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Abstract
Single-round multiway join algorithms first reshuffle data over many servers and then evaluate
the query at hand in a parallel and communication-free way. A key question is whether a given
distribution policy for the reshuffle is adequate for computing a given query. This property is
referred to as parallel-correctness. Another key problem is to detect whether the data reshuffle
step can be avoided when evaluating subsequent queries. The latter problem is referred to as
transfer of parallel-correctness. This paper extends the study of parallel-correctness and transfer
of parallel-correctness of conjunctive queries to incorporate bag semantics. We provide semantical
characterizations for both problems, obtain complexity bounds and discuss the relationship with
their set semantics counterparts. Finally, we revisit both problems under a modified distribution
model that takes advantage of a linear order on compute nodes and obtain tight complexity
bounds.
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1 Introduction

The rise of parallel data management systems like, for instance, Spark [18] and Hadoop [11],
inspired a line of research on the foundations of parallel complexity of query evaluation.
Several papers investigate trade-offs between the number of rounds and the amount of
communication of parallel algorithms for join queries (e.g., [1–3, 6, 13, 14]). Among these,
the Hypercube algorithm [3, 6, 9] is a single-round algorithm that works in two phases.
The first phase is a distribution phase (where data is repartitioned or reshuffled over the
servers) that is followed by a computation phase, where each server contributes to the query
answer in isolation, by evaluating the query at hand over the local data without any further
communication.
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Ameloot et al. [5] introduced a framework for reasoning about generic one-round
Hypercube-style algorithms for the evaluation of join queries. In this model, the distri-
bution phase is modeled through a distribution policy specifying how the facts in the input
relations are distributed among the machines. They defined two problems:

Parallel-Correctness: Given a distribution policy and a query, can we be sure that the
corresponding generic one-round algorithm will always compute the query result correctly,
no matter the actual data?
Parallel-Correctness Transfer: Given two queries Q and Q′, can we infer from the fact
that Q is computed correctly under the current distribution policy, that Q′ is computed
correctly as well?

Ameloot et al. [5] obtained tight complexity bounds for (unions of) conjunctive queries
(with disequalities) for the above problems. In addition, they considered subcases that lower
the complexity by either restricting the structure of queries or restricting the family of
allowed distribution policies. Furthermore, it was shown (in the journal version and also
in [4]) that transferability of parallel-correctness for conjunctive queries is incomparable with
query containment. Geck et al. [10] consider the complexity of parallel-correctness for (unions
of) conjunctive queries with negation. As a by-product it is shown that the containment
problem for conjunctive queries with negation is coNEXPTIME-complete. Finally, Ketsman,
Albarghouthi and Koutris [12] introduce a framework to reason about multi-round evaluation
of Datalog programs and consider parallel-correctness for Datalog programs. Understanding
the optimization of single-round algorithms is still important as every multi-round algorithm
is a sequence of single-round steps and results from the single-round case can be transferred
to or used as inspiration for studying multi-round algorithms.

Whereas the bulk of the research related to conjunctive queries focuses on set semantics,
a more accurate approximation of SQL semantics is the bag semantics where multiplicities
of the same tuples are taken into account. Moreover, bag semantics is particularly relevant
for aggregate operators. In this paper, we therefore revisit parallel-correctness and parallel-
correctness transfer under bag semantics.

As in [5], we consider conjunctive queries (CQs), allowing disequalities. Parallel-correctness
under set semantics is characterized in terms of a property of minimal valuations. In brief, a
CQ is parallel-correct with respect to a distribution policy if and only if for every minimal
valuation for that query there is at least one compute node containing all the facts required
for that valuation. Using the latter characterization, Ameloot et al. [5] obtained that testing
parallel-correctness for CQs is Πp

2-complete. In Section 3, we prove the Highlander Lemma
stating that under bag semantics a CQ is parallel-correct with respect to a distribution policy
if and only if for every valuation (not only the minimal ones) there is exactly one compute
node containing all facts required for that valuation. Using the latter characterization, we
obtain that testing for parallel-correctness under bag semantics is coNP-complete. While
parallel-correctness under bag semantics implies parallel-correctness under set semantics,
the converse is not true. We obtain that when CQs are strongly minimal and distribution
policies are non-replicating, parallel-correctness coincides for set and bag semantics.

In a setting where multiple queries need to be evaluated, it is relevant to study whether
parallel-correctness carries over from one query to another. That is, whether two queries can
be evaluated after another without an intermediate reshuffling of the data. The latter can be
relevant w.r.t. ordering of queries to improve query evaluation. For instance, in the setting
of automatic data partitioning, an optimizer tries to automatically partition the base data
across multiple nodes to achieve overall optimal performance for a given workload of queries
(see, e.g., [15, 16]). In this setting, partitionings are thus instance dependent and not known
in advance.
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We say that parallel-correctness transfers from a query Q to a query Q′ when Q′ is
parallel-correct under every distribution policy P under which Q is parallel-correct. We prove
the Sandwich Lemma that provides a semantical characterization for parallel-correctness
transfer under bag semantics in terms of a sandwich property for valuations. Like in the
case for parallel-correctness, when comparing to set semantics, the characterization considers
all valuations instead of only the minimal ones. On the other hand, as a consequence
of the Highlander Lemma, the structure of queries can put additional requirements on
distribution policies that are bag-parallel-correct. Therefore, our semantical characterization
takes into account facts that are implied by a valuation w.r.t. a given query. Using the latter
characterization, we obtain a decision procedure in EXPTIME for testing parallel-correctness
transfer under bag semantics. In addition, we show that transferability under set and bag
semantics is incomparable in general but coincides for strongly minimal conjunctive queries
and non-replicating distribution policies.

