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Abstract
Solving linear programs is often a challenging task in distributed settings. While there are good
algorithms for solving packing and covering linear programs in a distributed manner (Kuhn et
al. 2006), this is essentially the only class of linear programs for which such an algorithm is known.
In this work we provide a distributed algorithm for solving a different class of convex programs
which we call “distance-bounded network design convex programs”. These can be thought of as
relaxations of network design problems in which the connectivity requirement includes a distance
constraint (most notably, graph spanners). Our algorithm runs in O((D/ε) logn) rounds in the
LOCAL model and with high probability finds a (1+ε)-approximation to the optimal LP solution
for any 0 < ε ≤ 1, where D is the largest distance constraint.

While solving linear programs in a distributed setting is interesting in its own right, this class
of convex programs is particularly important because solving them is often a crucial step when
designing approximation algorithms. Hence we almost immediately obtain new and improved
distributed approximation algorithms for a variety of network design problems, including Basic
3- and 4-Spanner, Directed k-Spanner, Lowest Degree k-Spanner, and Shallow-Light Steiner
Network Design with a spanning demand graph. Our algorithms do not require any “heavy”
computation and essentially match the best-known centralized approximation algorithms, while
previous approaches which do not use heavy computation give approximations which are worse
than the best-known centralized bounds.
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1 Introduction

Distributed network design is a classical type of distributed algorithmic problem, going
back at least to the seminal work on distributed MST by Gallager, Humblet, and Spira [16].
By “network design”, we mean the class of problems which can be phrased as “given input
graph G, find a subgraph H which has some property P , and minimize the cost of H”.
Clearly different properties P , and different notions of cost, lead to very different problems.
One important class of problems are distance-bounded network design problems, where the
property P is that certain pairs of vertices are within some distance of each other in H (where
distance refers to the shortest-path distance). The most well-known type of distance-bounded
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5:2 Distributed Network Design Through Convex Programming

network design problems are problems involving graph spanners, in which the distance
requirement is that the distance in H for all (or certain) pairs is within a certain factor
(known as the stretch) of their original distance in H. But there are many other important
versions of distance-bounded network design, such as the bounded diameter problem [12]
and the shallow-light Steiner tree/network problems [19].

Many of these problems are NP-hard, so they cannot be solved optimally in polynomial
time even in the centralized setting unless P=NP. Thus they have been studied extensively
from an approximation algorithms point of view, where we design algorithms which approxi-
mate the optimal solution but which run in polynomial time. For many of these problems, a
key step in the best-known centralized approximation algorithm is solving a linear program-
ming relaxation of the problem, and then rounding the optimal fractional solution into a
feasible integral solution. Interestingly, it is relatively common for the rounding to be “local”:
if we are in a distributed setting and happen to know the optimal fractional LP solution,
then the algorithm used to round this to an integral solution can be accomplished with a
tiny amount of extra time (either 0 or a small constant number of rounds). So the bottleneck
when trying to make these algorithms distributed is solving the LP, not rounding it.

Solving LPs in distributed settings has received only a small amount of attention, since
it unfortunately turns out to be extremely challenging in general. Most notably, Kuhn,
Moscibroda, and Wattenhofer [21] gave an efficient distributed algorithm (in the LOCAL
model of distributed computation) for packing/covering LPs. Unfortunately, the LPs used
for distance-bounded network design are not packing/covering LPs1, and hence we are not
able to use their techniques. Floréen et al. [15] also studied a special class of linear programs,
namely min-max LPs, in distributed settings, which also cannot be used for our problems
of interest. In this paper we show how to solve these LPs (and convex generalizations of
them) in the LOCAL model of distributed computation, which almost immediately gives the
best-known results for a variety of distance-bounded network design problems.

In particular, for many network design problems (Directed k-Spanner, Basic 3-
Spanner, Basic 4-Spanner, Lowest-Degree k-Spanner, Directed Steiner Network
with Distance Constraints with spanning demands, and Shallow-Light Steiner
Network with spanning demands) we give approximation algorithms which run in O(D logn)
rounds (where D is the maximum distance bound) and have the same approximation ratios
as in the centralized setting. Previous distributed algorithms for these problems with similar
round complexity have either used “heavy” computations (non-polynomial time algorithms)
at the nodes (in which case they can often do better than the best computationally-bounded
centralized algorithm), or give approximation bounds which are asymptotically worse than
the best centralized bounds. See Section 1.2 for more discussion of previous work.

1.1 Our Results

We give two main types of results. First, we give a distributed algorithm that (approximately)
solves distance-bounded network design convex programs with small round complexity.
We then use this result to (almost immediately) get improved distributed approximation
algorithms for a variety of network design problems.

1 They can be turned into packing/covering LPs through a projection operation, but unfortunately this
technique results in an exponential number of constraints, making [21] inapplicable. However, this
technique has been used in the centralized setting for the fault-tolerant directed k-spanner problem [9].
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1.1.1 Solving convex programs
Stating our main technical result (distributed approximations of distance-bounded network
design convex programs) in full generality requires significant technical setup, so we provide
an informal description here. See Section 4 for the full definitions and theorem statements
(Theorem 13 in particular). But informally, a distance-bounded network design convex
program is the following. We are given a graph G = (V,E), a set S ⊆ V × V , and for
each (u, v) ∈ S there is a set of “allowed” u− v paths Pu,v. Roughly speaking, we typically
assume that the allowed paths are short, and define D to be maximum length of such paths.
Informally, the integral problem is to find a subgraph H of G so that every (u, v) ∈ S is
connected by at least one path from Pu,v in H, and the goal is to minimize some notion of
“cost”. If our notion of “cost” is captured by an objective function g : R|E|≥0 → R (which is
typically linear, but which can be more general convex functions as long as they satisfy a
“partitionability” constraint – see Section 4 for the details), then the natural relaxation of
this problem is the following convex program, which has a variable xe for every edge and a
variable fP for every allowed path.

min g(x)

s.t.
∑

P∈Pu,v :e∈P
fP ≤ xe ∀(u, v) ∈ S,∀e ∈ E

∑
P∈Pu,v

fP ≥ 1 ∀(u, v) ∈ S

xe ≥ 0 ∀e ∈ E
fP ≥ 0 ∀(u, v) ∈ S,∀P ∈ Pu,v

Informally, the first type of constraint says that an allowed path is included only if all
edges in it are included, and the second type of constraint required us to include at least one
allowed path for each (u, v) ∈ S. We call this type of convex program a distance-bounded
network design convex program. It is clearly not a packing/covering LP due to the first
type of constraint, and hence there is no known distributed algorithm to solve this kind of
program. However, note that if the maximum length of any allowed path is constant, then
there are only a polynomial number of such paths, and hence the size of the convex program
is polynomial and so it can be solved in polynomial time in the centralized setting under
reasonable assumptions on g (see [17] for details on solving convex programs in polynomial
time).

