
Synthesis of Distributed Algorithms with
Parameterized Threshold Guards∗

Marijana Lazić1, Igor Konnov2, Josef Widder3, and
Roderick Bloem4

1 TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
lazic@forsyte.at

2 TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
konnov@forsyte.at

3 TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
widder@forsyte.at

4 TU Graz, Inffeldgasse 16a/II, 8010 Graz, Austria
roderick.bloem@iaik.tugraz.at

Abstract
Fault-tolerant distributed algorithms are notoriously hard to get right. In this paper we introduce
an automated method that helps in that process: the designer provides specifications (the problem
to be solved) and a sketch of a distributed algorithm that keeps arithmetic details unspecified.
Our tool then automatically fills the missing parts.

Fault-tolerant distributed algorithms are typically parameterized, that is, they are designed
to work for any number n of processes and any number t of faults, provided some resilience
condition holds; e.g., n > 3t. In this paper we automatically synthesize distributed algorithms
that work for all parameter values that satisfy the resilience condition. We focus on threshold-
guarded distributed algorithms, where actions are taken only if a sufficiently large number of
messages is received, e.g., more than t or n/2. Both expressions can be derived by choosing the
right values for the coefficients a, b, and c, in the sketch of a threshold a ·n+b · t+c. Our method
takes as input a sketch of an asynchronous threshold-based fault-tolerant distributed algorithm—
where the guards are missing exact coefficients—and then iteratively picks the values for the
coefficients.

Our approach combines recent progress in parameterized model checking of distributed algo-
rithms with counterexample-guided synthesis. Besides theoretical results on termination of the
synthesis procedure, we experimentally evaluate our method and show that it can synthesize sev-
eral distributed algorithms from the literature, e.g., Byzantine reliable broadcast and Byzantine
one-step consensus. In addition, for several new variations of safety and liveness specifications,
our tool generates new distributed algorithms.

1998 ACM Subject Classification F.3.1 [Logic and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs, D.4.5 [Software]: Operating systems: Fault-tolerance,
Verification

Keywords and phrases fault-tolerant distributed algorithms, byzantine faults, parameterized
model checking, program synthesis

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.32

∗ Supported by: the Austrian Science Fund (FWF) through the National Research Network RiSE (S11403,
S11405, and S11406), project PRAVDA (P27722), and Doctoral College LogiCS (W1255-N23); and by
the Vienna Science and Technology Fund (WWTF) through project APALACHE (ICT15-103). The
computational results presented have been achieved [in part] using the Vienna Scientific Cluster (VSC).

© Marijana Lazić, Igor Konnov, Josef Widder, and Roderick Bloem;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 32; pp. 32:1–32:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

1 Introduction

Design and implementation of parameterized fault-tolerant distributed systems are error-prone
tasks. There is a mature theory regarding mathematical proof methods, which found their way
into formal frameworks like I/O Automata [24] and TLA+ [22]. Recent approaches [17, 23, 31]
provide tool support to establish correctness of implementations, by manually constructing
proofs with an interactive theorem prover. Although, if successful, this approach provides
a machine-checkable proof [9, 4], it requires huge manual efforts from the user. A logic for
distributed consensus algorithms in the HO Model [8] was introduced in [13], which allows
one to automatically check the invariants (for safety) and ranking functions (for liveness),
that is, the manual effort is reduced to finding right invariants and ranking functions. Model
checking of distributed algorithms promises a higher degree of automation. For consensus
algorithms in the HO Model, the results of [25] reduce the verification to checking small
systems of five or seven processes. For the asynchronous model, an efficient model checking
technique for threshold-guarded distributed algorithms was introduced in [20, 19]. Notably,
this technique verifies both safety and liveness properties. In all these methods, the user has
to produce an implementation (or design), and the goal is to check (using techniques that
vary in the degree of automation) whether this implementation satisfies a given specification.

In this paper we explore synthesis as it promises even more automation. The user
just provides required properties and a sketch of an asynchronous algorithm, and our tool
automatically finds a correct distributed algorithm. In this way we generate new fault-tolerant
algorithms that are correct by construction. In our experiments we first focus on existing
specifications [29, 7, 30, 28] from the literature, in order to be able to compare the output
of our tool with known algorithms. We then give new variations of safety and liveness
specifications, and our tool generates new distributed algorithms for them.

