
Pumping Lemmas for Weighted Automata
Filip Mazowiecki
University of Oxford, Oxford, UK

Cristian Riveros
Pontificia Universidad Católica de Chile, Santiago, Chile

Abstract
We present three pumping lemmas for three classes of functions definable by fragments of weighted
automata over the min-plus semiring and the semiring of natural numbers. As a corollary we
show that the hierarchy of functions definable by unambiguous, finitely-ambiguous, polynomially-
ambiguous weighted automata, and the full class of weighted automata is strict for the min-
plus semiring.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Weighted Automata, Regular Functions over Words, Pumping Lemmas

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.50

Funding The first author was partially supported by EPSRC grants EP/M011801/1 and
EP/M012298/1. The last author was supported by FONDECYT grant 11150653 and the Millen-
nium Nucleus Center for Semantic Web Research under grant NC120004.

Acknowledgements We thank Shaull Almagor and the anonymous referees for their helpful
comments.

1 Introduction

Weighted automata (WA) are an expressible extension of finite state automata for computing
functions over words. They have been extensively studied since Schützenberger [28], and its
decidability problems [18, 1], extensions [9], logic characterization [9, 17], and applications [22,
7] have been deeply investigated.

The class of functions defined by WA has several equivalent representations in terms of
computational models or logics. Recently Alur et al. introduced the computational model of
cost register automata (CRA) [2, 3], an alternative model for computing functions over words,
which are currently extensively studied [20, 21, 8]. The idea of this model is to enhance
deterministic finite automata with registers that can be combined by using operations over
a fixed semiring. In [2], it was shown that CRA are strictly more expressive than WA.
Interestingly, it was also shown that a natural fragment of CRA is equally expressive to WA,
which gives a new representation to understand this class of functions.

Regarding the logical representation of WA, Droste and Gastin introduced in [9] the
so-called Weighted Logics (WL), a natural extension of monadic second order logics (MSO)
from the boolean semiring to any commutative semiring. The semantics of this logics maps
any formula in MSO over strings to one or zero in the semiring, depending whether the input
satisfies the formula or not. Furthermore, WL includes sum and product quantifiers that
allow to aggregate the output of boolean formulas producing an output value in the semiring.
Although WL is far more expressive than WA, it was shown in [9] that a natural syntactic
restriction of WL is equally expressive to WA, giving the first logical characterization of WA.

© Filip Mazowiecki and Cristian Riveros;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2018.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 Pumping Lemmas for Weighted Automata

Weighted logics or, more generally, quantitative logics have found many applications in
understanding WA [10, 17], verification [5] and computational complexity [4].

The complexities of decision problems for WA have also been investigated, unfortunately
often with undecidability results [18, 1]. For this reason various fragments of WA over different
semirings have been studied. Recently, over one-letter alphabets, where WA are equivalent
to linear recurrences, some new decidability results were shown for limited fragments [23, 24].
Other restrictions of WA involve bounding their numbers of runs. Among them most studied
classes are unambiguous automata, finitely-ambiguous automata, and polynomially-ambiguous
automata, where the numbers of accepting runs is bounded by 1, a constant, a polynomial in
the size of input, respectively [29, 16, 15]. These are robust subclasses of functions inside
WA that also have found several characterization in terms of cost register automata [2] and
weighted logics [17].

Although functions defined by WA and its subclasses have been studied in terms of
representations and decidability, little is known about its expressibility. Indeed, we are not
aware of any general techniques to show if a function is definable or not by WA or any of
its subclasses. Results related to the inexpressibility of WA usually require sophisticated
arguments for each particular function [16, 20] and there is no clear path to generalize these
techniques. As a matter of fact, the strict inclusions between unambiguous, finitely-ambiguous,
polynomially-ambiguous, and the full class of WA are “well-known” to the community, but
it is hard to find references to formal proofs (see related work below). In contrast, for
regular languages or first order logics there exist elegant and useful techniques for showing
inexpressibility like, for example, the standard pumping lemma for regular languages [13] or
Ehrenfeucht-Fraïssé games for first-order logics [12, 11, 19]. One would like to have similar
techniques in the quantitative world that simplifies inexpressibility arguments of WA, cost
register automata, or even weighted logics to a small number of lines. Such techniques help
to understand the inner structure of these functions and unveil their limits of expressibility.

In this paper, we embark in the work of loading the expressibility toolbox of weighted
automata with pumping lemmas. We present three pumping lemmas, each of them for a
different class or subclass of functions defined by WA over the min-plus semiring or the
semiring of natural numbers. For every pumping lemma we show examples of functions
that do not satisfy the lemma, giving very short inexpressibility proofs. Our results do
not attempt to fully characterize the class or subclasses of weighted automata in terms of
pumping properties, nor to provide conditions that can be verified by a computer. Our goal
is to give the first tools for expressibility of weighted automata and to provide researchers
with simple arguments for showing that functions do not belong to a given class.

Related work. In [14] it is shown that over the min-plus semiring polynomially-ambiguous
automata are strictly more expressive than finite-ambiguous automata. In [16] strict inclusions
between unambiguous automata, finitely-ambiguous automata, and the full class of WA are
shown over the max-plus semiring. In both papers the strict inclusions are shown by analyzing
particular functions. Using results in [6] one can deduce that unambiguous automata are
strictly included in the other classes over the min-plus and max-plus semirings. Gathering
these results we obtain strict inclusions between unambiguous automata, finitely-ambiguous
automata, and the full class of WA over the min-plus semiring. However, to our knowledge,
there is no reference for a strict inclusion between polynomially-ambiguous automata and
the full class of WA.

Organization. In Section 2 we introduce weighted automata and some basic definitions.
In Section 3 and Section 4 we present and prove pumping lemmas for weighted automata over
the semiring of natural numbers and its extension using the operation min. In Section 5 we
show the pumping lemma for polynomially-ambiguous automata over the min-plus semiring.

F. Mazowiecki and C. Riveros 50:3

Some concluding remarks can be found in Section 6.

2 Preliminaries

In this section, we recall the definitions of weighted automata (WA). We start with the
definitions that are standard in this area. A monoid M = (M,⊗,1) is a set M with an
associative operation ⊗ and a neutral element 1. Standard examples of monoids are: the set
of words Σ∗ with concatenation and empty word; or the set of matrices with multiplication
and the identity matrix. A semiring is a structure S = (S,⊕,⊙,0,1), where (S,⊕,0) is a
commutative monoid, (S − {0},⊙,1) is a monoid, multiplication distributes over addition,
and 0⊙ s = s⊙ 0 = 0 for each s ∈ S. If the multiplication is commutative, we say that S is
commutative. In this paper, we always assume that S is commutative. We usually denote S
or M by the name of the semiring or monoid S or M. In this paper, we are interested in
the min-plus semiring (N ∪ {∞},min,+,∞,0) and the semiring of natural numbers with ∞
(N ∪ {∞},+, ⋅,0,1) where we assume that ∞+ n =∞ for every n ∈ N ∪ {∞} and ∞ ⋅ n =∞ if
n ≠ 0 and 0 otherwise. We denote the former by Nmin,+ and the later by N+,×. Note that N+,×
is an extension of the standard semiring of natural numbers N and all our results for N+,×
also hold for N. We use this extended version of N to easily apply some results from N+,×
to Nmin,+ (see Section 4). Given a finite set Q, we denote by SQ×Q (SQ) the set of square
matrices (vectors resp.) over S indexed by Q. The algebra induced by S over SQ×Q and SQ

is defined as usual.
We also consider two finite semirings that will be useful during proofs. We con-

sider the boolean semiring B = ({0,1},∨,∧,0,1) and the extended boolean semiring B∞ =
({0, 1,∞},∨,∧, 0, 1) such that ∞∨ n =∞ for every n ∈ {0, 1,∞}, ∞∧ 0 = 0, and ∞∧ n =∞ if
n ∈ {1,∞}. Both finite semirings will be used as abstractions of Nmin,+ and N+,×, respectively.