Our main technical result is that we can approximately solve these optimization problems
even in a distributed setting. For any path P let `(P ) denote the length of the path (the
number of edges in it).

I Theorem 1. For any constant ε > 0, any distance-bounded network design convex program
can be solved up to a (1 + ε)-approximation in O(D logn) rounds in the LOCAL model,
where D = max(u,v)∈S maxP∈Pu,v `(P ). Moreover, if the convex program can be solved in
polynomial time in the centralized sequential setting, then the distributed algorithm uses only
polynomial-time computations at every node

The dependence on ε in the above theorem is hidden in the O(·) notation – see Theorem 13
for the full statement.

Our main technique is to use a distributed construction of padded decompositions, a
specific type of network decomposition which we explain in detail in Section 3. Padded
decompositions have been very useful for metric embeddings and approximation algorithms
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(e.g., [18, 20]), but to the best of our knowledge have not been used before in distributed
algorithms (with the exception of [10], which used a special case of them to give a distributed
algorithm for the fault-tolerant 2-spanner problem). Very similar decompositions, such as the
famous Linial-Saks decomposition [22], have been used extensively in distributed settings, but
the guarantees for padded decompositions are somewhat different (and we believe that these
decompositions may prove useful in the future when designing distributed approximation
algorithms). In Section 3 we give a distributed algorithm in the LOCAL model to construct
padded decompositions. These padded decompositions allow us to solve a collection of “local”
convex programs with the guarantees that a) most of the demands in S are satisfied in one
of the local programs, and b) the solutions of the local convex programs combine into a
(possibly infeasible) global solution with cost at most the cost of the global optimum. Then
by averaging over O(logn) of these decompositions we get a feasible global solution which is
almost optimal.

1.1.2 Distributed approximation algorithms for network design
Solving convex programming problems in distributed environments is interesting in its
own right, and Theorem 1 is our main technical contribution, but the particular class of
convex programs that we can solve are mostly interesting as convex relaxations of interesting
combinatorial optimization problems. Many of the problems are NP-hard, but there has
been significant work (some quite recent) on designing approximation algorithms for them
(see, e.g., [9, 6, 11, 5]). Almost all of these approximations depend on convex relaxations
which fall into our class of “distance-bounded network design convex programs”. This means
that as long as the rounding scheme can be computed locally, we can design distributed
versions of these approximation algorithms by using Theorem 1 to solve the appropriate
convex relaxation and then using the local rounding scheme.

We are able to use this framework to give distributed approximation algorithms for several
problems. Most of them are variations of graph spanners, which were introduced by Peleg
and Ullman [26] and Peleg and Schäffer [25], and are defined as follows.

I Definition 2. Let G = (V,E) be a graph (possibly directed), and let k ∈ N. A subgraph
H of G is a k-spanner of G if dH(u, v) ≤ k · dG(u, v) for all u, v ∈ V . The value k is called
the stretch of the spanner.

Before stating our results, we first define the problems. In the Basic k-Spanner problem
we are given an undirected graph G and a value k ∈ N. A subgraph H of G is a feasible
solution if it is a k-spanner of G, and the objective is to minimize the number of edges in H.
For k = 3, 4, the best-known approximation algorithm for this problem is Õ(n1/3) [5, 11]. If
the input graph G (and the solution H) are directed, then this is the Directed k-Spanner
problem, for which the best-known approximation is Õ(

√
n) [5]. If the objective is instead to

minimize the maximum degree in H then this is the Lowest-Degree k-Spanner problem,
for which the best-known approximation is Õ(n(1−1/k)2) [6].

The following theorem contains our results on distributed approximations of graph
spanners. Informally, it states that we can give the same approximations in the LOCAL
model as are possible in the centralized model.

I Theorem 3. There are algorithms in the LOCAL model that w.h.p.2provide the following
guarantees. For Directed k-Spanner, the algorithm runs in O(k logn) rounds and gives

2 By “with high probability" (or w.h.p.), we mean with probability at least 1 − 1/nc for some c ≥ 1.
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an Õ(
√
n)-approximation. For Basic 3-Spanner and Basic 4-Spanner, the algorithms run

in O(logn) rounds and gives an Õ(n1/3)-approximation. For Lowest-Degree k-Spanner,
the algorithm runs in O(k logn) rounds and gives an Õ(n(1−1/k)2)-approximation. All of
these algorithms use only polynomial-time computations at each node.

We emphasize that our algorithms for these spanner problems both match the best-known
centralized approximations and only use polynomial-time computations at each node. There is
significant previous work (see Section 1.2) on designing distributed approximation algorithms
for these and related problems that has only one of these two properties, but all previous
approaches which use only polynomial-time computations necessarily do worse than the best
centralized bound (or have much worse round complexity). At a high level, this is because
previous approaches (most notably [2]) do not actually use the structure of the centralized
algorithm: they only use the efficient centralized approximation as a black box. By going
inside the black box and noticing that they all use a similar type of convex relaxation, we
can simultaneously get low round complexity, best-known approximation ratios, and efficient
local computation.

It turns out that we can use our techniques for an even broader question: Directed
Steiner Network with Distance Constraints with a spanning demand graph. In this
problem there is a set S ⊆ V × V of demands, and for every demand (u, v) ∈ S there is a
length bound L(u, v). The goal is to find a subgraph H so that dH(u, v) ≤ L(u, v) for all
(u, v) ∈ S, and the objective is to minimize the number of edges in H. The state of the art
centralized bound for this problem is a O(n3/5+ε)-approximation [7], but if we further assume
that every vertex u ∈ V is the endpoint of at least one demand in S (which we will refer to
as a spanning demand graph) then it is straightforward to see that the centralized algorithm
of [5] for Directed k-Spanner can be generalized to give a Õ(

√
n)-approximation. Our

distributed version of this algorithm also generalizes, w.h.p. giving the following result.

I Theorem 4. There is an approximation algorithm in the LOCAL model for Directed
Steiner Network with Distance Constraints with a spanning demand graph with
approximation ratio Õ(

√
n) which runs in O((max(u,v)∈S L(u, v)) logn) rounds and uses only

polynomial-time computations.

Note that Directed k-Spanner and Basic k-Spanner are special cases of this problem,
where there is a demand for every edge and the length bound is just k times the original
distance. Interestingly, other network design problems which have proved important for
distributed systems are also special cases, including the Distance Preserver problem
(when L(u, v) = dG(u, v) for all (u, v) ∈ S), the Pairwise k-Spanner problem (where
L(u, v) = k · dG(u, v) for all (u, v) ∈ S), and the Shallow-Light Steiner Network
problem (where L(u, v) = D for all (u, v) ∈ S, for some global parameter D). Shallow-
Light Steiner Network in particular is a key component in state of the art systems for
reliable Internet transport [1], although in that particular application the demand graph
is not spanning. Extending our techniques to handle totally general demands by giving a
distributed version of [7] is an extremely interesting open question.

