcome of
the discussions. Many of the working group participants contributed references to frameworks
and tools in a collaborative WriteMe document during the seminar. The moderator drafted
an outline of a more structured document (based on a previously proposed classification
of reuse scenarios) at the end of the seminar, and solicited details of examples of reuse in
software language specification.

After the seminar, participants of the working group contributed brief (1-page) descriptions
of examples of software language specification reuse to the WriteMe document, including
references to publications and websites. These examples have subsequently been grouped
according to a revised (but still tentative) classification of reuse scenarios. They exploit a wide
range of language specification frameworks, including Ecore+ALE, JastAdd, Kiama, Melange,
MPS, Neverlang, Object Algebras, Rascal, Silver, and SugarJ. Analysis and discussion of
these examples should provide a basis for achieving the stated goal of the working group.

3.2 Attribute Grammar working group
Anthony Sloane (Macquarie University – Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Anthony Sloane

Attribute grammars were extensively studied from their introduction by Knuth in the
late 1960s through a "golden age" particularly in the 1980s and early 1990s. In this period,
attribute grammars were applied successfully to problems ranging from programming language

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Benoit Combemale, Ralf Lämmel, and Eric Van Wyk 49

semantics to natural language processing. Many different grammar analyses and evaluation
strategies were developed.

Since the golden age, interest in attribute grammars in computer science has waned
somewhat, yet research progress has continued. Notable since that period are a stronger focus
on higher-order attributes, addition of cross-tree references and the use of implicit forwarding
for language extension. On-demand evaluation of attributes has taken a prominent position
in modern attribute grammar systems. Current attribute grammar research tends to be less
about novel notations or evaluation approaches and more about applications.

The aim of this working group is to make recent developments in attribute grammar
research accessible to the field as a whole. Within the context of the SLEBOK we aim to
produce materials that give an accurate picture of the key attribute grammar results and
systems particularly since the golden age. During the seminar we focused on discussions to
identify broad themes. Preliminary SLEBOK contributions were developed for attribute
grammar terminology and a reader article on the main attribute grammar literature was
begun. On-going work will finalise these contributions and work toward a more comprehensive
survey article.

3.3 Software language Survey
Eugene Syriani (Uniersity of Montral, CA)

License Creative Commons BY 3.0 Unported license
© Eugene Syriani

Introduction

During the Dagstuhl seminar 17342 on a software language engineering body of knowledge
(SLEBOK), our working group has focused on answering the question: “What is a software
language?”. After informally discussing within our group and other participants, we could
not sense a common agreement. Therefore, we decided that a formal survey needs to be
conducted to better answer this question. During the seminar, we conducted a pilot survey
to better formulate hypothesis and lead to a formal survey that will eventually be distributed
to the SLE community. In the following, we report on the survey conducted during the
SLEBOK seminar at Dagstuhl.

Research method

We prepared an online survey using Google Forms. All 25 participants of the seminar
participated in the survey. However, the members of our working group were excluded
from the final results. Therefore, the total number of participants was 21. The survey is
divided into four sections. The first section identified the participant with only his email.
The following set of questions served to collect background information on each participant,
e.g., expertise related to SLE, community affiliation, and seniority status. The third section
presents 64 candidate languages and asks the participant to decide whether it is a software
language. The possible answers are yes, no, I don’t know, and could be either. The only
information available to the participant is either the name of a language, when it is well-known
(e.g., XMI, SQL, English), or a one line description of its purpose (e.g., Student course
feedback form). These questions were randomized. The final section had one open question
for participants to leave any comment. The language questions spanned various categories,

17342

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

50 17342 – SLEBOK: The Software Language Engineering Body of Knowledge

such as: API, Encoding formats, Forms and UI, human-oriented languages, metalanguages,
modeling languages, programming languages, storage formats, technical domain-specific
languages (DSL), etc. We noted what was the most dominant expected answer and the
expected agreement rate (50% to 100%). We relied on two metrics. First, we used the raw
answer to compute the agreement among participants. We ignore “I don’t know” and could
be either counted as positive. Second, we assigned a score per answer on a scale of 0 to 2 to
compute the deviation from the answers are working group agreed upon.

Results

Overall, there are 76% agreement among participants, 75% agreement per language, and
71% agreement per category. This is considered acceptable according to Cohen’s Kappa. We
found there was very good consistency among languages within the same category in most
cases. This survey identified clearly the following as software languages: domain-specific,
programming, description, meta-, and modeling languages. It also identified clearly the
following as not being software languages: artificial human, natural, and physics languages.
Some language categories could be either but needed more context information to decide:
API, constrained strings, Forms, UI, and spreadsheets. There was however no consensus
for storage formats, encodings, structured text mechanical, and ontology languages. They
depend on the background of the participant. We therefore conclude that a language may be
considered a software language depending on the context in which it is used.