In this paper, we study the specification of functions from words to values, namely, from
Σ∗ to S. We say that a function f ∶ Σ∗ → S is definable by a computational system A (e.g.
by WA) if f(w) = ⟦A⟧(w) for any w ∈ Σ∗, where ⟦A⟧ is the semantics of A over words.

2.1 Weighted automata
Fix a finite alphabet Σ and a commutative semiring S. A weighted automaton (WA) over
Σ and S is a tuple A = (Q,Σ,{Ma}a∈Σ, I, F) where Q is a finite set of states, {Ma}a∈Σ
is a set of matrices such that Ma ∈ SQ×Q and I,F ∈ SQ are the initial and the final
vectors, respectively [27, 10]. We say that a state q is initial if I(q) ≠ 0 and accepting
if F (q) ≠ 0. We usually say that an entry Ma(p, q) = s is a transition and write p a/sÐ→ q.
Furthermore, we say that a run ρ of A over a word w = a1 . . . an is a sequence of transitions:
ρ = q0

a1/s1Ð→ q1
a2/s2Ð→ ⋯ an/snÐ→ qn, where si ≠ 0 for all 1 ≤ i ≤ n and I(q0) ≠ 0. We refer to qi

as the i-th state of the run ρ. The run ρ is accepting if F (qn) ≠ 0, and the weight of an
accepting run ρ is defined by ∣ρ∣ = I(q0) ⊙ (⊙n

i=1 si) ⊙ F (qn). We define RunA(w) as the
set of all accepting runs of A over w. Finally, the output of A over a word w is defined
by ⟦A⟧(w) = It ⋅Ma1 ⋅ . . . ⋅Man ⋅ F = ⊕ρ∈RunA(w) ∣ρ∣ where It is the transpose of I and the
second sum is equal to 0 if RunA(w) is empty. For a word w = a1 . . . an we usually denote
Mw =Ma1 ⋅ . . . ⋅Man and then ⟦A⟧(w) = It ⋅Mw ⋅F . Note that Mw(p, q) provides the cost of
moving from state p to state q reading the word w.

A weighted automaton A is called unambiguous (U-WA) if ∣RunA(w)∣ ≤ 1 for every w ∈ Σ∗;
and A is called finitely-ambiguous (FA-WA) if there exists a uniform bound N such that
∣RunA(w)∣ ≤ N for every w ∈ Σ∗ [29, 16]. Furthermore, A is called polynomially-ambiguous
(PA-WA) if the function ∣RunA(w)∣ is bounded by a polynomial in the length of w [15]. We

STACS 2018

50:4 Pumping Lemmas for Weighted Automata

call classes of functions definable by such automata unambiguous regular, finitely-ambiguous
regular and polynomially-ambiguous regular functions. The class of functions defined by
weighted automata are called regular functions.

Note that every unambiguous WA over Nmin,+ can be defined by a polynomially-ambiguous
WA over N+,× [16, 2] (recall that ∞ is in N+,×). Therefore, the class of unambiguous regular
functions over Nmin,+ is included in the class of regular functions over N+,× (see Example 1).
This inclusion is strict since regular functions over Nmin,+ are always bounded by a linear
function in the size of the word, and it is easy to define the function f(w) = 2∣w∣ over N+,×.
Below, we give several examples of functions defined by WA over N+,× and Nmin,+ that will
be used in paper. Recall that in the latter semiring 0 =∞ and ⊙ = +. Transitions p a/sÐ→ q,
where s = 0 are omitted.

b / 0

a / 0
b / 0 a / 1

W1 over Nmin,+

a / 1b / ∞

a / 1
b / 1 a / 1

W ′
1 over N+,×

a / 1
b / 0

a / 0
b / 1

W2 over Nmin,+

b / 1 a, b / 0a, b / 0

b / 1 a / 0a / 0

W4 over Nmin,+

a / 1
b / 0

a / 0
b / 1

a / 0
b / 0

W3 over Nmin,+

a / 1
b / 0 # / 0

a / 0
b / 1

/ 0 # / 0

a / 0
b / 1

a / 1
b / 0

W5 over Nmin,+

Figure 1 Examples of weighted automata. For WA over Nmin,+ the initial and accepting states
are labeled by 0 in the corresponding vector, and ∞ otherwise. Similarly, for WA over N+,× the
initial and accepting states are labeled by 1 in the corresponding vector, and 0 otherwise.

I Example 1. Let Σ = {a, b}. Consider the function f1 that for given word w ∈ Σ∗ outputs
the length of the biggest suffix of a’s (and ∞ if the word ends in b). This is defined by W1
over Nmin,+ in Figure 1. One can easily check that W1 is unambiguous, hence f1 belongs to
unambiguous regular functions over Nmin,+. In Figure 1, W ′

1 over N+,× also defines f1.

I Example 2. Let Σ = {a, b}. Consider the function f2 that for given word w ∈ Σ∗ outputs
min{∣w∣a, ∣w∣b}, namely, counts the number of each letter and returns the minimum. This is
defined by W2 in Figure 1. The WA W2 is finitel-ambiguous, hence f2 belongs to finitely-
ambiguous regular functions.

I Example 3. Let Σ = {a, b}. Consider the function f3 that for a given word w = a1 . . . an ∈ Σ∗

outputs min0≤i≤n{∣a1 . . . ai∣a + ∣ai+1 . . . an∣b}. This is defined by W3 in Figure 1. The WA is
polynomially-ambiguous, hence f3 belongs to polynomially-ambiguous functions.

I Example 4. Let Σ = {a, b}. Consider the function f4 that for a given word w ∈ Σ∗ computes
the shortest subword of b’s (if there is none it outputs ∞). This is defined by W4 in Figure 1.
The WA is polynomially-ambiguous, hence f4 belongs to polynomially-ambiguous functions.

I Example 5. Let Σ = {a, b,#}. Consider the function f5 such that, for any w ∈ Σ∗ of the
form w0#w1# . . .#wn with wi ∈ {a, b}∗, it computes the minimum number of a’s or b’s for
each subword wi (i.e. min{∣wi∣a, ∣wi∣b}) and then it sums these values over all subwords wi,
that is, f5(w) = ∑ni=0 min{∣wi∣a, ∣wi∣b}. This is defined by W5 in Figure 1. Given that the WA
has an exponential number of runs, the function f5 is a regular function but not necessarily
a polynomially-ambiguous regular function.