Parametrized synthesis. Similar to the verification approaches above, we are interested in
the parameterized version of the problem: Rather than synthesizing a distributed algorithm
that consists of, say, four processes and tolerates one fault, our goal is to synthesize an
algorithm that works for n processes, out of which t may fail, for all values of n and t that
satisfy a resilience condition, e.g., n > 3t. This is in contrast to recent work on synthesis
of fault-tolerant distributed algorithms [16, 15, 14] that requires the user to fix the number
of processes; typically to some n < 10. In some special cases, manual arguments or cut-off
theorems generalize synthesis results for small systems to parameterized ones [5, 12, 26].
However, similar to parameterized verification [2, 6], the parameterized synthesis problem is
in general undecidable [18]. As in the parameterized verification approach of [19], we will
therefore limit ourselves to a specific class of distributed algorithms, namely, threshold-guarded
distributed algorithms. These thresholds are arithmetic expressions over parameters, e.g., n/2,
and determine for how many messages processes should wait (a majority in the example).

More specifically, the user provides as input a distributed algorithm with holes as in
Figure 1: The user defines the control flow, and keeps the threshold expressions—noted as
τ0toSE and τAC in the figure—unspecified. As pseudo code has no formal semantics, it cannot
be used as a tool input. Rather, our tool takes as input a sketch threshold automaton.

I Example 1. Figure 1 is a pseudo code representation of the input, and Figure 2 shows
the corresponding sketch threshold automaton; they are related as follows. The initial
locations `0 and `1 of the sketch threshold automaton in Figure 2 correspond to initial states
in Figure 1 where myval is equal to 0 and 1, respectively. Edges are labeled by g 7→ act,
where expression g is a threshold guard, and the action act may increment a shared variable.

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:3

� �
Code of a correct process i:
var myvali ∈ {0, 1}
var accepti ∈ {false, true} ← false

whi le true do (in one step)
i f myvali = 1
and not s en t ECHO be f o r e

then send ECHO to a l l

i f received ECHO from ≥ τ0toSE
d i s t i n c t p r o c e s s e s
and not s en t ECHO be f o r e

then send ECHO to a l l

i f received ECHO from ≥ τAC
d i s t i n c t p r o c e s s e s

then accepti ← true
od� �

Figure 1 A single-round version of
the reliable broadcast algorithm [29]
with holes.

`0

`1
`SE `ACr′

1 : true 7→ echos++

r′
2 : echos + f ≥ τAC 7→ echos++

r′
3 : echos + f ≥ τ0toSE

7→ echos++

r′
4 : echos + f ≥ τAC 7→ echos++

r′
5 : echos + f ≥ τAC

Figure 2 A sketch threshold automaton.

`0

`1
`SE `ACr1 : true 7→ echos++

r2 : echos + f ≥ n− t 7→ echos++

r3 : echos + f ≥ t+ 1
7→ echos++

r4 : echos + f ≥ n− t 7→ echos++

r5 : echos + f ≥ n− t

Figure 3 A synthesized threshold automaton.

The action echos++ corresponds to the pseudo-code statement: send <echo> to all. (The
message buffers are replaced by a shared variable that is increased whenever a message is sent.
This typically can be done for algorithms that only count messages, and do not distinguish
the senders. For instance, a bisimulation between models with message buffers and shared
variables was proven in [21].) By going to local state `SE, a process records that it has sent
echo. Finally, by going to the local state `AC, a process records that it has set accept to true.
The “+f” terms in threshold guards model that messages from up to f Byzantine processes
may be received (f ≤ t), while we model only the n− f correct processes explicitly.

We use self loops to capture the behavior that processes may take arbitrarily many steps
before receiving a message sent to them, that is, asynchronous communication. For instance,
the self loop in `0 allows processes to stay in `0 even if the guards of the other outgoing
edges evaluate to true. That every message from a correct process is eventually received is a
fairness constraint and is therefore not part of the threshold automaton, but is captured in
the specifications. For instance, such a fairness constraint would be that if echos ≥ n − t,
then every process must eventually leave location `0. (In the fairness constraint, the “+f”
does not appear, because messages from faulty processes are not guaranteed to arrive.)