3.4 Practical Guide to Parsing
Jurgen Vinju (CWI, NL)

License Creative Commons BY 3.0 Unported license
© Jurgen Vinju

While the books on the topic of parsing cover mostly the theory of parsing algorithms and
not the pragmatics of applying these algorithms, at the same time the manuals of particular
parsing technologies cover only basic usage patterns and configuration options of the given
tools. In between these books and manual extremes lies a knowledge and skill gap:

which (types of) parsing tool fits the language and language processing task best?
what design decisions must a language engineer consider when designing a parser?
how to balance trade-offs between quality and getting-it-done?
how to balance accuracy and correctness with efficiency and practicality?

The SLE community-at-large represents a considerably body of knowledge on obtaining
parsers for software languages; together we have built parsing technologies, used them,
evaluated them, improved them and applied them in a big number of projects. Therefore we
seem to be in a unique position to fill this perceived gap in parsing literature. It is also noted
that Wikipedia is neither complete nor up-to-date in this topic, and we envision contributing
to Wikipedia where possible as a side-effect.

The goal of the break-out group at the seminar was to kick-off a concerted effort in
creating “A Practical Guide to Parsing” as one of the documents in the wider SLEBOK
initiative. The goal of “A Practical Guide to Parsing” is to enable newcomers and experts to
get an overview of their own tasks, to enable them to make well-founded design decisions
and to build better parsers for the job at hand. To start this process the break-out group
brainstormed about the following topics:

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Benoit Combemale, Ralf Lämmel, and Eric Van Wyk 51

a short list of “personas”; models of people who would use the Guide. The personas serve
to guide the writing team into producing actionable descriptions with practical value to
the audience.
a list of relevant parsing terms
a list of quality dimensions for parsing
a list of trade-offs between two or more of said dimensions with short descriptions

The results of these brainstorms sessions were captured in a raw document as notes. The
notes will be used later to structure the document and the work. Later at the SPLASH con-
ference be completed this brainstorm with a different group of members from the community.
The current plan is to rework the large set of notes into an overall structure for the Guide
and to assign writing tasks to several volunteering members of the community. It is noted
that anybody who contributed will be listed as a co-author of the Guide, where author names
are annotated with their specific role in the writing process. The roles are yet to be decided.

3.5 Curriculum WG
Ralf Lämmel (University of Koblenz-Landau)

License Creative Commons BY 3.0 Unported license
© Ralf Lämmel

Summary

Even during the preparation of the Dagstuhl seminar 17342 on the software language
engineering body of knowledge (SLEBOK), it was clear that the community needs to take an
inventory of the curriculum situation of the SLE field. At the seminar, we formed a WG on
the SLE curriculum which focused on analyzing existing courses with SLE relevance on the
grounds of semi-structured interviews. The interviewing and coding as well as interpretation
or recommendation work is still ongoing, but we summarize the interviewing structure here
and hint at some findings.

Assumptions

Programming languages and compiler construction are losing their prominent position in
CS/SE/MDE curricula. SLE may combine core aspects from these areas and connect them
further with a software engineering orientation and thus may fit well into modern curricula.
For instance, SLE has many more traditional and modern use cases other than just a
classic compiler. Analyzing actual SLE courses is helping in understanding the SLE body of
knowledge, as SLE courses should be linear projections of a de-facto BOK. There is much
variation to be expected across different courses because SLE is a developing area and due to
preferences of teachers in terms of languages and tools as well as locally imposed constraints.

Interview

We identified 15 courses among the participants of the SLEBOK Dagstuhl. We already
performed 7 interviews. The interview structure is based on questions regarding learning
objectives, course topics, technological spaces, technologies, languages, actual versus “ideal”
title, course workload and relevance of lectures, labs, homework, exam, etc., history and
evolution of the course, similarity of the course to other SLE courses, dependencies of this

17342

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

52 17342 – SLEBOK: The Software Language Engineering Body of Knowledge

course on others and vice versa, the status of the course to be a choice subject or mandatory,
and the use of teaching material. Each interview takes about 10 minutes for the prepared
questions. We would typically take another 10 minutes for discussion, also prepared by the
general question “What questions had you expected us to ask?”.

Preliminary findings

Courses with reliance on model-driven engineering are relatively common. Alternatively,
mainstream programming setups or specialized (more or less academic) metaprogramming
systems are leveraged in some cases. The full spectrum from Bachelor courses with a larger
number of participants and relatively standardized assignments and exams up to research-
oriented Master courses with a smaller number of participants and personalized project
work exist. The typical course appeals to a software engineering direction and it may be
driven by another major theme in software engineering (other than compiler construction,
domain-specific languages, or SLE broadly), e.g., software construction or software evolution.
In fact, a strong link to compiler construction is not common. Most of the identified courses
are already established for 5 years or more. There is enough overlap across all the encountered
courses so that some exchange of artifacts (e.g., homework assignments, project topics, and
source code) should be worthwhile. The bag of learning objectives and course topics is so
diverse and incomparable that some coding would be useful to facilitate better understanding
the relationships between the different courses.