F. Mazowiecki and C. Riveros 50:5

We assume that our weighted automata are always trim, namely, all their states are
reachable from some initial state (i.e., they are accessible) and they can reach some final
state (i.e., they are co-accessible). Verifying if a state is accessible or co-accessible is reduced
to a reachability test in the transition graph [25] and this can be done in NLogSpace. Thus,
we can assume without loss of generality that all our automata are trimmed.

2.2 Finite monoids and idempotents
We say that a monoid is finite if the set of its elements is finite. Let M = (M,⊗,1) be a finite
monoid. We say that ι ∈M is an idempotent if ι⊗ ι = ι. The following lemma is a standard
result for finite monoids and idempotents (e.g. see Theorem 6.37 in [26]).

I Lemma 6. Let M be a finite monoid. There exists N > 0 such that for every sequence
m1 ⊗ . . .⊗mn with mi ∈M and n ≥ N , there exist a factorization:

(m1 ⊗ . . .⊗mi)⊗ (mi+1 ⊗ . . .⊗mj)⊗ (mj+1 . . .⊗mn),

where i < j ≤ n and (mi+1 ⊗ . . .⊗mj) is an idempotent.

We will work with the finite monoid of matrices BQ×Q or BQ×Q∞ . For this, we define
abstractions, i.e., homomorphisms of NQ×Qmin,+ to BQ×Q and NQ×Q+,× to BQ×Q∞ . These are given by
the homomorphisms defined on elements of the matrices h1 ∶ Nmin,+ → B and h2 ∶ N+,× → B∞,
defined: h1(m) = 0 iff m =∞; and h2(m) = 0 if m = 0, h2(m) =∞ if m =∞ and h2(m) = 1
otherwise. For matrices M ∈ NQ×Qmin,+ or N ∈ NQ×Q+,× we denote by M̄ = h1(M) or N̄ = h2(N)
their abstractions in BQ×Q or BQ×Q∞ , respectively.

3 Regular functions without min

In this section we consider regular functions over N+,×. As a corollary of the pumping lemma
in this section we show that FA-WA are strictly more expressive than U-WA over Nmin,+
(Example 8). Moreover, we show that there are finitely-ambiguous regular functions over
Nmin,+ that cannot be defined by any regular function over N+,×.

We introduce some notation to simplify the presentation. Given u ⋅ v ⋅w = û ⋅ v̂ ⋅ ŵ, where
u, v,w, û, v̂, ŵ ∈ Σ∗, we say that û ⋅ v̂ ⋅ ŵ is a refinement of u ⋅v ⋅w if there exist u′,w′ such that
u ⋅ u′ = û, w′ ⋅w = ŵ, u′ ⋅ v̂ ⋅w′ = v, and v̂ ≠ ε. We underline the infixes v and v̂ to emphasize
the refined part.

I Theorem 7 (Pumping Lemma for regular functions over N+,×). Let f ∶ Σ∗ → N ∪ {∞} be a
regular function over N+,×. There exists N such that for all words of the form u ⋅ v ⋅w ∈ Σ∗

with ∣v∣ ≥ N , there exists a refinement û ⋅ v̂ ⋅ ŵ of u ⋅ v ⋅w such that at least one of the following
two conditions holds:

f(û ⋅ v̂i ⋅ ŵ) = f(û ⋅ v̂i+1 ⋅ ŵ) for every i ≥ N .

f(û ⋅ v̂i ⋅ ŵ) < f(û ⋅ v̂i+1 ⋅ ŵ) for every i ≥ N .

Before going into the details of the proof let us show how to use the lemma.

I Example 8. We show that f2 from Example 2 is not definable by any WA over N+,×.
Indeed, suppose it is definable and fix N from Theorem 7. Consider the word w = a(N+1)2bN

and notice that f2(w) = N . By refining w we get û ⋅ v̂ ⋅ŵ = a(N+1)2bnbmbl for some n,m, l such
that 1 ≤m ≤ N and n +m + l = N . Since n +m ⋅N + l < n +m ⋅ (N + 1) + l < (N + 1)2 it must
be the case that f2(û ⋅ v̂i ⋅ ŵ) < f2(û ⋅ v̂i+1 ⋅ ŵ) for all i ≥ N . However, f2(û ⋅ v̂i ⋅ ŵ) = (N + 1)2

for i sufficiently large, which is a contradiction.

STACS 2018

50:6 Pumping Lemmas for Weighted Automata

I Example 9. On the other hand, the function f1 from Example 1 satisfies Theorem 7.
Consider a word u ⋅ v ⋅ w ∈ Σ∗ and its refinement û ⋅ v̂ ⋅ ŵ. If ŵ or v̂ contain b then
f(û ⋅ v̂i ⋅ ŵ) = f(û ⋅ v̂i+1 ⋅ ŵ) because the suffix of a’s remains the same. Otherwise,
f(û ⋅ v̂i ⋅ ŵ) < f(û ⋅ v̂i+1 ⋅ ŵ) since the suffix of a’s increases when pumping. Moreover, it is
straightforward to generalize this argument and prove Theorem 7 for all U-WA over Nmin,+.

To prove Theorem 7 we use the following definitions. For a matrix M ∈ NQ×Q+,× recall that
M̄ is its homomorphic image in BQ×Q∞ (see Section 2.2). We write that M and N in NQ×Q+,×
are equivalent, denoted M ≡B∞ N , iff M̄ = N̄ . We also extend the homomorphic image and
equivalence relation from matrices to vectors. We say that D ∈ NQ×Q+,× is an idempotent if D̄
is an idempotent in the finite monoid BQ×Q∞ .

I Lemma 10. If M ≡B∞ N , then xT ⋅M ⋅y > 0 if and only if xT ⋅N ⋅y > 0 for every x, y ∈ NQ+,×.

Proof. Suppose that xT ⋅M ⋅ y > 0. By definition xT ⋅M ⋅ y = ∑p,q x(p) ⋅M(p, q) ⋅ y(q).
Then there exist p, q ∈ Q such that x(p) ⋅M(p, q) ⋅ y(q) > 0 and, in particular, M(p, q) > 0.
Given that M ≡B∞ N we conclude N(p, q) > 0 and x(p) ⋅N(p, q) ⋅ y(q) > 0, which proves
xT ⋅N ⋅ y > 0. J

Proof of Theorem 7. Let A = (Q,Σ,{Ma}a∈Σ, I, F) be a WA over N+,× such that f = ⟦A⟧.
Without loss of generality, we assume that I(q) ≠ ∞ and Ma(p, q) ≠ ∞ for every p, q ∈ Q
and a ∈ Σ, namely, ∞ can only appear in the final vector F . Indeed, if ∞ is used in I or
some Ma, we can construct two weighted automata A′,A∞ such that A′ is the same as A
but each ∞-initial state or each ∞-transition is replaced with 0, and A∞ outputs ∞ if there
exists some run in A that outputs ∞ and 0 otherwise. Note that A′ has no ∞-transition or
∞-initial state and A∞ can be constructed in such a way that only the final vector contains
∞-values. The disjoint union of A′ and A∞ is equivalent to A.