1.2 Related Work
While distributed solving of convex programs is a natural question, there is little previous
work in the LOCAL model. Possibly most related to our results is a line of work on
solving positive linear programs (packing and covering LPs). This was introduced by [23],
improved by [4], and then essentially optimal upper and lower bounds were given by [21].
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5:6 Distributed Network Design Through Convex Programming

Unfortunately, the convex programs we consider are not positive linear programs due to the
“capacity” constraints in which some variables appear with positive coefficients while others
have negative coefficients.

A special case of our result was proved earlier in [10], who showed how to solve the LP
relaxation of Basic 2-Spanner in the LOCAL model in O(log2 n) rounds (they actually
show more than this, by giving a distributed algorithm for the fault-tolerant version of Basic
2-Spanner, but that is not germane to our results). Our techniques are heavily based
on [10], which is itself based on the ideas from [21]. In particular, [21] uses a Linial-Saks
decomposition [22] to solve “local” versions of the linear program in different parts of the
graph, and then combines these appropriately. To make this work for the Basic 2-Spanner
LP relaxation, [10] had to use padded decompositions, which can be thought of as a variant
of Linial-Saks with slightly different guarantees which, for technical reasons, are more useful
for network design LPs. In this paper we extend these techniques further by giving a more
general definition of padded decomposition which works for larger distance requirements,
showing how to construct them in the LOCAL model, and then showing that the basic
“combining” idea from [10] can be extended to handle these more general decompositions
and far more general constraints and objective functions.

The major type of combinatorial optimization problem which our techniques allow us
to approximate are various versions of graph spanners. There are an enormous number
of papers on spanners in both centralized and distributed models, but fewer papers which
attempt to find the “best” spanner for the particular given input graphs (most papers on
spanners give existential results and algorithms to achieve them, rather than optimization
results). These optimization questions (e.g., Basic k-Spanner, Directed k-Spanner, and
Lowest-Degree k-Spanner) have been considered quite a bit in the context of centralized
approximation algorithms and hardness of approximation [9, 5, 11, 6, 8], but almost all of
the known centralized results use linear programming relaxations, making them difficult
to adapt to distributed settings. Hence there have been only two results on optimization
bounds in distributed models: [10] and [2].

Barenboim et al. [2] provided a distributed algorithm using Linial-Saks decompositions
that for any integer parameters k, α, gives an O(n1/α)-approximation for Directed k-
Spanner in exp(O(α)) +O(k) time. This is an extremely strong approximation bound, and
in fact is better than even the best centralized bound. This is possible due to their use
of very heavy (exponential time) local computation. Our algorithms, on the other hand,
take polynomial time for local computations. Barenboim et al. [2] show that heavy local
computations can be removed from their algorithm by using a centralized approximation
algorithm for a variant of spanners known as client-server k-spanners, and in particular
that an f(k)-approximation for client-server k-spanner can be turned into an O(n1/αf(k))-
approximation algorithm running in exp(O(α)) + O(k) rounds in the LOCAL model for
minimum k-spanner with only polynomial local computation. So in order to achieve the same
asymptotic approximation ratio as the best-known centralized algorithm, the parameter α
must be Ω(logn) and hence the running time is polynomial in n, even though k might be
a constant. It is essentially known (though not written anywhere) that a variety of other
results with slightly different tradeoffs can be achieved through similar uses of Linial-Saks [13]
or refinements of Linial-Saks such as [14]. However, since all of these approaches treat the
centralized approximation algorithm as a black box, none of them can achieve the same
approximation ratio as the centralized algorithm without suffering a much worse (usually
polynomial) round complexity that the O(k logn) that we achieve.
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2 Preliminaries and Notation

The distributed setting we will be considering is the LOCAL model [24], in which time
passes in synchronous rounds and in each round every node can send an arbitrary message
of unbounded size to each of its neighbors in the underlying graph G = (V,E) (as always, we
will let n = |V | and m = |E|). This is in contrast to the CONGEST model, where nodes
can only send a message of size O(logn) to each of their neighbors in each round. We are
not focusing on the CONGEST model in this paper. We will assume that all nodes know n

(or at least know a constant approximation of n). Usually in this model the communication
graph is the same as the graph of computational interest; e.g., we will be trying to compute
a spanner of the communication graph itself. But for some applications we will want the
graph to be directed, in which case we make the standard assumption that communication is
bidirectional: the graph for which we are trying to compute a convex relaxation / network
design problem is directed, but messages can be sent in both directions across a link. In
other words, the communication graph is just the undirected version of the given directed
graph.

For any pair of nodes u, v ∈ V we define d(u, v) to be the distance between u and v in
the communication graph (i.e. the length of a shortest path between u and v regardless
of edge directions). We define B(u, k) to be an undirected ball of radius k from u in the
communication graph. More precisely, B(u, k) = {w ∈ V | d(u,w) ≤ k}. If x is a vector then
we use xi to denote the i’th component of x. Most of the time our vectors will be indexed by
edges in a graph, in which case we will also use the notation (xe)e∈E .

Given a partition of the vertices V of a graph, we will refer to each part of the partition
as a “cluster”. For any graph G = (V,E) and set S ⊆ V , we let E(S) denote the set of
edges in the subgraph induced by S, i.e., E(S) = {(u, v) ∈ E | u, v ∈ S}. We will frequently
need “restrictions” of vectors to induced subgraphs, so for any vector x ∈ Rm, we define
xS = (xSe )e∈E to be the vector in Rm where xSe = 0 if e 6∈ E(S) and xSe = xe if e ∈ E(S).

3 Padded decompositions

We will now define and give an algorithm to construct padded decompositions, which are one
of the key technical tools that we will use when designing algorithm to solve distance-bounded
network design convex programs. In this section all graphs are undirected and all distances
are with respect to this undirected graphs (in fact, the definition and our algorithm work
more generally for any metric space). Recall that B(u, k) denotes the undirected ball of
radius k from node u (in the communication graph), and diam(C) = maxu,v∈C dG(u, v),
which is often called the weak diameter. Intuitively, a (k, ε)-padded decomposition partitions
a graph into clusters, where nodes in each cluster are not too far in the original graph, and
balls of a radius k are preserved with probability at least 1− ε.

IDefinition 5. Given an undirected graph G, a (k, ε)-padded decomposition, where 0 < ε ≤ 1,
is a probability measure µ over the set of graph partitions (clusterings) that has the following
properties:
1) For every P ∈ supp(µ),3 and every cluster C ∈ P , we have: diam(C) ≤ O((k/ε) logn).
2) For every u ∈ V , it holds that Pr(∃C ∈ P | B(u, k) ⊆ C) ≥ 1 − ε. That is to say, the

probability that all nodes in B(u, k) are in the same cluster is at least 1− ε.