The setting we have considered up to now allows every (distributed) compute node to
contribute to the query result. Indeed, as is the case for the Hypercube algorithm, the result
of the distributed query evaluation is the union of the results over all compute nodes. In this
setting and under bag-semantics, the Highlander Lemma of Section 3 implies that the space
of valuation for a conjunctive query should be perfectly partitioned over all compute nodes.
That is, every valuation should occur in exactly one compute node. The latter can lead to
situations where for particular queries the only bag-parallel-correct distribution policies are
those that assign all facts to one single node. To remedy this situation, we consider the setting
of ordered networks where every compute node is assigned a number and for every valuation
only the node with the smallest number containing all facts required for that valuation can
contribute to the query result. While both settings do not differ under set semantics, the
new setting is more natural for bag semantics. We characterize parallel-correctness as well as
transferability under bag semantics in this new setting and obtain tight complexity bounds.

In this paper, we make the following contributions:
1. The Highlander Lemma provides a semantical characterization of bag-parallel correctness.

We obtain tight bounds for the complexity of deciding bag-parallel-correctness. We show
that bag-parallel-correctness always implies set-parallel-correctness but not vice-versa and
obtain that they coincide for strongly minimal queries and non-replicating distribution
policies.

2. The Sandwich Lemma provides a semantical characterization of bag-parallel correctness
transfer. We obtain an EXPTIME upper bound for deciding bag-parallel correctness
transfer. We show that transfer of parallel-correctness under bag and set semantics is
incomparable. In addition, we show that they coincide for strongly minimal queries and
non-replicating distribution policies.

3. We introduce the ordered network model and again provide tight complexity bounds for
parallel-correctness and transfer.

Outline

This paper is structured as follows. In Section 2, we introduce the necessary definitions. In
Section 3 and Section 4, we consider parallel-correctness and parallel-correctness transfer
under bag semantics. We revisit both problems under a modified distribution model that
takes advantage of a linear order on compute nodes in Section 5. Finally, we conclude in
Section 6.

ICDT 2018
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2 Definitions

2.1 Queries and instances

We assume an infinite set dom of data values that are representable by strings over a fixed
alphabet. A database schema D is a finite set of relation names R where every R has arity
ar(R). A fact R(d1, . . . , dk) is over a database schema D and a universe U ⊆ dom where
R ∈ D, k = ar(R) and d1, . . . , dk ∈ U . We use Facts(D, U) to denote the set of all facts over
database schema D and universe U ⊆ dom. We note that U can be infinite. We sometimes
abbreviate Facts(D,dom) as Facts(D).

An annotated fact fa is a tuple (f ,m) with f a fact and m ∈ N+ the multiplicity of f .
Here N+ denotes the set of strictly positive integers. A bag of facts F is a set of annotated
facts. Every fact f may appear at most once as an annotated fact in B. That is, (f ,m) ∈ B
and (f ′,m′) ∈ B implies f 6= f ′. Intuitively, the multiplicity m of a fact f indicates the
number of times f appears in the bag. We denote the set of facts appearing in F by Facts(F )
and the multiplicity of a fact f in the bag F by mulF (f). For convenience, we abuse notation
and extend mulF (f) to arbitrary facts by setting mulF (f) = 0 when f /∈ Facts(F ). We next
define the notion of bag union and subbag. We overload notation by using the same symbols
as for set union and subset. It should always be clear from the context whether we refer to
bags or to sets. For two bags of facts F and G, the bag union, denoted F ∪ G, is defined
as Facts(F ) ∪ Facts(G) and mulH(f) = mulF (f) + mulG(f) for each fact f ∈ Facts(H).
Furthermore, F is a subbag of G, denoted F ⊆ G, if mulF (f) ≤ mulG(f) for each fact
f ∈ Facts(F ). By |F |, we denote the number of facts in F , that is,

∑
f∈Facts(F ) mulF (f).

A database instance I, instance for short, over a database schema D is a bag of facts,
with Facts(I) ⊆ Facts(D). We use adom(I) to denote the set of data values occurring in I.

A query Q over input schema D1 and output schema D2 is a generic mapping from
instances over D1 to instances over D2. A query Q is monotone if Q(I ′) ⊆ Q(I) for every
pair of instances I and I ′ with I ′ ⊆ I.

2.2 Conjunctive queries

Assume an infinite set of variables var, disjoint from dom. An atom over a database schema
D is of the form R(x), with R ∈ D and x = (x1, . . . , xk) a tuple of variables in var with
k = ar(R).

A conjunctive query Q over input schema D is an expression of the form

T (x)← R1(y1), . . . , Rm(ym), β1, . . . , βp

where every Ri(yi) is an atom over D, T (x) is an atom, called the head atom, with T 6∈ D,
and every βi is a disequality of the form z 6= z′ (with z a variable different from z′). Every
variable x ∈ x needs to appear in at least one yi. We require that every variable occurring
in a disequality occurs in at least one yi. Furthermore, we refer to T (x) as headQ, to the set
{R1(y1), . . . , Rm(ym)} as bodyQ and to the set of all variables occurring in Q as vars(Q).

We denote by CQ 6= the set of all conjunctive queries (allowing disequalities) and by CQ
the set of conjunctive queries without disequalities. A conjunctive query with disequalities is
without self-joins if all of its atoms have distinct relation names. A conjunctive query with
disequalities Q is full if every variable occurring in Q appears in the head atom.

A valuation for a conjunctive query Q ∈ CQ 6= is a total function V : vars(Q)→ dom
that is consistent with the disequalities in Q. More specifically: for every z 6= z′ in Q it holds
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that V (z) 6= V (z′). Valuations naturally extend to atoms and sets of atoms. We refer to
V (bodyQ) as the set of facts required by V .

A valuation V satisfies a conjunctive query Q ∈ CQ6= on instance I if V (bodyQ) ⊆
Facts(I). In that case, V derives the annotated fact fa = (V (headQ),m), with

m =
∏

f∈V (bodyQ)

mulI(f).