Let N = max{∣Q∣,K} where K is the constant from Lemma 6 for the finite monoid
BQ×Q∞ . For every word u ⋅ v ⋅w ∈ Σ∗ such that v = a1 . . . an with n ≥ N , consider the output
IT ⋅Mu ⋅Mv ⋅Mw ⋅F of A over u ⋅ v ⋅w. By Lemma 6, there exists a factorization of the form:

Mv = (Ma1 ⋅ . . . ⋅Mai) ⋅ (Mai+1 ⋅ ⋯ ⋅Maj) ⋅ (Maj+1 ⋅ . . . ⋅Man)

for some i < j where Mai+1 ⋅ . . . ⋅Maj is an idempotent (i.e., M̄ai+1 ⋅ . . . ⋅ M̄aj is an idempotent).
We define the refinement û ⋅ v̂ ⋅ ŵ of u ⋅ v ⋅w such that û = u ⋅ (a1 . . . ai), v̂ = ai+1 . . . aj , and
ŵ = (aj+1 . . . an) ⋅w. Furthermore, define x = I ⋅Mu ⋅Ma1 ⋅ . . . ⋅Mai , D =Mai+1 ⋅ . . . ⋅Maj , and
y =Maj+1 ⋅ . . . ⋅Man ⋅Mw ⋅ F . Note that f(û ⋅ v̂i ⋅ ŵ) = xT ⋅Di ⋅ y for every i ≥ 0 and D is an
idempotent (i.e. D̄ is an idempotent). It remains to show the following lemma.

I Lemma 11. For every idempotent D ∈ NQ×Q+,× and x, y ∈ NQ+,× where D and x do not contain
∞-values, one of the conditions holds:

xT ⋅Di ⋅ y = xT ⋅Di+1 ⋅ y for every i ≥ ∣Q∣, or (1)
xT ⋅Di ⋅ y < xT ⋅Di+1 ⋅ y for every i ≥ ∣Q∣. (2)

We start showing that Lemma 11 holds when y = ep for some p ∈ Q, where ep(q) = 1 if q = p
and 0 otherwise. Note that z = ∑p∈Q z(p) ⋅ ep for every vector z.

We say that p is D-stable (or just stable) if D(p, p) > 0. Note that if p is stable, then
Di(p, p) > 0 for every i > 0 (recall that D is idempotent). Furthermore, D ⋅ ep = ep + z for
some z ∈ NQ+,×. Suppose that p is stable and D ⋅ ep = ep + z for some vector z. Then for i > 0:

xT ⋅Di+1 ⋅ ep = xT ⋅Di ⋅ (ep + z) = xT ⋅Di ⋅ ep + xT ⋅Di ⋅ z

F. Mazowiecki and C. Riveros 50:7

Given that D is idempotent and Di ≡B∞ D, by Lemma 10 we have that xT ⋅Di ⋅ z > 0 if, and
only if, xT ⋅D ⋅z > 0. Therefore, if xT ⋅D ⋅z > 0, we get that xT ⋅Di ⋅ep < xT ⋅Di+1 ⋅ep for every
i > 0, in particular, for every i ≥ ∣Q∣. Otherwise, xT ⋅D ⋅ z = 0 and xT ⋅Di ⋅ ep = xT ⋅Di+1 ⋅ ep
for every i > 0, in particular, for every i ≥ ∣Q∣.

Let P ⊆ Q be the set of all non-stable states in D. Consider the relation ⪯D⊆ P × P such
that p ⪯D q if p = q or D(p, q) > 0. One can easily check that ⪯D forms a partial order over
P , namely, that ⪯D is reflexive, antisymmetric, and transitive. Indeed, transitivity holds
because D is idempotent. To prove antisymmetry, note that for every non-stable states p
and q, if p ⪯D q, q ⪯D p and p ≠ q hold, then D(p, p) > 0. This is a contradiction since p is
non-stable.

Since ⪯D is a partial order, we prove the lemma for y = ep by induction over ⪯D. Formally,
we strengthen the inductive hypothesis such that conditions (1) and (2) hold for every i ≥ Nq,
where Nq = ∣{q′ ∈ P ∣ q′ ⪯D q}∣ (notice that Nq ≤ ∣Q∣ for every q). The base case is for Np = 0,
which means that p is stable. In the inductive case Np > 0 the state p is non-stable. Then

xT ⋅Di+1 ⋅ ep = xT ⋅Di ⋅ (c1 ⋅ eq1 + . . . + ck ⋅ eqk) = c1(xT ⋅Di ⋅ eq1) + . . . + ck(xT ⋅Di ⋅ eqk)

for pairwise different states q1, . . . , qk and positive values c1, . . . , ck ∈ N such that qj is either
stable or qj ≺D p. Thus all states q1, . . . , qk satisfy our inductive hypothesis.

Consider the partition of q1, . . . , qk into sets C= and C< such that C= and C< satisfy
condition (1) and (2), respectively. If C< = ∅, then for every i ≥ Np we have:

xT ⋅Di+1 ⋅ ep = c1(xT ⋅Di ⋅ eq1) + . . . + ck(xT ⋅Di ⋅ eqk)
= c1(xT ⋅Di−1 ⋅ eq1) + . . . + ck(xT ⋅Di−1 ⋅ eqk)
= xT ⋅Di ⋅ ep. (3)

Note that xT ⋅Di ⋅eqj = xT ⋅Di−1 ⋅eqj holds by the inductive hypothesis and because Np > Nqj
for every qj . Suppose otherwise, that C< ≠ ∅ and there exists a state qj that satisfies
xT ⋅Di ⋅ eqj < xT ⋅Di+1 ⋅ eqj for every i ≥ Nqj . Then it is straightforward that equality (3)
becomes a strict inequality and condition (2) holds.

We have shown that either (1) or (2) holds for y = ep. It remains to extend this to any
vector y ∈ NQ+,× (possibly with ∞). Note that

xT ⋅Di+1 ⋅ y = y(q1) ⋅ (xT ⋅Di+1 ⋅ eq1) + . . . + y(qk) ⋅ (xT ⋅Di+1 ⋅ eqk)

for some states q1, . . . , qk such that y(qj) > 0 for every j ≤ k. We consider two cases. First,
if there exists j such that y(qj) =∞ and xT ⋅Di ⋅ eqj > 0 for i ≥ N , then xT ⋅Di ⋅ y =∞ for
every i ≥ 0. Thus, xT ⋅Di ⋅ y satisfies condition (1). Second, suppose that for every j we
have y(qj) ≠∞ or xT ⋅Di ⋅ eqj = 0 for i ≥ N . It suffices to consider the case when y(qj) ≠∞
for all j. Then if some xT ⋅Di ⋅ eqj satisfies condition (2) we have that xT ⋅Di ⋅ y satisfies
condition (2). Conversely, if every xT ⋅Di ⋅ eqj satisfies condition (1) we have that xT ⋅Di ⋅ y
satisfies condition (1). J

One could try to simplify Theorem 7 changing the condition i ≥ N to i ≥ 0. Unfortunately,
we do not know if the theorem would remain true. A naive approach would be to use a
generalization of Lemma 6, but intuitively, the behavior of non-stable registers is problematic.
Examples of this behavior are very technical and we leave this for future work. We conclude
with the following remarks, straightforward from the proof. We will use them in Section 4.

I Remark 12. Changing y to y′ such that y ≡B∞ y′ does not influence whether condition (1)
or condition (2) holds in Lemma 11 (notice that here we need that the abstractions have
values in B∞ not in B). Similarly, changing x to x′ such that x ≡B∞ x′ does not influence
whether condition (1) or (2) holds.