3 By supp(µ) we mean the set of partitions that have non-zero probability.
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5:8 Distributed Network Design Through Convex Programming

Algorithm 1: Sampling from a (k, ε)-padded decomposition of G = (V,E).
1 Let π : V → [n] be an arbitrary bijection from V to [n], and let r = ( 2

ε )k.
2 for v ∈ V do
3 Sample zv independently from a distribution with probability density function

p(zv) =
(

n
n−1

)
e−zv/r

r .
4 Set the radius rv = min(zv, r lnn+ k).
5 for u ∈ V do
6 Node u joins cluster C(v), such that

d(v, u) ≤ rv ∧ (π(v) < π(w) ∀w 6= v s.t. d(w, u) ≤ rw). // Node u joins
the cluster C(v), with cluster center v, which is the first node
in the permutation where d(v, u) ≤ rv.

This notion of padded decompositions is standard in metric embeddings and approximation
algorithms [18, 20], but to the best of our knowledge has not yet been used in distributed
algorithms. We first use a centralized algorithm (Algorithm 1) to sample from a (k, ε)-
padded decomposition, and then describe how it can be implemented in the LOCAL model.
Algorithm 1 and its analysis are similar to a partitioning algorithm proposed in [3], which
was shown to have a low probability of separating nodes in a close neighborhood. Due to
space constraints, proofs can be found in Appendix A.

For any partition P constructed by Algorithm 1, each cluster is clearly C(v) for some
v ∈ V . We call this special node v the center of cluster C(v). Later, we will use the center
of each cluster for solving locally defined convex programs.

I Lemma 6. Algorithm 1 partitions a given undirected graph G = (V,E) into a partition P
such that P is sampled from a (k, ε)-padded decomposition.

We will now use an idea similar to the one used in [10] to make Algorithm 1 distributed. In
[10] they only considered the special case of k = 1 and ε = 1/2, which is why we cannot
simply use their result as a black box.

I Lemma 7. There is an algorithm in the LOCAL model that runs in O(kε lnn) rounds and
samples from a (k, ε)-padded decomposition (so every node knows the cluster that it is in).

Proof. Without loss of generality, we assume that all nodes have unique IDs4. The sequence
of IDs in ascending order will determine the permutation π used in Algorithm 1, i.e. if
IDu < IDv then π(u) < π(v). The algorithm proceeds as follows until all nodes have been
assigned to a cluster: each node u ∈ V chooses a radius ru based on the distribution defined in
Algorithm 1. Then every u ∈ V simultaneously sends a message containing IDu to all nodes
in B(u, ru). After receiving all the messages, each node chooses the node with the smallest
ID as the cluster center. Then Lemma 6 implies that the clusters satisfy the properties of a
(k, ε)-padded decomposition. Since the radius that each node chooses is O((k/ε) logn), and
each node only communicates with nodes within its radius, the running time in the LOCAL
mode is O((k/ε) logn). J

4 We assume this since nodes can each draw an ID from a suitably large space, so the probability of a
collision is small enough that it does not affect the guarantees required by a padded decomposition.



M. Dinitz and Y. Nazari 5:9

4 Distributed distance bounded network design convex programming

In this section we prove Theorem 1, giving an algorithm similar to [10] which can almost
optimally solve distance-bounded network design convex programs. We first make all
definitions formal in Section 4.1, and in particular define formally the class of objective
functions where our results hold. Then in Section 4.2 we give a distributed algorithm which
solves these programs up to arbitrarily small error. All missing proofs can be found in
Appendix B.

4.1 Distance bounded network design convex programs
We will first describe a general class of objective functions that our algorithm applies to.
For a graph G = (V,E) and a set S ⊆ V , we let E(S) denote the set of edges in the
subgraph of G induced by S. Recall that for a vector x ∈ Rm (where m = |E|), we define
xS = (xSe )e∈E ∈ Rm to be the vector where xSe = 0 if e 6∈ E(S) and xSe = xe if e ∈ E(S).

I Definition 8. Given a graph G = (V,E), a function g : Rm 7→ R is convex partitionable with
respect to G if g is a non-decreasing5 and convex function with the following property: for all
partitions σ = {σ1, ..., σ`} of nodes in V , there exists a non-decreasing function hσ : R` 7→ R,
s.t. g(x) = hσ(g(xσ1), g(xσ2), ..., g(xσ`)) for all x = (xe)e∈E where xe = 0 for any edge e with
endpoints in different clusters of σ (equality does not need to hold for vectors x with nonzero
values on edges between clusters).

Convex partitionable functions for graphs are a natural class of functions for distributed
computing purposes. Moreover, this class includes many types of objective functions that are
of interest in network design problems, including p-norms and linear functions. For example,
if the function g is the p-norm with p ∈ Z≥0, then it is easy to verify that by setting the
function hσ to also be the p-norm for any partition σ of V , the conditions of Definition 8 are
satisfied. Note, since we consider non-negative values, an unweighted sum is just the 1-norm,
and the max function is the infinity norm, and hence they will also satisfy the conditions
of Definition 8. Similarly, in case of linear functions, it is easy to see that conditions of
Definition 8 are satisfied by setting hσ to be the unweighted sum.

There are also other, less trivial examples. For example, it is not hard to show the p-norm
of the degree vector (rather than just the edge vector) is also convex partitionable with
respect to G. An important special case of this is the ∞-norm of the degree vector, i.e.,
the maximum degree. Since we use this objective in some of our applications (i.e., for the
Lowest-Degree k-Spanner problem), we give a short proof of this case in Appendix B.
For an integral vector x ∈ Rm we can write g(x) = maxv∈V deg(v). By generalizing this
notation to all x ∈ Rm, we can define fractional node degrees as deg(v) =

∑
u:(v,u)∈E x(v,u)

6.

I Lemma 9. Given a graph G = (V,E), the function g(x) = maxv∈V (
∑
u:(v,u)∈E x(v,u)) is

convex partitionable w.r.t. G.

Now that this class of functions has been defined, we can formally define the class of
distance-bounded network design convex programs.

5 Let f(x1, ..., xk) be a multivariate function. We will say f is nondecreasing if the following holds: if
xi ≤ x′

i for all 1 ≤ i ≤ k, then f(x1, ..., xk) ≤ f(x′
1, ..., x

′
k).

6 Here we are considering out-degree of nodes in a directed graph. It is easy to see that Lemma 9 also
holds in cases of in-degree only or sum of out-degree and in-degree. The latter is what are interested in
for Section 5.
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I Definition 10. Let S ⊆ V × V be a set of pairs in the graph G = (V,E), and for any pair
(u, v) ∈ S let Pu,v be a set of paths from u to v, which we sometimes call the set of “allowed”
paths. Let g be a non-decreasing convex-partitionable function of x = (xe)e∈E with g(~0) = 0.
Then we call a convex program of the following form a distance bounded network design CP:

min g(x)

s.t
∑

P∈Pu,v :e∈P
fP ≤ xe ∀(u, v) ∈ S,∀e ∈ E

∑
P∈Pu,v

fP ≥ 1 ∀(u, v) ∈ S

xe ≥ 0 ∀e ∈ E
fP ≥ 0 ∀(u, v) ∈ S,∀P ∈ Pu,v

As we will see in Section 5, many network design problems use linear (or convex) programming
relaxations that satisfy the conditions of Definition 10. A key parameter of such a program
is the length of the longest allowed path D = max(u,v)∈S maxp∈Pu,v `(p) (where `(p) is the
length of path p).