For convenience, we also say that V derives the fact f = V (headQ) if V satisfies Q on I.
The result of V on an instance I, denoted [Q, V ](I), is the bag of annotated facts derived by
V on instance I. This bag is empty when V does not satisfy Q on I. When V does satisfy Q
on I, the set Facts([Q, V ](I)) is always a singleton. The result Q(I) of a conjunctive query
Q ∈ CQ 6= on I is defined as the bag union over all results of satisfying valuations for Q on I:

Q(I) =
⋃
V ∈V

[Q, V ](I)

with V the set containing all valuations that satisfy Q on I.

2.3 Networks, data distribution and policies
A network N is a nonempty finite set of values from dom, called nodes.

A distribution policy specifies how a database, possibly already distributed, is reshuffled by
determining which fact is sent to which server. Formally, a distribution policy P = (U, rfactsP )
for a database schema D and a network N consists of a universe U and a total function
rfactsP : N → 2Facts(D,U) mapping each node κ ∈ N onto a set of facts from Facts(D, U).
A node κ ∈ N is responsible for a fact f ∈ Facts(D, U) under P if f ∈ rfactsP (κ). For an
instance I, the function loc-instP ,I maps each node κ ∈ N to the bag of facts it is responsible
for. More formally, (f ,m) ∈ loc-instP ,I(κ) iff (f ,m) ∈ I and f ∈ rfactsP (κ). We refer to I
as the global instance and to loc-instP ,I(κ) as the local instance at node κ.

As distribution policies are defined on facts, either all copies of a certain fact are sent to
a specific server or none are. The latter happens for instance when using hash functions to
define distribution policies as is the case for instance for Hypercube [3, 6, 9].

Next, we define the one-round distributed evaluation induced by P . Query Q is evaluated
at each node κ separately, after which the bag union of all results is taken:

[Q,P ](I) =
⋃
κ∈N
Q(loc-instP ,I(κ)).

2.4 Classes of distribution policies
To reason about the complexity of problems involving distribution policies (which are just
defined as functions), we need to consider a representation mechanism for these policies. For
this, we first discuss the classes Pfin and Pnondet as introduced by Ameloot et al. [5] and
then describe the class Pdet .

The class Pfin is defined over distribution policies with a finite universe. Intuitively,
Pfin allows to express all distribution policies over a finite universe, but uses the most
naive and exhaustive representation mechanism: explicit enumeration. Formally, a policy
P = (U, rfactsP ) belongs to Pfin if U is a finite set. Such policies are represented by an
explicit enumeration of the data values in U and an explicit enumeration of all pairs (κ,f)
where f ∈ rfactsP (κ).

ICDT 2018
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A more general way to describe classes of distribution policies by an arbitrarily succinct
representation is by means of a “test algorithm” that allows to decide f ∈ rfactsP (κ) with
time bound `k, where ` is the length of the input and k a constant. We call this class Pnondet .
More precisely, a policy P = (U, rfactsP ) over network N is in Pknondet if it is specified by a
pair (n,AP ), with n a natural number in unary representation and AP a non-deterministic
algorithm. The value n is used to give an upper bound to the length of data values in universe
U and on the names of nodes in N . More specifically, the universe U consists of all data
values representable by a string of length at most n and the network N consists of all nodes
representable by strings of length at most n. A fact f is in rfactsP (κ) for a given node κ if
AP has an accepting run of at most |(κ,f)|k steps on input (κ,f). We define Pnondet as the
set {Pknondet | k ≥ 2}. We remark that each policy in Pfin can thus be described in P2

nondet .
The complexity of deciding set-parallel-correctness is so high that complexity bounds

are retained even when considering policies in Pknondet. For bag-parallel-correctness this is
not the case and considering policies from Pknondet artificially increases the complexity of
the decision problem. Therefore, for bag-parallel-correctness, we use the class Pkdet , which is
defined next. A policy P = (U, rfactsP ) is in Pkdet if it can be specified by a tuple (N , n,AP )
where N is an explicit enumeration of the nodes in the network, n is a natural number in
unary representation and AP is a deterministic algorithm. The universe U of P is the set of
values representable by strings of length at most n. Given a fact f and node κ, algorithm
AP decides in at most |(κ,f)|k steps whether f ∈ rfactsP (κ). We define Pdet as the set of
policies {Pkdet | k ≥ 2}.

Since each distribution policy implicitly induces a network and each query implicitly
defines a database schema, we often omit the explicit notation for networks and schemas.

3 Parallel-correctness

Intuitively, the notion of parallel-correctness relates to whether the distributed execution of
a query with relation to a specific distribution policy produces the correct result. That is,
whether the distributed execution produces the same result as when the query was evaluated
on the global instance.

3.1 Definition and results for set-parallel-correctness

We distinguish between parallel-correctness under the set and under the bag semantics. The
former was introduced in [5] and we refer to it as set-parallel-correctness. We next generalize
the notion to bag semantics and call it bag-parallel-correctness. Recall that Facts(F ) denotes
the set of facts occurring in the bag F .

I Definition 3.1. Let Q be a query and P a distribution policy. Then,
Q is bag-parallel-correct on instance I under P if Q(I) = [Q,P ](I);
Q is set-parallel-correct on instance I under P if Facts(Q(I)) = Facts([Q,P ](I)); and,
Q is bag-parallel-correct (resp., set-) under P if Q is bag-parallel-correct (resp., set-) on
all instances I under P .

We now formally define the decision problems related to parallel-correctness. In the
following, C denotes a query class, P denotes a class of distribution policies, and x ∈ {set, bag}.
Then, define the following problem definitions:
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PCIx(C, P, I)

Input: Query Q ∈ C, distribution policy P ∈ P, instance I

Question: Is Q x-parallel-correct on I under P ?

PCx(C, P)

Input: Query Q ∈ C, distribution policy P ∈ P

Question: Is Q x-parallel-correct under P ?