STACS 2018

50:8 Pumping Lemmas for Weighted Automata

I Remark 13. The constant N and the refinement of w depend only on the finite monoid
BQ×Q∞ . In particular they are independent from the initial vectors I and F .

4 Finite-min regular functions

In this section we focus on regular functions over N+,× with some min allowed. Formally, we
say that f ∶ Σ∗ → N ∪ {∞} is a finite-min regular function, if there exist regular functions
f1, . . . , fm over N+,× such that f(w) = min{f1(w), . . . , fm(w)}. It is known that FA-WA are
equivalent to a finite sum of U-WA [29], hence functions defined by FA-WA over Nmin,+ are
included in the class of finite-min regular functions. As a corollary of the pumping lemma
in this section we show that PA-WA are strictly more expressive than FA-WA over Nmin,+
(Example 15 and Example 16).

We start by introducing some notation to ease the presentation. For every word w we
define an n-pumping representation

w = u0 ⋅ v1 ⋅ u1 ⋅ v2 ⋅ . . . un−1 ⋅ vn ⋅ un,

where w = u0 ⋅v1 ⋅u1 ⋅v2 ⋅ . . . vn ⋅un and vk ≠ ε for all k. We define a refinement of an n-pumping
representation as

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n,

if vk = xk ⋅ yk ⋅ zk, u′k = zk ⋅ uk ⋅ xk+1; where z0 = xn+1 = ε and yk ≠ ε for every k. Let
S ⊆ {1, . . . , n} such that S ≠ ∅. Let vk be a fragment of an n-pumping representation w. By
vk(S, i) we denote the word vik if k ∈ S and vk otherwise. By w(S, i) we denote the word

w = u0 ⋅ v1(S, i) ⋅ u1 ⋅ v2(S, i) ⋅ . . . un−1 ⋅ vn(S, i) ⋅ un.

In other words we pump the fragments vk for all k ∈ S.
I Theorem 14 (Pumping Lemma for finite-min regular functions). Let f ∶ Σ∗ → N ∪ {∞} be a
finite-min regular function. There exists N such that for all n-pumping representations

w = u0 ⋅ v1 ⋅ u1 ⋅ v2 ⋅ . . . un−1 ⋅ vn ⋅ un,

where n ≥ N and ∣vi∣ ≥ N for all i, there exists a refinement

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n,

such that for every sequence of nonempty pairwise different subsets S1, . . . , Sk ⊆ {1 . . . n} with
k ≥ N at least one of the following holds:

there exists j such that f(w(Sj , i)) < f(w(Sj , i + 1)) for i sufficiently large;
there exists j1 ≠ j2 such that f(w(Sj1 ∪ Sj2 , i)) = f(w(Sj1 ∪ Sj2 , i + 1)) for i sufficiently
large.

Before proving Theorem 14, we show how to use it with two examples.

I Example 15. We show that f3 from Example 3 is not definable by finite-min regular
functions. Indeed, fix N from Theorem 14 and consider the n-pumping representation
w = (bN ⋅aN)N . We index each pumping fragment with a pair (s, j), where j ≤ N denotes the
block and s ≤ 2 denotes the fragment in the block. First, notice that f3(w) = N ⋅(N−1) because
runs minimizing the value forW3 change the state after reading the last b in one of the blocks.
We define the sets Sj = {(1, j), (2, j)} for j ∈ {1, . . . ,N}. Clearly f3(w(Sj , i)) = N ⋅ (N − 1)
for any j and i, because the run minimizing the value changes the state after the last b in
the j-th block. On the other hand f3(w(Sj1 ∪ Sj2 , i)) < f3(w(Sj1 ∪ Sj2 , i + 1)) for all i and
j1 ≠ j2. Hence f3 does not satisfy the pumping lemma for finite-min regular functions.

F. Mazowiecki and C. Riveros 50:9

I Example 16. We show that f4 from Example 4 is not definable by finite-min regular
functions. Indeed, fix N from Theorem 14. Consider the N -pumping representation w =
(bNa)N . Then by definition f4(w) = N . In the refinement all pumping parts will be of
the form bn for 1 ≤ n ≤ N . We define the sets Sj = {1, . . . ,N} ∖ {j} for all 1 ≤ i ≤ N .
Clearly f4(w(Sj , i)) = N for any j and any i. On the other hand f4(w(Sj1 ∪ Sj2 , i)) <
f4(w(Sj1 ∪Sj2 , i+ 1)) for all i and j1 ≠ j2. Hence f4 does not satisfy the pumping lemma for
finite-min regular functions.

Proof of Theorem 14. Let f1, . . . , fm be regular functions over N+,× such that f(w) =
min{f1(w), . . . , fm(w)} for every w. Furthermore, consider Aj = (Qj ,Σ,{Mj,a}a∈Σ, Ij , Fj)
the corresponding WA for fj . LetQ = ⋃j Qj (we assume thatQ1, . . . ,Qm are pairwise disjoint)
and consider the set of matrices {Ua}a∈Σ where Ua ∈ NQ×Q+,× such that Ua(p, q) =Mj,a(p, q)
whenever p, q ∈ Qj and 0 otherwise. Then fj(w) = (I ′j)t ⋅ Uw ⋅ F ′

j for every j and w ∈ Σ∗

where I ′j and F ′
j are the extensions of Ij and Fj from Qj into Q such that I ′j(q) = Ij(q)

and F ′
j(q) = Fj(q) whenever q ∈ Qj and 0 otherwise. Notice that {Ua}a∈Σ synchronize the

behavior of f1, . . . , fm in a single set of matrices and project the output of fj with I ′j and F ′
j .

Let N = max{K,m + 1} such that K is the constant from Lemma 6 applied to BQ×Q∞ . Let
w = u0 ⋅ v1 ⋅ u1 ⋅ v2 ⋅ . . . un−1 ⋅ vn ⋅ un. For every vi we use Theorem 7 over u≤i ⋅ vi ⋅ s≥i, where
u≤i = u0 ⋅ v1 ⋅ . . . ui−1 and s≥i = ui ⋅ vi+1 ⋅ . . . un obtaining a refinement

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n,

where each yi comes from Theorem 7 applied to {Ua}a∈Σ. Recall that the refinement of
u≤i ⋅ vi ⋅ s≥i depends only on {Ua}a∈Σ and not on the initial final vector (Remark 13). In
particular, the refinement is the same for each function fj . Then

fj(w) = (I ′j)t ⋅Uu′0 ⋅D1 ⋅ . . . ⋅Uu′n−1
⋅Dn ⋅Uu′n ⋅ F

′
j

where Di = Uyi are idempotents.

I Lemma 17. Let S ⊆ {1, . . . , n} be a nonempty set and fix one function fj. Then
fj(w(S, i)) < fj(w(S, i + 1)) for every i ≥ N iff there exists k ∈ S such that fj(w({k}, i)) <
fj(w({k}, i + 1)) for every i ≥ N .