4.2 Distributed Algorithm
In order to solve these convex programs in a distributed manner, we will first use padded
decompositions to form a local problem using a simple distributed algorithm. Let P be a
partition sampled from a (k, ε)-padded decomposition (in particular, obtained by Lemma 7),
where 0 < ε ≤ 1. Recall that for each cluster C ∈ P , E(C) = {(u, v) ∈ E | u, v ∈ C}. We
define G(C) to be the subgraph induced by C. We prove the following lemma in Appendix B.

I Lemma 11. For each cluster C sampled from a (k, ε)-padded decomposition, there is a
distributed algorithm running in O(kε logn) rounds so that every cluster center knows G(C).

Let CP(G) be a distance bounded network design CP defined on graph G = (V,E).
We will define local convex programs based on a partition P of G that is sampled from
a (D,λ)-padded decomposition. The value of 0 < λ ≤ 1 will be set later based on the
parameters of our distributed algorithm. For each C ∈ P , let CP(C) be CP(G) defined
on G(C), but where only demands corresponding to any pair (u, v) ∈ S in which B(u,D)
is fully contained in C are included. We denote the set of these demands by N(C), more
precisely, N(C) = {(u, v) ∈ S | B(u,D) ⊆ C}. The objective will then be to minimize g(x) =
g
(
(xe)e∈E(C)

)
. In other words CP (C) is defined as follows:

min g(x)

s.t
∑

P∈Pu,v :e∈P
fP ≤ xe ∀(u, v) ∈ N(C),∀e ∈ E(C)

∑
P∈Pu,v

fP ≥ 1 ∀(u, v) ∈ N(C)

xe ≥ 0 ∀e ∈ E(C)
fP ≥ 0 ∀(u, v) ∈ N(C),∀P ∈ Pu,v

There is a technical subtlety about computing the function g on each cluster, which is
the fact that a solution 〈xC , fC〉 of CP(C) is only defined on G(C). While in practice xC is
a vector defined only on edges in E(C), in our analysis, we will assume that xC is a vector
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Algorithm 2: Distributed algorithm for approximating distance bounded network
design CPs.

1 Set λ = ε(1−ε)
(2−ε)(1+ε) and t =

⌈
16(1− ε2 )(1+ε) lnn

ε2

⌉
.

2 Sample from (D,λ)-padded decompositions t times by Lemma 7, and let Pi be the
partition obtained in the i’th run.

3 For each cluster C ∈ Pi, the center of cluster C computes G(C) (see Lemma 11).
4 The center of each cluster C ∈ Pi solves CP (C) and sends the solution 〈xC,i, fC,i〉 to

all nodes u ∈ C.
5 for e = (u, v) ∈ E do
6 Let Iu,v = {i | ∃C ∈ Pi : u, v ∈ C}.

// these are the iterations in which both endpoints are in same
cluster

7 x̃e ← min(1, 1+ε
t

∑
i∈Iu,v x

Cu,i,i
e ).

in R|E| and xCe = 0 for all e 6∈ E(C). This assumption does not impact the correctness of
algorithm. The following lemma is similar to Lemma 3.8 in [10], and we show that it holds
for our modified definition of local convex programs and for generalized objective functions
that satisfy Definition 8.

I Lemma 12. Let 〈x∗, f∗〉 be an optimal solution of CP (G) and let x∗C = (x∗e)e∈E(C). For
each cluster C ∈ P , let 〈x̃C , f̃C〉 be an optimal solution of CP(C). Then g(x̃C) ≤ g(x∗C).

Proof. We argue that the vector 〈x∗C , f∗C〉, where x∗eC = x∗e for all e ∈ E(C) and f∗p
C = f∗p

for all p ∈ Pu,v, is a feasible solution to CP(C). By definition of N(C) we have that
for any (u, v) ∈ N(C) all paths in Pu,v also appear in G(C), and therefore 〈x∗C , f∗C〉
satisfies both capacity and flow constraints of CP(C) for pairs (u, v) ∈ E(C) since they were
satisfied in CP(G). Since we assumed that 〈x̃C , f̃C〉 is an optimal solution of CP(C), we get
g(x̃C) ≤ g(x∗C). J

We now provide in Algorithm 2 a distributed algorithm for solving CP(G). The high level
idea is the following: we partition the graph t times, have cluster centers solve CP(C) of
their cluster using a sequential algorithm in each iteration, and then take an average over
the solutions for each edge. Intuitively, for each edge, by averaging over local solutions for
iterations in which the ball around that edge is in the same cluster, with high probability we
get a feasible global solution. In the proof of Theorem 13, we will show that this solution
gives a (1 + ε)-approximation solution to the LP, for an arbitrary 0 < ε ≤ 1.

We assume that all nodes know the values of D and ε. Let Cu,i denote the cluster that
node u belongs to in the i-th iteration, and let 〈xCu,i,i, fCu,i,i〉 be the fractional CP solution
of Cu,i, where 〈x

Cu,i,i
e , f

Cu,i,i
p 〉 is the fractional CP value for e = (u, v), and p ∈ Pu,v. Since

the objective is a function of edge vectors, what we mean by having a distributed solution to
a distance bounded network design CP is that each node u will know the value xe for all
the edges e incident to u. It is not hard to see that the algorithm could be modified so that
every node u can also know the flow value fp for each path p.

I Theorem 13. Algorithm 2 takes O((D/ε) logn) rounds to terminate, and it will compute
a solution of cost at most (1 + ε)CP ∗ to a bounded distance network design CP (Definition
10) with high probability, where CP ∗ is the optimal solution and 0 < ε ≤ 1. Moreover,
if the convex program can be solved sequentially in polynomial time, then all of the node
computations are also polynomial time.
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Proof. Correctness: We first show that with high probability the values x̃e, e ∈ E form a
feasible solution. Here we only need to show that a feasible solution for the flow values exist,
and do not require nodes to compute these values. Let Iu = {i : ∃C ∈ Pi, B(u,D) ⊆ C},
i.e. Iu is the set of iterations in which B(u,D) is contained in a cluster, and let Iu,v be the
set of iterations in which both u and v are in the same cluster. Since we need to implement
Algorithm 2 in a distributed manner, we use Iu,v in our implementation, while the analysis
is based on Iu. We can do so since by definition we have Iu ⊆ Iu,v, for any (u, v) ∈ E.