We recall the following result by Ameloot et al. [5]:

I Theorem 3.2 ([5]). Problems PCIset(C,P) and PCset(C,P) are Πp
2-complete for every

query class C ∈ {CQ,CQ 6=} and for every policy class P ∈ {Pfin} ∪Pnondet.

The upper bounds given by the above theorem follow rather directly from the semantical
characterization given in the next lemma. To this end, we need the notion of minimal
valuations. For Q in CQ6=, a valuation V is minimal if there is no valuation V ′ for Q
that derives the same head fact with a strict subset of body facts, that is, such that
V ′(bodyQ) ( V (bodyQ) and V ′(headQ) = V (headQ). Recall from the definitions that
V (bodyQ) always refers to a set of facts, regardless of the considered semantics.

I Lemma 3.3 ([5]). Let Q be in CQ 6=. Then Q is set-parallel-correct under distribution
policy P = (U, rfactsP ) if and only if for every minimal valuation V for Q over U , there is
a node κ ∈ N such that V (bodyQ) ⊆ rfactsP (κ).

3.2 Bag-parallel-correctness
We now discuss the problem of deciding bag-parallel-correctness. To start, we obtain a
property that characterizes bag-parallel-correctness in direct analogy to Lemma 3.3. The
characterization for bag-parallel-correctness is again related to valuations but is more strict
than the condition of Lemma 3.3 in two different ways. First, the condition should now hold
for all valuations not just the minimal ones. Second, the condition requires that, for each
valuation, there can be only one node harboring all the required facts for that valuation.

To prove the next lemma, we introduce the notion of support. For Q ∈ CQ 6= and
distribution policy P , we say that node κ supports valuation V for Q, if V (bodyQ) ⊆
rfactsP (κ). By SupP (Q, V ), we denote the set of all nodes that support V under P .

I Lemma 3.4 (Highlander Lemma3). For Q ∈ CQ6= and a distribution policy P = (U, rfactsP )
over N , Q is bag-parallel-correct under P if and only if |SupP (Q, V )| = 1, for every valuation
V for Q.

Proof sketch. (If). Since every valuation V for Q is supported by exactly one node, bag-
parallel-correctness follows trivially.

(Only-if). Let Q be bag-parallel-correct for P . We claim that for all valuations V
for Q, |SupP (Q, V )| ≤ 1. Indeed, if there is a valuation V with |SupP (Q, V )| > 1 and
f = V (headQ), it follows that the multiplicity of f in [Q,P ](I) with Facts(I) = V (bodyQ)
is too high.

It remains to argue that there cannot be a valuation V for Q with |SupP (Q, V )| = 0.
Assume towards a contradiction that such a valuation V exists, and let f = V (headQ). For

3 “There can be only one.” https://en.wikipedia.org/wiki/Highlander_(film)
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an arbitrary instance I with Facts(I) = V (bodyQ), the resulting multiplicity of f in [Q,P ](I)
is too low, unless there is a valuation W for Q with f = W (headQ) and |SupP (Q,W )| > 1.
But this contradicts our earlier claim. J

We next obtain the complexity of deciding bag-parallel-correctness. The upper bound
follows rather directly from Lemma 3.4. The lower bound is a reduction from the complement
of 3-SAT.

I Theorem 3.5. PCbag(C,P) is coNP-complete for every query class C ∈ {CQ,CQ 6=} and
every policy class P ∈ {Pfin} ∪Pdet, even over networks with only two nodes.

3.3 Relationship between set- and bag-parallel-correctness
We next address the relationship between set- and bag-parallel-correctness. The implication
in the following proposition follows immediately from Lemma 3.3 and Lemma 3.4. A
counterexample for the converse is given in Example 3.7.

I Proposition 3.6. Bag-parallel-correctness implies set-parallel-correctness for queries in
CQ6=, but not vice-versa.

I Example 3.7. For an example showing that the reverse direction of Proposition 3.6 does
not hold, consider query Q: T (x) ← R(x). Let P = (U, rfactsP ) be a distribution policy
over network N = {κ1, κ2}, with rfactsP (κ1) = rfactsP (κ2) = {R(a), R(b)}, and U = {a, b}.

We observe that Q has only two valuations under U which in addition are minimal:
Va = {x 7→ a} and Vb = {x 7→ b}. Since SupP (Q, V1) = SupP (Q, V2) = {κ1, κ2} it
follows immediately from Lemma 3.3 and Lemma 3.4 that Q is set-parallel-correct, but not
bag-parallel-correct, under P . J

Interestingly, we can identify a class of CQ 6=-queries and a class of distribution policies
for which the notions of set- and bag-parallel-correctness coincide. First, we introduce the
necessary definitions.

A query in CQ6= is strongly minimal if all its valuations are minimal. We consider the
family of non-replicating distribution policies that do not replicate any fact onto multiple
nodes. More formally, a distribution policy P = (U, rfactsP ) over a network N is non-
replicating if and only if rfactsP (κ1) ∩ rfactsP (κ2) = ∅ for every pair of nodes κ1, κ2 ∈ N
with κ1 6= κ2.

I Theorem 3.8. For a strongly minimal query Q in CQ6= and a non-replicating distribution
policy P , Q is bag-parallel-correct under P iff Q is set-parallel-correct under P .

Proof. It follows from Proposition 3.6 that bag-parallel-correctness of Q under P implies
set-parallel-correctness. We show the reverse direction through Lemma 3.4. For this, let V
be an arbitrary valuation for Q. Since Q is set-parallel-correct under P , and V is minimal
(due to strong minimality of Q), it follows from Lemma 3.3 that |SupP (Q, V )| ≥ 1. Since P

is non-replicating, the latter implies |SupP (Q, V )| = 1. J

Notice that in the constructed counterexample from Example 3.7, the query Q is strongly
minimal, but P is replicating. In the following example we show that, for Theorem 3.8, the
condition that Q is strongly minimal can not be dropped.