Proof. By definition fj(w(S, i)) = (I ′j)t ⋅Uu′0 ⋅D
s1
1 ⋅ . . . ⋅Uu′n−1

⋅Dsn
n ⋅Uu′n ⋅ F

′
j where sk = i if

k ∈ S and sk = 1 otherwise. Since all Di are idempotents then for all k the fragments before
and after Dsk

k are ≡B∞ equivalent, i.e.,

(I ′j)t ⋅Uu′0 ⋅D
s1
1 ⋅ . . . ⋅Dsk−1

k−1 ⋅Uu′
k−1

≡B∞ (I ′j)t ⋅Uu′0 ⋅D1 ⋅ . . . ⋅Dk−1 ⋅Uu′
k−1

Uu′
k
⋅Dsk+1

k+1 ⋅ . . . ⋅Dsn
n ⋅Uu′n ⋅ F

′
j ≡B∞ Uu′

k
⋅Dk+1 ⋅ . . . ⋅Dn ⋅Uu′n ⋅ F

′
j .

Hence, the lemma follows from Remark 12. J

To finish the proof we analyze f(w(S, i)) = min{f1(w(S, i)), . . . , fm(w(S, i))}. Consider
a sequence of subsets S1, . . . , Sk with k ≥ N . Suppose there is a set Sl for some l such that
for every j ≤m there exists k ∈ Sl such that fj(w({k}, i)) < fj(w({k}, i + 1)) for every i ≥ N .
It follows from Lemma 17 that f(w(Sl, i)) < f(w(Sl, i + 1)) for all i ≥ N , namely, the first
condition of the theorem holds. Suppose otherwise, and for every Sl let Xl ⊆ {1, . . . ,m}
be the set of functions such that fj(w(Sl, i)) = fj(w(Sl, i + 1)) for all j ∈ Xl and i ≥ N .
Since k ≥ N > m there exists l1, l2 such that Xl1 ∩Xl2 ≠ ∅. From Lemma 17 it follows
that for i ≥ N holds: fj(w(Sl1 ∪ Sl2 , i)) = fj(w(Sl1 ∪ Sl2 , i + 1)) for all j ∈ Xl1 ∩Xl2 ; and
fj(w(Sl1 ∪ Sl2 , i)) < fj(w(Sl1 ∪ Sl2 , i + 1)) for all j ∈ {1, . . . ,m} ∖ (Xl1 ∩Xl2). Hence for i
sufficiently large f(w(Sl1 ∪ Sl2 , i)) = minj∈Xl1∩Xl2 (fj(w(Sl1 ∪ Sl2 , i))), which concludes the
proof. J

STACS 2018

50:10 Pumping Lemmas for Weighted Automata

5 Poly-ambiguous regular functions over the min-plus semiring

In this section we focus on polynomially-ambiguous regular functions over Nmin,+. We
expect that there is a wider class of functions, definable like in the previous section, where
Theorem 18 holds but it is left for future work. A corollary from the pumping lemma in this
section is that WA are strictly more expressive than PA-WA (Example 19 and 20).

We will use the notation of n-pumping representations from Section 4. As usual, a
sequence of non-empty sets S1, . . . , Sm over {1, . . . , n} is a partition if they are pairwise
disjoint and ⋃Si = {1, . . . , n}. Furthermore, we say that S ⊆ {1, . . . , n} is a selection set of
S1, . . . , Sm if ∣S ∩ Si∣ = 1 for every i.

I Theorem 18 (Pumping Lemma for polynomially-ambiguous automata). Let f ∶ Σ∗ → N∪{∞}
be a polynomially-ambiguous regular function over Nmin,+. There exists N and a function
ϕ ∶ N→ N such that for all n-pumping representations:

w = u0 ⋅ v1 ⋅ u1 ⋅ v2 ⋅ . . . ⋅ un−1 ⋅ vn ⋅ un,

where ∣vi∣ ≥ N for every i ≤ n, there exists a refinement:

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n,

such that for every partition π = S1, . . . , Sm of {1, . . . , n} with m ≥ ϕ(maxi(∣Si∣)), at least
one of the following holds:

there exists j such that f(w(Sj , i)) = f(w(Sj , i + 1)) for i sufficiently large;
there exists a selection set S of π such that f(w(S, i)) < f(w(S, i + 1)) for i sufficiently
large.

I Example 19. We show that f5 from Example 5 is not definable by PA-WA. Indeed, let N
and ϕ be the constant and the function from Theorem 18. Consider the following n-pumping
representation: w = (aN ⋅ bN#)m where m ≥ ϕ(2) (here maxi(∣Si∣) = 2). We index each
pumping fragment with a pair (s, j), where j ≤m denotes the block and s ≤ 2 denotes the
fragment in the block. We define the subsets S1 . . . Sm as follows: Sj = {(1, j), (2, j)}. Clearly
for all j we have f5(w(Sj , i)) < f5(w(Sj , i + 1)). On the other hand for every selection set S
we have f5(w(S, i)) = f5(w(S, i + 1)). Hence f5 does not satisfy the Pumping Lemma above.

I Example 20. The function f5 in Example 5 is essentially the function f2 from Example 2
applied to the subwords between the symbols #, where the outputs are aggregated with +.
In a similar way one can define a min-plus automaton recognizing f6(w) = ∑i f4(wi) for any
w ∈ Σ∗ of the form w0#w1# . . .#wn with wi ∈ {a, b}∗, where f4 is the function computing
the minimal block of b’s from Example 4. We show that f6 is not definable by PA-WA
over Nmin,+. Consider the following n-pumping representation: w = (bN ⋅ a ⋅ bN#)m where
m ≥ ϕ(2) (here maxi(∣Si∣) = 2). We index each pumping fragment with a pair (s, j) like in
Example 19 and we define the subsets S1 . . . Sm as follows: Sj = {(1, j), (2, j)}. Clearly for
all j we have f6(w(Sj , i)) < f6(w(Sj , i + 1)). On the other hand for every selection set S we
have f6(w(S, i)) = f6(w(S, i + 1)).

Consider the set of matrices NQ×Qmin,+ over the min-plus semiring. Recall that here ⊕ =
min, ⊙ = +, 0 = ∞, 1 = 0, and the product of matrices M,N ∈ NQ×Qmin,+ is defined by
M ⋅N(p, q) = minr(M(p, r) +N(r, q)). Also, recall that for any M ∈ NQ×Qmin,+ we denote by M̄
the homomorphic image of M into the finite monoid BQ×Q (see Section 2.2). Similar as in
Section 3 and Section 4, we say that D ∈ NQ×Qmin,+ is an idempotent if D̄ is an idempotent in
the finite monoid BQ×Q.

F. Mazowiecki and C. Riveros 50:11

The following lemma is a special property of polynomially-ambiguous automata that we
exploit in the proof of Theorem 18. The proof is omitted here due to lack of space.

I Lemma 21. Let A = (Q,Σ,{Ma}a∈Σ, I, F) be a polynomially-ambiguous weighted auto-
maton over the min-plus semiring. For every idempotent D ∈ {Mw ∣ w ∈ Σ∗} and for every
p, q ∈ Q, there exist constants c, d ∈ Nmin,+ and b ∈ N such that Db+i(p, q) = c ⋅ i + d for all
i ≥ 0.