For any p ∈ Pu,v, we set the flow values to be f̃p = 1
|Iu|

∑
i∈Iu f

Cu,i,i
p ,i.e. f̃p is the average

over local flows in iterations in which B(u, k) is fully contained in a cluster. We will show that
this gives a feasible flow. First we argue that enough flow is being sent. For all (u, v) ∈ S,
we have,∑

p∈Pu,v

f̃p =
∑

p∈Pu,v

1
|Iu|

∑
i∈Iu

fCu,i,ip = 1
|Iu|

∑
i∈Iu

∑
p∈Pu,v

fCu,i,ip ≥ 1
|Iu|

∑
i∈Iu

1 ≥ 1.

We have used the fact that for each i ∈ Iu the solution corresponding to the CP of the cluster
containing u satisfies the constraint that

∑
p∈Pu,v :e∈p f

Cu,i,i
p ≥ 1, because for each such i we

know that (u, v) ∈ N(C).
Next, we will argue that the capacity constraints are also satisfied. The second property of

(D,λ)-padded decompositions implies that Pr(i ∈ Iu) ≥ 1− λ = 1− ε(1−ε)
(2−ε)(1+ε) = 1

(1− ε2 )(1+ε)
for each iteration 1 ≤ i ≤ t. By linearity of expectations we have E[|Iu|] ≥ t(1− λ). Since
each sampling is performed independently, by Chernoff bound for δ = ε/2, we get,

Pr(|Iu| ≤ t(1− λ)(1− δ)) = Pr
(
|Iu| ≤

t(1− ε
2 )

(1− ε
2 )(1 + ε)

)
= Pr

(
|Iu| ≤

t

(1 + ε)

)
≤ e−

(ε/2)2(1−λ)t
2 ≤ e−2 lnn = 1

n2 .

Hence by a union bound on all nodes we have that with high probability |Iu| > t/(1 + ε).
Therefore, for all (u, v) ∈ S, e ∈ E, we have (w.h.p.),∑

p∈Pu,v :e∈p
f̃p =

∑
p∈Pu,v :e∈p

1
|Iu|

∑
i∈Iu

fCu,i,ip = 1
|Iu|

∑
i∈Iu

∑
p∈Pu,v :e∈p

fCu,i,ip ≤ 1
|Iu|

∑
i∈Iu

xCu,i,ie

≤ min

1, 1
|Iu|

∑
i∈Iu,v

xCu,i,ie

 ≤ min

1, 1 + ε

t

∑
i∈Iu,v

xCu,i,ie

 = x̃e.

Upper bound: We will now show that the upper bound holds. Let 〈x∗, f∗〉 be an optimal
solution to CP(G). We have x̃e = min(1, 1+ε

t

∑
i∈Ie x

Cu,i,i
e ), and for each e = (u, v) and

1 ≤ i ≤ t, we set x̃ie = x
Cu,i,i
e if i ∈ Ie, and x̃ie = 0 otherwise. Note that 0 < (1+ ε)/t < 1, and

since g is a convex function and g(~0) = 0, by Jensen’s inequality we have g
( 1+ε

t x
)
≤ 1+ε

t g(x).
Then for x̃ = (x̃e)e∈E we can write:

g(x̃) = g
(
(x̃e)e∈E

)
≤ g

1 + ε

t

(∑
i∈Ie

xCu,i,ie

)
e∈E

 ≤ 1 + ε

t
g

(∑
i∈Ie

xCu,i,ie

)
e∈E


≤ 1 + ε

t
g

((
t∑
i=1

x̃ie

)
e∈E

)
≤ 1 + ε

t
g

(
t∑
i=1

(
x̃ie
)
e∈E

)
≤ 1 + ε

t

t∑
i=1

g
((
x̃ie
)
e∈E

)
.

In the final inequality, since g is convex, we used Jensen’s inequality to take the sum out of
the function. It is now enough to show that in each iteration i, it holds g((x̃ie)e∈E) ≤ g(x∗).
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Let x̃i = ((x̃ie)e∈E), and let Pi = {C1, C2, ..., C`} be the partition of V . Since g is a convex
partitionable function w.r.t. G, there exists a nondecreasing and convex function h : Rm 7→ R
for which we can write g(x̃i) = hPi(g(x̃i,C1), g(x̃i,C2), ..., g(x̃i,C`)), since x̃ie = 0 by definition
for edges which go between clusters (for simplicity we are denoting x̃i

Cj by x̃i,Cj ).
Recall that x∗C is the vector in which x∗Ce = x∗e for all e ∈ E(C) and x∗Ce = 0 otherwise.

By Lemma 12 we get that for all C ∈ Pi, g(x̃i,C) ≤ g(x∗C). Now we consider a vector x̂,
defined by setting x̂e = x∗e for all edge e with both endpoints in the same cluster, and x̂e = 0
otherwise. Since we assumed hPi to be nondecreasing, we get,

g(x̃i) = hPi(g(x̃i,C1), g(x̃i,C2), ..., g(x̃i,C`)) ≤ hPi(g(x∗C1), g(x∗C2), ..., g(x∗C`))
= hPi(g(x̂C1 , x̂C2 , ..., g(x̂C`)) = g(x̂) ≤ g(x∗).

For the last inequality we have used the fact that g is non-decreasing, and that for all e ∈ E,
x̂e ≤ x∗e (since either x̂e = x∗e or x̂e = 0). By plugging this into the above inequalities, we
will get g(x̃) ≤ 1+ε

t

∑t
i=1 g(x̃i) ≤ (1 + ε)g(x∗), which implies the claim that Algorithm 2

gives a (1 + ε)-approximation to the optimal solution.
Time Complexity: The decomposition step and sending the information within a

cluster takes O((D/ε) logn) rounds since the diameter of each cluster is O((D/λ) logn) =
O((D/ε) logn). Since each decomposition is independent, we can do all of them in parallel,
so steps 1-4 of the algorithm only take O((D/ε) logn) rounds in total. Clearly the rest of the
algorithm can be done in a constant number of rounds. Hence in total w.h.p. the algorithm
will take O((D/ε) logn) rounds. J

5 Distributed Approximation Algorithms for Network Design

In this section, we will focus on several network design problems which can be approximated
by first solving a convex relaxation using Algorithm 2 and then locally rounding the solution.
For that purpose, we will describe how each problem has a distance bounded network design
CP relaxation (Definition 10), and will then show that existing rounding schemes are local.
All missing proofs can be found in Appendix C.

5.1 Directed k-Spanner

Dinitz and Krauthgamer [9] introduced a linear programming relaxation for Directed
k-Spanner which is just a distance-bounded network design CP with demands pairs S = E,
allowed paths Pu,v which are the directed paths from u to v of length at most k, and objective
function g(x) =

∑
e∈E xe. They showed that this LP can be solved in polynomial time

(approximately if k is non-constant). We will denote this LP by LP (G). Clearly, LP(G) is a
distance bounded network design CP with D = k. Hence, Theorem 13 implies that we can
use Algorithm 2 to approximately solve this LP in O(k logn) rounds in the LOCAL model.