The “holes” τ0toSE and τAC in Figure 2 are the missing thresholds, which should be linear
combination of the parameters n and t. Therefore τ0toSE has the form ?1 · n + ?2 · t + ?3,
and τAC has the form ?4 · n+ ?5 · t+ ?6. The unknown coefficients ?i, for 1 ≤ i ≤ 6, have to
be found by the synthesis tool. One solution is ?1 = 0, ?2 = 1, ?3 = 1, ?4 = 1, ?5 = −1, and
?6 = 0, that is, τ0toSE = t+ 1 and τAC = n− t. This solution is depicted in Figure 3. /

In addition to a sketch threshold automaton, the user has to provide a specification,
that is, safety and liveness properties the distributed algorithm should satisfy. Based on
these inputs, our tool generates the required coefficients, that is, a threshold automaton as
in Figure 3. The synthesis approach of this paper is enabled by a recent advance [19] in
parameterized model checking of safety and liveness properties of distributed algorithms.

OPODIS 2017

32:4 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

generator
a

verifier
XXVy

CEGIS Loop

coefficients

counterexample

sketch + specification + RC

correct distributed algorithm
or “none exists”

Figure 4 The synthesis loop implemented in this paper.

Existing model checking engine. The central idea of the verification approach in [19] is to
formalize a distributed algorithm as counter system defined by a threshold automaton. A state
of a counter system records how many processes are in which local state (e.g., `0, `1, `SE, `AC).
A transition checks the guard and decreases or increases the related process counters. A
transition can be written as a set of constraints in linear integer arithmetic LIA. (Threshold
guards with rational coefficients, e.g., echos > n

2 , can be converted to integer constraints, e.g.,
2 · echos > n.) Thus, one can check for existence of specific executions by using SMT solvers,
which extend SAT solvers (for Boolean satisfiability) with first-order theories, in our case,
LIA. As shown in [20, 19], resilience conditions, executions of threshold-guarded distributed
algorithms, and specifications can be encoded as logical formulas, whose satisfiability can be
checked by solvers such as Z3 [11] and CVC4 [3]. In particular, the queries used in [20, 19]
correspond to counterexamples to a specification: If the SMT solver finds all queries to be
unsatisfiable, the distributed algorithm is correct. Otherwise, if a query is satisfiable, the
SMT solver outputs a satisfying assignment, that is an error trace, called counterexample.

The synthesis approach of this paper. Figure 4 gives an overview of our method that takes
as input (i) a sketch of a distributed algorithm, (ii) a set of safety and liveness specifications,
and (iii) a resilience condition like n > 3t, and produces as output a correct distributed
algorithm, or informs the user that none exist.

We follow the CEGIS approach to synthesis [1], which proceeds in a refinement loop.
Roughly speaking, the verifier starts by picking default values for the missing coefficients—
e.g., a vector of zeroes—and checks whether the algorithm is correct with these coefficients.
Typically this is not the case and the verifier produces a counterexample. By automatically
analyzing this counterexample, the generator learns constraints on the coefficients that are
known to produce counterexamples. The generator gives these constraints to an SMT solver
that generates new values for the coefficients, which are used in a new verifier run. If the
verifier eventually reports that the current coefficients induce a correct distributed algorithm,
we output this algorithm. The theory from [19] then implies correctness of the algorithm.

Termination of synthesis. The remaining theoretical problem that we address in this paper
is termination of the refinement loop: In principle, the generator can produce infinitely many
vectors of coefficients. In case there is no solution (which is typically the case in Byzantine
fault tolerance if n ≤ 3t), the naïve approach from the previous paragraph does not terminate,
unless we restrict the guards to “reasonable” values. In this paper, we require the guards
to lie in the interval [0, n]. We call such guards sane. For instance, although syntactically
the expressions echos ≤ −42n and echos > 2n are threshold guards, they are not sane, while
echos ≥ t+ 1 is sane. We mathematically prove that all sane guards of a specific structure
have coefficients within a hyperrectangle. We call this hypperrectangle a sanity box, and
prove that its boundaries depend only on the resilience condition. Within the sanity box,
there is only a finite number of coefficients, if we restrict them to integers or rationals with a

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:5

fixed denominator. We thus obtain a finite search space and a completeness result for the
synthesis loop.