Proof of Theorem 18. Consider a polynomially-ambiguous WA A = (Q,Σ,{Ma}a∈Σ, I, F)
over Nmin,+ such that f = ⟦A⟧. We take as N the constant from Lemma 6 for the finite
monoid BQ×Q. The function ϕ ∶ N → N will be determined later in the proof. Consider an
n-pumping representation w like in the statement of the lemma. Recall that the output for
the word w is defined as I ⋅Mw ⋅ F . By Lemma 6, for every vk there exists a factorization
vk = xkykzk such that Myk is an idempotent and ∣yk ∣ ≤ N . We denote Dk =Myk and define:

w = u′0 ⋅ y1 ⋅ u′1 ⋅ y2 ⋅ . . . u′n−1 ⋅ yn ⋅ u′n

such that each word yk is the infix of vk corresponding to the idempotent Dk. For the rest
of the proof we denote w≤k = u′0 ⋅ y1 ⋅ . . . u′k−1. For every S ⊆ {1 . . . n} we denote by w≤k(S, i)
the word w≤k with all yj pumped i times for all j < k such that j ∈ S.

Recall that RunA(w) is the set of all accepting runs and let ρ ∈ RunA(w). Every run
induces two states for each 1 ≤ k ≤ n: states preceding and following each word yk. In the
rest of the proof these will be the most important parts of a run. To work with them, we
define the abstraction of ρ, denoted by ρ̄ ∶ {1 . . . n}→ Q ×Q, such that ρ̄(k) = (p, q) where p
and q are the ∣w≤k ∣-th and ∣w≤k ⋅ yk ∣-th states of ρ, respectively. Similarly, for S ⊆ {1 . . . n},
i ≥ 1, and ρ ∈ RunA(w(S, i)) we define ρ̄ ∶ {1 . . . n} → Q ×Q such that ρ̄(k) = (p, q) where p
and q are the ∣w≤k(S, i)∣-th and ∣w≤k(S, i) ⋅ yk(S, i)∣-th states of ρ, respectively. We denote
by RunA(w) the set of all abstraction of runs in RunA(w). Observe that since all Dk are
idempotents, RunA(w(S, i)) = RunA(w) for all subsets S and i ≥ 1.

The next step is to prove that there exists a polynomial function p(x), depending only on
A, such that ∣RunA(w)∣ ≤ p(n). Let w′ be the word obtained from w were each u′i is replaced
with a word u′′i of length at most ∣BQ×Q∣ such that Mu′i =Mu′′i (it is straightforward to prove
that u′′i exists by pigeonhole principle). Then ∣RunA(w′)∣ ≥ ∣RunA(w)∣. Recall that ∣yi∣ ≤ N
and that N depends only on ∣BQ×Q∣. Then by definition ∣w′∣ ≤ (N + ∣BQ×Q∣) ⋅ (n+ 1) and thus
∣RunA(w′)∣ ≤ r((N + ∣BQ×Q∣) ⋅ (n + 1)), where r is the polynomial bounding the number of
runs in A. The claim follows for p(n) = r((N + ∣BQ×Q∣) ⋅ (n + 1)).

Fix a nonempty set S ⊆ {1, . . . , n} and ρ ∈ RunA(w). For every k ∈ S let bkρ̄(k), c
k
ρ̄(k)

and dkρ̄(k) be the constants from Lemma 21 such that Dbkρ̄(k)+i
k [ρ̄(k)] = ckρ̄(k) ⋅ i + dkρ̄(k) for i

sufficiently large. Since ρ is accepting then ckρ̄(k), d
k
ρ̄(k) < +∞. We show that:

1. ⟦A⟧(w(S, i)) = ⟦A⟧(w(S, i + 1)) for i sufficiently large iff there exists a run ρ ∈ RunA(w)
such that ckρ̄(k) = 0 for every k ∈ S;

2. ⟦A⟧(w(S, i)) < ⟦A⟧(w(S, i+1)) for i sufficiently large iff for every run ρ ∈ RunA(w) there
exists k such that ckρ̄(k) > 0.

Let ρ ∈ RunA(w(S, i + 1)) be a run realizing the minimum value for i ≥ i0. Given
that Dk are idempotents one can always find a run ρ′ ∈ RunA(w(S, i)) such that ρ̄′ = ρ̄
by removing one part on each yk. In particular ∣ρ′∣ ≤ ∣ρ∣, which proves ⟦A⟧(w(S, i)) ≤
⟦A⟧(w(S, i + 1)). It follows that if we prove (1) then (2) also holds. To prove (1) suppose
first ⟦A⟧(w(S, i)) = ⟦A⟧(w(S, i + 1)) for i sufficiently large. Let ρ ∈ A(w(S, i + 1)) and
ρ′ ∈ A(w(S, i)) be the previous runs realizing the minimum and its shortening, respectively.

STACS 2018

50:12 Pumping Lemmas for Weighted Automata

Since ∣yk ∣ ≤ N we assume a universal bound i0 such that bkρ̄(k) = i0 for all k in Lemma 21.
By Lemma 21 Di0+i+1

k [ρ̄(k)] = ckρ̄(k) ⋅ (i + 1) + dkρ̄(k). If ckρ̄(k) > 0 for some k then the
inequality ⟦A⟧(w(S, i0 + i)) ≤ ⟦A⟧(w(S, i0 + i + 1)) would be sharp, which is a contradiction.
For the other direction suppose there exists a run ρ ∈ RunA(w) such that ckρ̄(k) = 0 for
every k ∈ S. Then for every i ≥ 0 there exists a run ρi ∈ RunA(w(S, i0 + i)) such that
∣ρi∣ ≤ ∣ρ∣ +∑k dkρ̄(k). Since ⟦A⟧(w(S, i0 + i)) ≤ ⟦A⟧(w(S, i0 + i + 1)) ≤ ∣ρ∣ +∑k dkρ̄(k) it follows
that ⟦A⟧(w(S, i0 + i)) = ⟦A⟧(w(S, i0 + i + 1)) for i sufficiently large.

Given the previous discussion, let R̄k = {ρ̄ ∈ RunA(w) ∣ ckρ̄(k) > 0} for every k ∈ {1, . . . , n}.
The set R̄k represents indirectly the runs that will grow when pumping w({k}, i). Then,
we can restate (2) as: ⟦A⟧(w(S, i)) < ⟦A⟧(w(S, i + 1)) for i sufficiently large iff ⋃k∈S R̄k =
RunA(w).

We are ready to prove the theorem. Fix a partition S1, . . . , Sm for some m ≥ ϕ(max ∣Sl∣).
Suppose the first condition is not true, namely, for all j there exists arbitrarily big values i such
that f(w(Sj , i)) ≠ f(w(Sj , (i + 1))). From (2) it follows that f(w(Sj , i)) < f(w(Sj , i + 1))
for i sufficiently large and ⋃k∈Sj R̄k = RunA(w) for every j ≤ m. Let L = max ∣Sl∣. We
assume that L > 1, otherwise every selection S contains a whole set Sk for some k and
we are done by (2). To construct the set S = {k1, . . . , km} we define by induction the
sets Gj . Let G0 = RunA(w) and for every j ∈ {1, . . . ,m} let Gj = RunA(w) ∖ ⋃l≤j R̄kl .
Intuitively, Gj correspond to runs that are not covered by the set {k1, . . . , kj}. For the
inductive case, suppose that Gj ≠ ∅. Since ⋃k∈Sj+1 R̄k = RunA(w), by the pigeonhole
principle there exist kj+1 ∈ Sj+1 such that ∣R̄kj+1 ∩ Gj ∣ ≥ ∣Gj ∣/∣Sj+1∣. We add kj+1 to S