4 Opinion Pieces

4.1 On the need for a SLEBoK
Benoit Combemale (IRISA – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Benoit Combemale

To address the complexity of modern software-intensive systems, the software engineering
community is starting a technology revolution in software development, and the shape of
this revolution is becoming more and more clear. Little, domain-specific, software languages
(aka. Domain Specific Languages, DSLs) are increasingly being developed to continuously
capitalize the domain expertise of various stakeholders, and then used as formalisations of the
domains to define relationships among them and support the required integration activities.

This new language-oriented development paradigm is emerging in various guises (e.g.,
metamodelling, model transformation, generative programming, compilers, etc.), and in
various shapes (from API or fluent API, to internal or external DSLs). All these approaches
belong to the emerging field of Software Language Engineering (SLE).

The next generation of engineers will have to be fluent in many of these approaches to
build the languages needed to implement large-scale and complex software-intensive systems.
Software engineers for technical domains, or domain experts for business domains should be
able to directly leverage their own experience to improve the efficiency and the quality of
the produced software-intensive systems, as well as to support the integration of the various
concerns.

While SLE is becoming an everyday reality for software engineers, it is time to ensure that
the next generation of engineers has the training and knowledge necessary to synergistically
apply all SLE approaches. An SLEBoK is key for collecting and disseminating this knowledge
in education, in industry and in academia, and should have a huge impact in the future.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Benoit Combemale, Ralf Lämmel, and Eric Van Wyk 53

4.2 Why SLE
Friedrich Steimann (Fernuniversität in Hagen, DE)

License Creative Commons BY 3.0 Unported license
© Friedrich Steimann

Paraphrasing James Noble on why programming languages matter [1], I say:
1. Today, software is the most important infrastructure for everything.
2. Software is totally dependent on software languages. Ergo:
3. Software languages are the most important pieces of infrastructure for writing software,

and thus the most important meta-infrastructure for everything!
This hijacking of James’s thesis I justify with the equation

software languages = programming languages + x

which makes my thesis a generalization of James’s. However, what is x? A good answer will
be needed in order not to be subsumed (or looked down at) by the PL community, which is
certainly a role model in terms of scientific standards. In particular, x must be non-negligible,
even if viewed from outside the SLE community.

Software Language Engineering adds the engineering perspective to the field, which means
we must be able to design software languages that we can guarantee to have certain desired
properties. Failing such a guarantee means that someone can be held liable, and will face
consequences. If we do not take it that serious, SLE will never be engineering.

References
1 James Noble, “Why Programming Languages Matter”, comment to IFIP WG2.16

Programming Language Design mailing list, 17 October 2015 (list accessible at ht-
tps://lists.csail.mit.edu/mailman/listinfo/pldesign); also paraphrased in Andrew Black’s
talk “Why Programming Languages Matter” given at SPLASH 2015 and 2016 (which
brought it to my attention).

17342

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

54 17342 – SLEBOK: The Software Language Engineering Body of Knowledge

Participants

Mathieu Acher
University of Rennes, FR

Anya Helene Bagge
University of Bergen, NO

Walter Cazzola
University of Milan, IT

Andrei Chis
feenk – Wabern, CH

Benoit Combemale
IRISA – Rennes, FR

Thomas Degueule
CWI – Amsterdam, NL

Sebastian Erdweg
TU Delft, NL

Johannes Härtel
Universität Koblenz-Landau, DE

Görel Hedin
Lund University, SE

Marcel Heinz
Universität Koblenz-Landau, DE

Ralf Lämmel
Universität Koblenz-Landau, DE

Manuel Leduc
IRISA – Rennes, FR

Tanja Mayerhofer
TU Wien, AT

Peter D. Mosses
TU Delft, NL

Gunter Mussbacher
McGill University – Montreal,
CA

Oscar M. Nierstrasz
Universität Bern, CH

Anthony Sloane
Macquarie University –
Sydney, AU

Friedrich Steimann
Fernuniversität in Hagen, DE

Eugene Syriani
University of Montréal, CA

Tijs van der Storm
CWI – Amsterdam, NL

Eric Van Wyk
University of Minnesota –
Minneapolis, US

Hans Vangheluwe
University of Antwerp, BE

Jurgen J. Vinju
CWI – Amsterdam, NL

Markus Völter
Völter Ingenieurbüro –
Stuttgart, DE

Vadim Zaytsev
RainCode – Brussels, BE

	Executive Summary Benoît Combemale
	Table of Contents
	Working Groups
	Reuse and modularity in specifications of software languages Peter D. Mosses
	Attribute Grammar working group Anthony Sloane
	Software language Survey Eugene Syriani
	Practical Guide to Parsing Jurgen Vinju
	Curriculum WG Ralf Lämmel

	Opinion Pieces
	On the need for a SLEBoK Benoit Combemale
	Why SLE Friedrich Steimann

	Participants