I Example 3.9. Consider query Q: T (x) ← R(x), R(y), and network N = {κ1, κ2}. Let
P = (U, rfactsP ) be a distribution policy over U = {a, b} and N , with rfactsP (κ1) = {R(a)}
and rfactsP (κ2) = {R(b)}. Notice that P is non-replicating.
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We observe that P is set-parallel-correct for Q. Indeed, there are only two minimal
valuations for Q over U : Va = {x 7→ a, y 7→ a} and Vb = {x 7→ b, y 7→ b}. Furthermore, Va is
supported by κ1 while Vb is supported by κ2. The result then follows from Lemma 3.3.

For non-minimal valuation V = {x 7→ a, y 7→ b}, we observe that |SupP (Q, V )| = ∅. Thus
P cannot be bag-parallel-correct for Q (due to Lemma 3.4). J

4 Transferability

Parallel-correctness transfers from a query Q to a query Q′ when Q′ is parallel-correct under
every distribution policy P under which Q is parallel-correct. This means in particular that
query Q′ can always be evaluated after query Q without an intermediate, possibly expensive,
reshuffling of the data. The present section studies parallel-correctness transfer under bag
semantics.

4.1 Definition and results for transferability under set semantics
The notion of parallel-correctness transfer was introduced by Ameloot et al. [5]. We next
distinguish between transferability under set and bag semantics.

I Definition 4.1. For two queries Q and Q′ over the same input schema, bag-parallel-
correctness transfers from Q to Q′ if Q′ is bag-parallel-correct under every distribution policy
for which Q is bag-parallel-correct. In this case, we write Q bag−−→ Q′. Set-parallel-correctness
transferability is defined similarly and denoted by Q set−−→ Q′.

I Lemma 4.2 ([5]). For queries Q,Q′ ∈ CQ 6=, set-parallel-correctness transfers from Q
to Q′ if for each minimal valuation V ′ for Q′ there is a minimal valuation V for Q where
V ′(bodyQ′) ⊆ V (bodyQ) and adom(V ′(bodyQ′)) = adom(V (bodyQ)).

4.2 Transferability under bag semantics
The following example highlights how, depending on the structure of the query, different
valuations must be supported by the same compute node for distribution policies under
which the query is bag-parallel-correct. In particular, the example shows that the assignment
of a fact to a particular node can imply that other facts should be assigned to that same
node as well.

I Example 4.3. Consider the query Q : H(x)← R(x, y), R(x, z). Let P be a distribution
policy under which Q is bag-parallel-correct. Assume R(a, a) ∈ rfactsP (κ) for some node κ.
Then, by Lemma 3.4, every fact of the form R(a, c) for any c should belong to rfactsP (κ) as
well. Furthermore, denoting the valuation {x 7→ a, y 7→ b, z 7→ c} by Wa,b,c, the following set
of valuations {Wa,b,c | b, c ∈ U} for a fixed a have to be supported by the same node. J

We formally define the set of facts that are implied by a valuation w.r.t. a given query.

I Definition 4.4. Let V be a valuation for Q ∈ CQ 6=. A fact f is implied by V w.r.t. Q if
for every distribution policy P = (U, rfactsP ), with adom(V (bodyQ)) ⊆ U under which Q
is bag-parallel-correct, and for every node κ in the network of P : V (bodyQ) ⊆ rfactsP (κ)
implies f ∈ rfactsP (κ). We denote the set of facts implied by V w.r.t. Q by ImpFacts(V,Q).

Notice that ImpFacts(V,Q) is well-defined as there is always a distribution policy under
which Q is bag-parallel-correct: namely, the policy which is defined over a single-node network
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and maps all facts to a single node. Furthermore, ImpFacts(V,Q) ⊆ rfactsP (κ) whenever
V (bodyQ) ⊆ rfactsP (κ) for every distribution policy P under which Q is bag-parallel-correct.

We are now ready to characterize bag-parallel-correctness transfer. The lemma plays a
role similar to the Highlander Lemma and requires that every valuation for the second query
is sandwiched between a valuation for the first query and the implied facts.

I Lemma 4.5 (Sandwich lemma). Bag-parallel-correctness transfers from Q to Q′ if and
only if for each valuation V ′ for Q′ there is a valuation V for Q such that V (bodyQ) ⊆
V ′(bodyQ′) ⊆ ImpFacts(V,Q).

Proof. (If). Let P = (U, rfactsP ) be an arbitrary distribution policy such that Q is bag-
parallel-correct under P . Let V ′ be an arbitrary valuation for Q′ over U . We argue
that |SupP (Q′, V ′)| = 1 which by Lemma 3.4 implies that Q′ is bag-parallel-correct under
P as well. By assumption there is a valuation V for Q over U such that V (bodyQ) ⊆
V ′(bodyQ′) ⊆ ImpFacts(V,Q). Then, by Lemma 3.4, SupP (Q, V ) = {κ} for some node κ and
ImpFacts(V,Q) ⊆ rfactsP (κ). Therefore, V ′(bodyQ′) ⊆ rfactsP (κ). So, |SupP (Q′, V ′)| ≥ 1.
However, as V (bodyQ) ⊆ rfactsP (κ) and SupP (Q, V ) = {κ}, |SupP (Q′, V ′)| = 1.

(Only-If). The proof is by contraposition. In particular, we show that bag-parallel-
correctness does not transfer from Q to Q′ if the condition of the lemma fails for some
valuation V ′ for Q′. We distinguish two cases: the case when no valuation V for Q exists
with V (bodyQ) ⊆ V ′(bodyQ′), and the case when for each valuation V , with V (bodyQ) ⊆
V ′(bodyQ′), we have that V ′(bodyQ′) 6⊆ ImpFacts(V,Q).