We now provide in Algorithm 3 a distributed rounding scheme that gives an O(n1/2 logn)-
approximation for Directed k-Spanner. This algorithm matches the best centralized
approximation ratio known [5], and is just the obvious distributed version of the algorithm
proposed in [5]. The difference is that here we truncate the shortest-path trees at depth k
(as opposed to full shortest-path trees), and nodes choose whether to become a tree root
independently (rather than chosen without replacement as in [5].

The following lemma is essentially from [5], with the proof requiring only slight technical
changes due to the slightly different algorithms. We sketch it for completeness in Appendix C.
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Algorithm 3: Distributed rounding algorithm for k-spanner.
Input :Graph G = (V,E), fractional solution 〈x, f〉 to LP(G).

1 E′ = ∅,∀v ∈ V : T inv = ∅, T outv = ∅.
2 for e ∈ E do
3 Add e to E′ with probability min(n1/2 · lnn · xe, 1).
4 for v ∈ V do

// Random tree sampling
5 Choose p uniformly at random from [0, 1].
6 if p < 3 lnn√

n
then

7 T inv ← shortest path in-arborescence rooted at v truncated at depth k.
8 T outv ← shortest path out-arborescence rooted at v truncated at depth k.

9 Output E′ ∪ (∪v∈V (T inv ∪ T outv )).// A node knows its portion of the output.

I Lemma 14. Given a directed graph G, LP(G) as defined, and a fractional solution LP ∗
to LP (G), the output of Algorithm 3 has size O(n1/2 · (n+ LP ∗) logn).

It is easy to see that this algorithm can be implemented in the LOCAL model.

I Lemma 15. Algorithm 3 runs in O(k) time in the LOCAL model.

We now immediately get our main result for Directed k-Spanner. Proof can be found in
Appendix C.

I Corollary 16. Algorithm 2 with D = k along with the rounding scheme in Algorithm 3
yields an O(n1/2 lnn)-approximation w.h.p. to Directed k-Spanner that runs in O(k logn)
time in the LOCAL model and uses only polynomial-time computations at each node.

5.2 Basic 3-Spanner and Basic 4-Spanner

If the input graph is undirected then stronger approximations are possible. In particular, for
stretch 3 and 4, there are Õ(n1/3)-approximations due to [5] (for stretch 3) and [11] (for stretch
4). Without going into details, both of these algorithms use the same LP relaxation as in
Directed k-Spanner, but round the LP differently. So in order to give distributed versions
of these algorithms, we only need to modify Algorithm 3 to use the appropriate rounding
algorithm (and change some of the other parameters in the shortest-path arborescence
sampling). Fortunately, both of these algorithms use rounding schemes which are highly local.
Informally, rather than sample each edge independently with probability proportional to the
(inflated) fractional value as in Algorithm 3, these algorithms sample a value independently
at each vertex and then include an edge if a particular function of the values of the two
endpoints (different in each of the algorithms) passes some threshold. Clearly this is a very
local rounding algorithm: once we have solved the LP relaxation using Theorem 13, each
node can draw its random value and then spend one more round to exchange a message
with each of its neighbors to find out their values, and thus determine which of the edges
have been included by the rounding. Thus the total running time is dominated by the time
needed to solve the LP, which in these cases is O(logn) using Theorem 13.
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5.3 Lowest-Degree k-Spanner
We now turn our attention to Lowest-Degree k-Spanner: Given a graph G = (V,E)
and a value k, we want to find a k-spanner that minimizes the maximum degree. We will
use the relaxation and rounding scheme proposed by Chlamtáč and Dinitz [6]. The linear
programming relaxation used in [6] is very similar to the Directed and Basic k-spanner LP
relaxation described earlier, with the difference being that a new variable λ is added to
represent the maximum degree, and so the objective is to minimize λ and constraints are
added to force λ to upper bound the maximum fractional degree. The proof of the following
result can be found in Appendix C.

I Theorem 17. Given a graph G = (V,E) (directed or undirected), and any integer k ≥ 1
there is a distributed algorithm that w.h.p. computes an Õ(∆(1−1/k)2)-approximation to the
Lowest-Degree k-Spanner problem, taking O(k logn) rounds of the LOCAL model and
using only polynomial-time computations at each node.

5.4 Directed Steiner Network with Distance Constraints
It is well-known that the centralized rounding of [5] for Directed k-Spanner is more general
than is actually stated in their paper. In particular, the randomized rounding for “thin” edges
gives the same guarantee even when each demand has a possibly different distance constraint.
This fact was used, e.g., in [7] in their algorithms for Distance Preserver, Pairwise
k-Spanner, and Directed Steiner Network with Distance Constraints. The
difficulty in extending the algorithm of [5] is not in the LP rounding, but rather because the
arborescence sampling technique used to handle thick edges in [5] (and in our Algorithm 3)
assumes that n is a lower bound on the optimal cost. This assumption is true for Directed
k-Spanner, but false for variants where there might be a tiny number of demands. However,
it is easy to see that if we assume the demand graph is spanning (i.e., assume that every node
is an endpoint of at least one demand) then the optimal solution must have at least n/2 edges,
and hence we can again just use [5] to get a Õ(

√
n)-approximation for Directed Steiner

Network with Distance Constraints as long as the demand graph is spanning.
While this is in the centralized setting, since our algorithm for Directed k-Spanner is

just a lightly modified distributed version of [5] (the only difficulty in the distributed setting
is solving the LP, which is why that is the main technical contribution of this paper), we can
easily modify it to give the same approximation for Directed Steiner Network with
Distance Constraints with spanning demand graphs. The only change is that we use
D = max(u,v)∈S L(u, v) instead of k when solving the linear programming relaxation (using
Theorem 13) and when truncating the shortest-path arborescences that we sample (note that
we have to assume that D is global knowledge, which is reasonable for spanner problems and
for Shallow-Light Steiner Network but may be less reasonable for other special cases
of Directed Steiner Network with Distance Constraints). This implies Theorem 4,
and all of the interesting special cases (Shallow-Light Steiner Network, Distance
Preserver, Pairwise k-Spanner, etc.) which it includes.
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A Proofs from Section 3

A.1 Proof of Lemma 6

The first property in Definition 5 is directly implied by the definition of rv for all nodes
v ∈ V . For the second property we consider an arbitrary node u ∈ V , and compute the
probability that the ball B(u, k) is not in any of the clusters in P . Consider an arbitrary
value 1 ≤ t ≤ n, let v ∈ V be the node such that t = π(v), and let z = zv be the real number
sampled by v. Also, for any x, y ∈ V , let d̃(x, y) = min(d(x, y), r lnn+ k). Let us also order
the clusters based on their center’s position in the permutation, so that Ct is the cluster
corresponding to t = π(v) (i.e. v is the cluster center of Ct). We define Xt to be the event
that if B(u, k) is not in the first t− 1 clusters, then it is also not in any of the remaining
clusters. We provide a recursive bound on Xt based on Xt+1. Then we will get the second
property once we show Pr(X0) ≤ ε. We need to define the following events:

At : B(u, k) does not intersect with any of the clusters C1, .., Ct−1.
M cut
t : (d̃(v, u)− k ≤ z < d̃(v, u) + k | At).