and so ∣Gj+1∣ ≤ ∣Gj ∣ − ∣Gj ∣/∣Sj+1∣ = ∣Gj ∣ ⋅ (∣Sj+1∣ − 1)/∣Sj+1∣ ≤ ∣Gj ∣ ⋅ (L − 1)/L. Suppose this
procedure continues until j = m and Gm ≠ ∅. Then 1 ≤ ∣RunA(w))∣ ⋅ ((L − 1)/L)m, and
∣RunA(w))∣ ≥ (L/(L−1))m. However, we know that ∣RunA(w))∣ is bounded by a polynomial
function p(n) depending on ∣A∣. Thus, it suffices to choose ϕ such that m ≥ ϕ(L) implies
(L/(L − 1))m > p(L ⋅ m) ≥ p(n) ≥ ∣RunA(w))∣ (recall that S1, . . . , Sm is a partition of
{1, . . . , n} and L ⋅m ≥ n). Therefore, Gm = ∅ and thus ⋃k∈S R̄k = RunA(w), which concludes
the proof. J

6 Conclusions

We have shown three pumping lemmas for three different classes of functions. We believe
that the last pumping lemma in Section 5 could be proved for a wider class of functions that
would contain the class N+,×, but this is left for future work. As a corollary of our results,
we showed that regular functions over Nmin,+ form a strict hierarchy, namely:

U-WA (FA-WA (PA-WA (WA.

All strict inclusions, except for PA-WA (WA, could be extracted from the analysis of
examples in [16]. However, our results provide a general machinery to prove such results.

References

1 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted auto-
mata? In Tevfik Bultan and Pao-Ann Hsiung, editors, Automated Technology for Verific-
ation and Analysis, 9th International Symposium, ATVA 2011, Taipei, Taiwan, October
11-14, 2011. Proceedings, volume 6996 of Lecture Notes in Computer Science, pages 482–
491. Springer, 2011. doi:10.1007/978-3-642-24372-1_37.

http://dx.doi.org/10.1007/978-3-642-24372-1_37

F. Mazowiecki and C. Riveros 50:13

2 Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei
Yuan. Regular functions and cost register automata. In LICS, pages 13–22. IEEE Computer
Society, 2013.

3 Rajeev Alur and Mukund Raghothaman. Decision problems for additive regular functions.
In Automata, Languages, and Programming, pages 37–48. Springer, 2013.

4 Marcelo Arenas, Martin Munoz, and Cristian Riveros. Descriptive complexity for counting
complexity classes. In Logic in Computer Science (LICS), 2017 32nd Annual ACM/IEEE
Symposium on, pages 1–12. IEEE, 2017.

5 Udi Boker, Krishnendu Chatterjee, Thomas A Henzinger, and Orna Kupferman. Tem-
poral specifications with accumulative values. ACM Transactions on Computational Logic
(TOCL), 15(4):27, 2014.

6 Thomas Colcombet, Denis Kuperberg, Amaldev Manuel, and Szymon Toruńczyk. Cost
functions definable by min/max automata. In Nicolas Ollinger and Heribert Vollmer, edit-
ors, 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February
17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 29:1–29:13. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.29.

7 Karel Culik II and Jarkko Kari. Image compression using weighted finite automata. In
Mathematical Foundations of Computer Science 1993, pages 392–402. Springer, 1993.

8 Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. A generalised twinning prop-
erty for minimisation of cost register automata. In Martin Grohe, Eric Koskinen, and
Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 857–866.
ACM, 2016. doi:10.1145/2933575.2934549.

9 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

10 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer, 1st edition, 2009.

11 Andrzej Ehrenfeucht. An application of games to the completeness problem for formalized
theories. Fund. Math, 49(129-141):13, 1961.

12 Ronald Fraïsé. Sur quelques classification des systemes de relations. Université d/’Alger,
Publications Scientifiques, Série A, 1:35–182, 1984.

13 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

14 Daniel Kirsten. A burnside approach to the termination of mohri’s algorithm for polynomi-
ally ambiguous min-plus-automata. ITA, 42(3):553–581, 2008. doi:10.1051/ita:2008017.

15 Daniel Kirsten and Sylvain Lombardy. Deciding unambiguity and sequentiality of polyno-
mially ambiguous min-plus automata. In STACS, pages 589–600, 2009.

16 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unam-
biguity and sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput.
Sci., 327(3):349–373, 2004.

17 Stephan Kreutzer and Cristian Riveros. Quantitative monadic second-order logic. In LICS,
pages 113–122. IEEE Computer Society, 2013.

18 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. In Werner Kuich, editor, Automata, Languages and Programming,
19th International Colloquium, ICALP92, Vienna, Austria, July 13-17, 1992, Proceedings,
volume 623 of Lecture Notes in Computer Science, pages 101–112. Springer, 1992. doi:
10.1007/3-540-55719-9_67.

19 Leonid Libkin. Elements of finite model theory. Springer Science & Business Media, 2013.
20 Filip Mazowiecki and Cristian Riveros. Maximal partition logic: Towards a logical char-

acterization of copyless cost register automata. In 24th EACSL Annual Conference on

STACS 2018

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.29
http://dx.doi.org/10.1145/2933575.2934549
http://dx.doi.org/10.1051/ita:2008017
http://dx.doi.org/10.1007/3-540-55719-9_67
http://dx.doi.org/10.1007/3-540-55719-9_67

50:14 Pumping Lemmas for Weighted Automata

Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, pages 144–
159, 2015.

21 Filip Mazowiecki and Cristian Riveros. Copyless cost-register automata: Structure, express-
iveness, and closure properties. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Sym-
posium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016,
Orléans, France, volume 47 of LIPIcs, pages 53:1–53:13. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.53.

22 Mehryar Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269–311, 1997.

23 Joël Ouaknine and James Worrell. On the positivity problem for simple linear recurrence se-
quences,. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, edit-
ors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes
in Computer Science, pages 318–329. Springer, 2014. doi:10.1007/978-3-662-43951-7_
27.

24 Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear re-
currence sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias
Koutsoupias, editors, Automata, Languages, and Programming - 41st International Col-
loquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II,
volume 8573 of Lecture Notes in Computer Science, pages 330–341. Springer, 2014. doi:
10.1007/978-3-662-43951-7_28.

25 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1993.
26 Jean-Éric Pin. Mathematical foundations of automata theory. Lecture notes LIAFA, Uni-

versité Paris, 7, 2010.
27 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University

Press, 2009. URL: http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521844253.

28 M. P. Schützenberger. On the definition of a family of automata. Information and Control,
4:245–270, 1961.

29 Andreas Weber. Finite-valued distance automata. Theor. Comput. Sci., 134(1):225–251,
1994.

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.53
http://dx.doi.org/10.1007/978-3-662-43951-7_27
http://dx.doi.org/10.1007/978-3-662-43951-7_27
http://dx.doi.org/10.1007/978-3-662-43951-7_28
http://dx.doi.org/10.1007/978-3-662-43951-7_28
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253

	Introduction
	Preliminaries
	Weighted automata
	Finite monoids and idempotents

	Regular functions without min
	Finite-min regular functions
	Poly-ambiguous regular functions over the min-plus semiring
	Conclusions