Case 1: there is no valuation V with V (bodyQ) ⊆ V ′(bodyQ′). We construct the policy
P over a two-node network {κ1, κ2} and universe U consisting of all domain values used by
V ′, with rfactsP (κ1) = Facts(D, U) and rfactsP (κ2) = V ′(bodyQ′). Then, SupP (Q′, V ′) =
{κ1, κ2} and Lemma 3.4 implies that P is not bag-parallel-correct for Q′. In contrast, every
valuation for Q is supported only on node κ1 (as none of them are included in V ′(bodyQ′))
which implies that P is bag-parallel-correct for Q. We conclude that bag-parallel-correctness
does not transfer from Q to Q′.

Case 2: for each valuation V , V (bodyQ) ⊆ V ′(bodyQ′) implies V ′(bodyQ′) 6⊆
ImpFacts(V,Q). From the previous case, we can assume the existence of a valuation
V with V (bodyQ) ⊆ V ′(bodyQ′). Then, by definition of ImpFacts(V,Q), V ′(bodyQ′) 6⊆
ImpFacts(V,Q) implies that there must be a policy P (over some network N ) such that
Q is bag-parallel-correct under P and P has a node κ with V (bodyQ) ⊆ rfactsP (κ) and
V ′(bodyQ′) 6⊆ rfactsP (κ). From Lemma 3.4, it follows that for all other nodes κ′, that is
κ′ ∈ N \ {κ}, V (bodyQ) 6⊆ rfactsP (κ′), and thus V ′(bodyQ′) 6⊆ rfactsP (κ′). Hence, P is not
bag-parallel-correct for Q′ and, consequently, bag-parallel-correctness does not transfer from
Q to Q′. J

Notice that the inclusion between V (bodyQ) and V ′(bodyQ′) in Lemma 4.5 is in the
opposite direction as in Lemma 4.2, since the inclusion now asserts that V ′ is supported by
at most one node instead of at least one.

We formally define the respective decision problems for x ∈ {set,bag}. By C and C′ we
denote query classes.

PC-Transx(C, C′)

Input: Query Q ∈ C, query Q′ ∈ C′

Question: Does x-parallel-correctness transfer from Q to Q′?
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Algorithm 1 max-proof-forest(Q, U).
Let I be the set of single-node IF-proof-trees, one for each set V (bodyQ), where V is a
valuation for Q over U .
while Distinct T1,T2 ∈ I and V for Q over U exist, with V (bodyQ) ⊆ InstT1(n1) ∩
InstT2(n2), with n1, n2 the roots of T1,T2 respectively do

Remove T1 and T2 from I
Insert new node n with children T1 and T2 to I
InstT(n) = InstT1(n1) ∪ InstT2(n2);

end while
return I

Algorithm 2 max-proof-tree(V,Q, U).
Compute max-proof-forest(Q, U).
return The unique tree T, with V (bodyQ) ⊆ InstT(n), where n is the root of T.

Recall that under set semantics PC-Transset(CQ 6=,CQ 6=) is Πp
3-complete [5]. In the

remainder of this section, we obtain the following result:

I Theorem 4.6. PC-Transbag(CQ 6=,CQ6=) is in exptime.

We introduce IF-proof-trees as a means for reasoning on implied facts.

I Definition 4.7. For a query Q and universe U ⊆ dom, an IF-proof-tree T for Q over U
is a binary tree in which all nodes n have an instance InstT(n) as label with the following
conditions:
1. If n is a leaf, then InstT(n) = V (bodyQ) for some valuation V for Q over U ;
2. If n is an intermediate node with children n1 and n2, then InstT(n) = InstT(n1) ∪

InstT(n2), and some valuation V for Q over U exists with V (bodyQ) ⊆ InstT(n1) ∩
InstT(n2).

In the next lemma, we relate IF-proof-trees and bag-parallel-correct distribution policies.
In particular, the lemma says that all facts occurring together in an IF-proof-tree for a given
query have to be assigned to exactly one compute node by every distribution policy that is
bag-parallel-correct for that query.

I Lemma 4.8. Let Q ∈ CQ 6= and T an IF-proof-tree over universe U ′. For every distribution
policy P = (U, rfactsP ) with U ′ ⊆ U (over some network N ) that is bag-parallel-correct for
Q, there is exactly one node κ ∈ N , with InstT(n) ⊆ rfactsP (κ), for every n in T.

Algorithm 1 is a procedure that constructs all maximal IF-proof-trees. We notice that at
each point during the evaluation of max-proof-forest(Q, U), all trees in I are valid IF-
proof-trees for Q and U , by construction. In particular, the output of Algorithm 1 contains for
every valuation V a unique tree with V (bodyQ) ⊆ InstT(n). Indeed, if two such trees would
exist, they would have been combined into a new tree by construction. Algorithm 2 then
selects the unique tree w.r.t. a given valuation. We notice that max-proof-tree(V,Q, U)
is well-defined, since, if V is a valuation for Q over U , then the desired tree T indeed exists.

The next lemma shows that max-proof-tree(V,Q, U) computes precisely the facts that
are implied by V and Q.

I Lemma 4.9. For a query Q and valuation V for Q, f ∈ ImpFacts(V,Q) if and only if
f ∈ InstT(n), with n being the root of T =max-proof-tree(V,Q, U).
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(a) Bag-parallel-correctness transfer.
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(b) Set-parallel-correctness transfer.

Figure 1 Relationship between the queries of Section 4.3 with respect to (a) bag-parallel-
correctness transfer and (b) set-parallel-correctness transfer.

Observe that when U is finite, max-proof-tree(V,Q, U) runs in time exponential in
the size of Q and U . The next lemma says that we can restrict attention to finite universes
of size bounded by the number of variables in the queries.