Mex
t : (z < d̃(v, u)− k | At).

Xt : (@j ≥ t : B(u, k) ⊆ Cj | At).
In other words, conditional on the event that B(u, k) is not in any of the first t− 1 clusters,
either B(u, k) ⊆ Ct, or else one the following two events will occur: M cut

t is the event that
B(u, k) partially intersects Ct, and Mex is the event that B(u, k) does not intersect Ct.

Now the event Xt occurs only when either M cut
t occurs or both Mex

t and Xt+1 occur
(i.e. when B(u, k) is not in Ct or any of the next clusters). Hence we can write Pr(Xt) ≤
Pr(M cut

t ) + Pr(Mex
t ) Pr(Xt+1). Recall that z is independently sampled from the density

function p(zv) =
(

n
n−1

)
e−zv/r

r , and thus M cut can be written as follows:

Pr(M cut
t ) =

∫ d̃(v,u)+k

d̃(v,u)−k
p(z)dz =

(
n

n− 1

)(
1− e−2k/r

)
e−(d̃(v,u)−k)/r

≤
(

n

n− 1

)
2k
r
e−(d̃(v,u)−k)/r.

Similarly, we can write,

Pr(Mex
t ) =

∫ d̃(v,u)−k

0
p(z)dz =

(
n

n− 1

)(
1− e−(d̃(v,u)−k)/r

)
.

We now inductively prove that Pr(Xt) ≤ (2 − t
n−1 )( 2k

r ). If t < n is the last step, then
Pr(Xt) = 0, and thus this bound clearly holds. Assume that the bound is true for Xt+1, we
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show that then it also holds for Xt. We have,

Pr(Xt) ≤ Pr(M cut
t ) + Pr(Mex

t ) Pr(Xt+1)

≤
(

n

n− 1

)(
2k
r

)(
1 + n− t− 2

n− 1

(
1− e−(d̃(v,u)−k)/r

))
.

Since e−(d̃(v,u)−k)/r ≥ e−(lnn) ≥ 1/n, we get that Pr(Xt) ≤
(

2− t
n−1

) ( 2k
r

)
. The second

property is then implied by the fact that Pr(X0) ≤ 2k
r = 2k

2k(1/ε) = ε.

B Proofs from Section 4

B.1 Proof of Lemma 9
Let σ = {σ1, ..., σ`} be a partition of nodes in V . For all 1 ≤ i ≤ `, we have g(xσi) =
maxv∈σi(

∑
u:(v,u)∈E x

σi
(v,u)). Then we can set hσ(y) = maxi∈[`](yi), y ∈ R`, where yi is

the i-th coordinate of y. Let σ(v) ∈ σ be the cluster that node v belongs to. For all
x = (x(u,v))(u,v)∈E , where x(u,v) = 0 for any (u, v) ∈ E s.t. σ(u) 6= σ(v) , we have,

g(x) = max
v∈V

 ∑
u:(v,u)∈E

x(v,u)

 = max
σi∈σ

max
v∈σi

(
∑

u:(v,u)∈E

xσi(v,u)


= max

σi∈σ
(g (xσi)) = hσ(g(xσ1), g(xσ2), ..., g(xσ`)).

It is also easy to see that the function hσ is convex and non-decreasing. Hence hσ satisfies
the conditions in Definition 8.

B.2 Proof of Lemma 11
The first property of (k, ε)-padded decompositions implies that for all nodes u ∈ C, we have
d(u, v) = O((k/ε) logn), where v is the center of cluster C. Each node u ∈ C that determines
v as the center of the cluster it belongs to, will send the information of its incident edges to
v. Since there is no bound on the size of the messages being forwarded, this can be done in
O((k/ε) logn) time.

C Proofs from Section 5

C.1 Proof of Lemma 14
Let Ns,t be the subgraph of G induced by the nodes on paths in Ps,t. Edge e ∈ E is called a
thick edge if |Ns,t| ≥ n1/2, and otherwise it is called a thin edge. The set E′ in Algorithm
3 satisfies the spanner property for all thin edges (as argued in [5]), and the random tree
sampling phase satisfies the spanner property for the thick edges. Each thick edge (s, t) is
spanned if at least one node in Ns,t performs the random tree sampling. This probability
is at least 1 − (1 − 3 lnn

n1/2 )n1/2 ≥ 1 − 1/n3. Then a union bound on all the edges (of size
at most O(n2)) implies that w.h.p. all thick edges are spanned. We now argue that the
output is an O(n1/2 logn)-approximation algorithm: at most O(n1/2 logn) arborescences
are chosen with high probability (each arborscence has O(n) edges), and we argued that
|E′| = O(n1/2 logn · LP ∗). Hence, the overall size of the output is O(n1/2 logn · (n+ LP ∗)).
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C.2 Proof of Lemma 15
Each node v in G has received the fractional solutions xe corresponding to all edges e ∈ E
incident to v. The randomized rounding step can be performed locally: the node with the
smaller ID flips a coin, and exchanges the coin flip result with its corresponding neighbors. In
order to form T ini and T outi , v performs a distributed BFS algorithms by forming a shortest
path tree while keeping track of the distance from v. When the distance counter reaches k,
the tree construction terminates.

C.3 Proof of Corollary 16
We first run Algorithm 2 to solve LP(G) up to a constant factor (by setting ε = 1/2), which
takes time O(k logn) with high probability (Theorem 13). Since each cluster center can
solve the local LP in polynomial time, all computations are polynomial time. We then use
Algorithm 3 to round the fractional solutions of LP(G), which takes O(k) time. Since the
size of a k-spanner is at least Ω(n), Algorithm 3 then outputs an O(n1/2 lnn)-approximation
to the minimum (Lemma 14).

C.4 Proof of Theorem 17
It is easy to see that the LP relaxation proposed in [6] can be written as a distance bounded
network design CP where the objective is max

v∈V
(deg(v)) = max

v∈V

(∑
u:{v,u}∈E x{v,u}

)
(we do

not need to use their extra variable λ, since we can instead directly write the objective).
Lemma 9 implies that this function is convex partitionable w.r.t. G, and hence the Lowest-
Degree k-Spanner problem can be approximately solved (to within a constant factor) by
using Algorithm 2 with ε = 1/2. Next, we use the following rounding scheme proposed in [6]:
each edge e ∈ E is included in the spanner with probability x1/k

e . It is clear that this can
be done in a constant number of rounds, and hence the overall algorithm takes O(k logn)
rounds (by Theorem 13) in the LOCAL model. In [6], it was shown that this leads to a
Õ(∆(1−1/k)2)-approximation solution of the problem.
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