I Lemma 4.10. Let Q,Q′ ∈ CQ 6= and domk = {1, . . . , k} be a subset of dom, where
k = max(|Vars(Q)|, |Vars(Q′)|). The following conditions are equivalent:
(1) For each valuation V ′ for Q′ over U ⊆ dom, there exists a valuation V for Q over U

such that V (bodyQ) ⊆ V ′(bodyQ′) ⊆ ImpFacts(V,Q).
(2) For each valuation W ′ for Q′ over Uk ⊆ domk, there exists a valuation W for Q over

Uk such that W (bodyQ) ⊆W ′(bodyQ′) ⊆ ImpFacts(W,Q).

We are now ready to prove Theorem 4.6.

Proof. (of Theorem 4.6) The proof is by a naive verification of condition (2) of Lemma 4.10.
More specifically, for every universe U ⊆ domk and every valuation V for Q over U , we
compute ImpFacts(V,Q) through max-proof-tree(V,Q, U) (cf. Lemma 4.9). Then, for
every valuation V ′ for Q′ over U and every valuation V for Q over U we test condition
V (bodyQ) ⊆ V ′(bodyQ′) ⊆ ImpFacts(V,Q). If for some V ′ no V is found that satisfies the
condition, then the algorithm returns false, otherwise it returns true.

Correctness of the algorithm follows directly from Lemma 4.10 and Lemma 4.5. It remains
to show that this algorithm proceeds in exponential time in the size of Q and Q′. For this,
we recall that domk is linear in Q and Q′ by construction, and thus that there are only
exponentially many universes U ⊆ domk (w.r.t Q and Q′). The set of implied facts for a
given V and Q, restricted to U , is computable in exponential time and itself is of at most
exponential size. Since only exponentially many valuations for Q and Q′ exist over U , and
the test condition itself proceeds in a linear run over the set of implied facts, the result
follows. J

4.3 Relationship between transferability under set and bag semantics
We argue that set-parallel-correctness transfer is orthogonal to bag-parallel-correctness
transfer. Indeed, consider the following queries:

Q1 : H()← R(x, y), R(z, w).
Q2 : H()← R(x, x), R(y, y), R(z, z), x 6= y, y 6= z, x 6= z.

Q3 : H()← R(x, y), R(x, z), y 6= z.

Q4 : H()← R(x, y), R(y, z), R(x, x).
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Figure 1 shows the directions in which set-parallel-correctness transfer and bag-parallel-
correctness transfer hold. In particular, when an edge is missing, there is no set- or bag-
parallel-correctness transfer between the two queries.

The next lemma follows directly from Theorem 3.8.

I Lemma 4.11. For strongly minimal queries Q,Q′ ∈ CQ6= and non-replicating distribution
policies, we have that Q bag−−→ Q′ if and only if Q set−−→ Q′.

5 Modifying the distribution model

As already hinted upon in the Introduction, the Highlander Lemma of Section 3 implies
that the space of valuations for a conjunctive query should be perfectly partitioned over all
compute nodes. That is, every valuation should occur in exactly one compute node. We next
give a simple example query for which the distribution policies that are bag-parallel-correct
for it, have to map all facts to a single node.

I Example 5.1. Consider the query Q : H(x, z)← R(x, y), R(y, z). We argue that distribu-
tion policies that map all facts to a single node are the only distribution policies that are
bag-parallel-correct. Indeed, let P be a distribution policy that is bag-parallel-correct for Q.
Assume R(a, a) ∈ rfactsP (κ) for some node κ. Then, the valuation {x 7→ a, y 7→ a, z 7→ b}
(for every b) together with Lemma 3.4, implies that every fact of the form R(a, b) for any b
should belong to rfactsP (κ) as well. Furthermore, the valuation {x 7→ a, y 7→ b, z 7→ c} (for
every b and c) together with Lemma 3.4, implies that every fact of the form R(b, c) for any b
and any c should belong to rfactsP (κ) as well. Consequently, P , to be bag-parallel-correct
for Q, maps all facts to node κ. J

The previous example shows that there are queries where the demand for bag-parallel-
correctness effectively prohibits parallel computation. We note that this is not the case for
all queries. See for instance Example 4.3.

In this section, we consider the setting of ordered networks where every compute node is
assigned a number and for every valuation only the node with the smallest number containing
all facts required for that valuation can contribute to the query result. While both settings
do not differ under set semantics, the new setting is more natural for bag semantics and
alleviates the problem put forward in Example 5.1.

We associate a total order <N to every network N . We refer to these networks as ordered
networks. The definition of a distribution policy P = (U, rfactsP ) seamlessly carries over to
ordered networks. Let Q be a query and V be a valuation over U for Q. Then, we say that
a node κ ∈ N is responsible for V (of Q) if V (bodyQ) ⊆ rfactsP (κ) and there is no node
κ′ ∈ N with κ′ <N κ and V (bodyQ) ⊆ rfactsP (κ′). Intuitively, the node responsible for a
valuation V is the smallest node in the ordered network containing all the facts for V (bodyQ).

We redefine the one-round distributed evaluation induced by P and <N as follows:

[Q,P , <N ](I) =
⋃

κ∈N ,V ∈Vκ

[Q, V ](loc-instP ,I(κ))

with Vκ the set of valuations for which κ is responsible.
The notions of set- and bag-parallel-correctness carry over directly to the setting of

ordered networks. Notice that under set-semantics it does not matter whether the ordering
of nodes is taken into account.

I Proposition 5.2. For each query Q, distribution policy P , and ordered network (N , <N ),
the following hold for all instances I:
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1. [Q,P , <N ](I) ⊆ [Q,P ](I);
2. [Q,P , <N ](I) ⊆ Q(I); and,
3. Facts([Q,P ](I)) = Facts([Q,P , <N ](I));

In particular, Proposition 5.2(3) implies that Theorem 3.2 and Lemma 3.3 carry over to
ordered networks. The next lemma provides characterizations of bag-parallel-correctness and
transferability over ordered networks.

I Lemma 5.3. Let Q and Q′ be in CQ 6=. Let P = (U, rfactsP ) be a distribution policy over
an ordered network N . Then the following characterizations hold true:
1. Q is bag-parallel-correct under P if and only if for every valuation V for Q over U there

is a node κ with V (bodyQ) ⊆ rfactsP (κ); and,
2. bag-parallel-correctness transfers from Q to Q′ over ordered networks if and only if for

each valuation V ′ for Q′ over a universe U ′ there is a valuation V for Q over U ′ such
that V ′(bodyQ′) ⊆ V (bodyQ).

Notice the similarity with Lemma 3.3 and Lemma 4.2. In particular, the inclusion between
V (bodyQ) and V ′(bodyQ′) now is in the same direction as in Lemma 4.2. The only difference
is that in the above lemma all valuations are considered rather than only the minimal ones.
The latter is reflected in the complexity of the associated decision problems.

We formally define the respective decision problems. By C and C′ we denote query classes,
by P a class of distribution policies.

PCbag
<N (C, P)

Input: Query Q ∈ C, distribution policy P ∈ P

Question: Is Q bag-parallel-correct under P ?

PC-Transbag
<N (C, C′)

Input: Query Q ∈ C, query Q′ ∈ C′

Question: Does bag-parallel-correctness transfer from Q to Q′?

Using the characterizations in Lemma 5.3, we obtain the following results.

I Theorem 5.4. 1. PCbag
<N (CQ,Pfin) is coNP-hard and PCbag

<N (CQ 6=,P) is in coNP
for all P ∈ {Pfin} ∪Pdet; and

2. PC-Transbag<N (CQ 6=,CQ 6=) and PC-Transbag<N (CQ 6=,CQ) are Πp
2-complete; and

3. PC-Transbag<N (CQ,CQ 6=) and PC-Transbag<N (CQ,CQ) are np-complete.

Proof sketch. (1) We first argue that PCbag
<N (CQ 6=,P) is in coNP for P ∈ {Pfin}∪Pdet .

The required algorithm follows from Lemma 5.3(1). It suffices to guess a valuation V and a
node κ and verify that V (bodyQ) 6⊆ rfactsP (κ) to check whether Q is not bag-parallel-correct
under a given distribution policy P .

To show that PCbag
<N (CQ,Pfin) is coNP-hard, we use a reduction from the problem

that asks whether a given graph is not 3-colorable. Let G be an arbitrary undirected graph
with n edges. We construct a query Q and policy P over a network with n nodes and a
universe U = {r, g, b} as follows: For every edge e = (u, v) in G, we add the atom Ee(xu, xv) to
bodyQ and define rfactsP (e) = {f | f ∈ Facts({Ei}, U), e 6= i} ∪ {Ee(r, r), Ee(g, g), Ee(b, b)}.
Intuitively, each valuation for Q corresponds to a coloring of G, and only valuations related
to an invalid coloring are supported by at least one node.
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(2) The algorithm to show that PC-Transbag<N (CQ 6=,CQ 6=) is in Πp
2 follows from

Lemma 5.3(2). The lower bound is by a non-trivial reduction from the quantified boolean
satisfiability problem for the respective level of the hierarchy that is inspired by a technique
used in [17].

(3) It can be shown that for a CQ Q, bag-parallel-correctness transfers from Q to Q′

over ordered networks if and only if a mapping θ for Q over adom(bodyQ′) exists such that
bodyQ′ ⊆ θ(bodyQ). The required algorithm to show that PC-Transbag<N (CQ,CQ 6=) is in
np now follows.

To prove np-hardness, we provide a reduction from graph 3-colorability. Let G be an
arbitrary graph with n edges. We first introduce the following sets of atoms:

invalidE = {Ei(xi, xi), Ei(yi, yi), Ei(zi, zi) | i ∈ [n]}.
surplusE = {Ei(_,_), Ei(_,_), Ei(_,_), Ei(_,_), Ei(_,_) | i ∈ [n] }.

We now define Q and Q′ as follows:

bodyQ = {Ei(xu, xv) | E(u, v) ∈ G having label i} ∪ invalidE ∪ surplusE,

bodyQ′ = {Ei(x, y) | i ∈ [n] and x, y ∈ {xr, xg, xb}}.

Intuitively, bodyQ′ ⊆ θ(bodyQ) implies that for every edge all colorings can be partitioned
into three sets: one valid coloring that participates in the 3-coloring of the graph; the invalid
colorings; and, the rest or the surplus of the colorings. J

6 Discussion

In this paper, we revisited the framework of [5] under bag semantics. The latter represents a
more accurate semantics for real world queries and is a necessary step towards aggregate
queries. We obtained semantical characterizations for parallel-correctness as well as transfer-
ability under bag semantics. For bag-parallel-correctness we provide tight complexity bounds
whereas for transferability we provide an upper bound in EXPTIME. In addition, we show
correspondences and incomparabilities with the analog problems under set semantics. We
also introduced an ordered network setting that could be more natural for capturing bag
semantics and in this setting obtained tight complexity bounds for both decision problems.
We mention that all our results can be naturally extended to unions of conjunctive queries.
The latter does not need any additional ideas but clutters notation.

There are quite a number of directions for follow-up work. We did not prove a lower
bound for transfer of bag-parallel-correctness. Actually, we suspect the upper bound can be
improved by coming up with a more efficient algorithm to compute the set of implied facts.

A motivation for the ordered model presented in Section 5 is that bag-parallel-correctness
under the previous model can prohibit parallelization. Indeed, Example 5.1 shows a query
that can not be parallelized while retaining bag-parallel-correctness. A natural question is
whether this class of queries for which no efficient policy exists can be characterized.

Whereas the focus in this paper is on set and bag semantics, it could be interesting to
consider parallel-correctness and parallel-correctness transfer under bag-set [7] or combined
semantics [8]. Similarly, another direction of future work would be to consider parallel-
correctness in the context of aggregate operators.
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