Safety, liveness, and the fraction of faults. We consider the conjunction of safety and
liveness specifications, as these specifications in isolation typically have trivial solutions; e.g.,
“do nothing” is always safe. If just given a safety specification, our tool generates thresholds
like n for all guards, which leads to all guards evaluating to false initially. Hence, no action
can ever be taken, which is a valid solution if liveness is not required.

Besides, our tool treats resilience conditions precisely. On the one hand, given the sketch
from Figure 2, and the resilience condition n > 3t, in a few seconds our tool generates the
threshold automaton in Figure 3. On the other hand, in the case of n ≥ 3t, our tool reports
(also within seconds) that no such algorithm exists, which in fact constitutes an automatically
generated impossibility result for sane thresholds and a fixed sketch.

Experimental evaluation. We extended the tool ByMC [20] with our technique and con-
ducted experiments based on the freely available benchmarks from [20]: folklore reliable
broadcast [7], consistent broadcast [29, 30], and one-step Byzantine asynchronous consensus
BOSCO [28]. For these benchmarks, we replaced the threshold guards by threshold guards
with holes. By experimental evaluation, we show that our method can be used to generate
coefficients even for quite intricate fault-tolerant distributed algorithms that tolerate Byzan-
tine faults. In particular BOSCO proved to be a hard instance. It has to satisfy constraints
derived from different safety an liveness specifications under different resilience conditions
n > 3t, n > 5t, and n > 7t. Our tool is able to derive the three different threshold guards the
algorithm requires. Finally, we give variations of specifications, and synthesize distributed
algorithms from them that have not been produced before.

2 Modelling Threshold-Guarded Distributed Algorithms

Threshold-guarded algorithms are formalized by threshold automata. We recall the notions
of threshold automata [19] and introduce the new concept of sketches. As usual, N0 is the
set of natural numbers including 0, and Q is the set of rational numbers. The set Π is a
finite set of parameter variables that range over N0. Typically, Π consists of three variables:
n for the total number of processes, f for the number of actual faults in a run, and t for
an upper bound on f . The parameter variables from Π are usually restricted to admissible
combinations by a formula that is called a resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0. The
set Γ is a finite set that contains shared variables that store the number of distinct messages
sent by distinct (correct) processes, the variables in Γ also range over N0. In the example in
Figure 3, Γ = {echos}. For the variables from Γ, we will use names echos, x, y, etc.

For a set of variables V , a function ν : V → Q is called an assignment; its domain V is
denoted with dom(ν). In this paper, we use Φ, Ψ, and Θ for first-order logic (FOL) formulas;
e.g., when encoding linear integer constraints in SMT. For a FOL formula Φ, we write free(Φ)
for the set of Φ’s free variables, that is, the variables not bound with a quantifier. (For
convenience, we assume that quantified variables have unique names and they are different
from the names of the free variables.) Given an assignment ν : V → Q and a FOL formula Φ,
we define a substitution Φ[ν] as a FOL formula that is obtained from Φ by replacing all the
variables from V ∩ free(Φ) with their values in ν.

To introduce sketches of threshold automata—such as in Figure 2—we define unknowns
such as ?1. The set U is a finite set of unknowns that range over Q. For the variables from U ,
we use the names ?1, ?2, etc. We denote the rational values of unknowns with a, b, c, etc.

OPODIS 2017

32:6 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

Generalized threshold guards, or just guards, are defined according to the grammar:

Guard ::= Shared ≥ LinForm | Shared < LinForm Shared ::= 〈variable from Γ〉
LinForm ::= FreeCoeff | Prod | Prod + LinForm Param ::= 〈a variable from Π〉
FreeCoeff ::= Rat | Unknown Unknown ::= 〈a variable from U〉
Prod ::= Rat × Param | Unknown × Param Rat ::= 〈a rational from Q〉

For convenience, we assume that every parameter appears in LinForm at most once. Let π̄
denote the vector (π1, . . . , π|Π|, 1) that contains all the parameter variables from Π in a fixed
order as well as number 1 as the last element. Then, every generalized guard can be written
in one of the two following forms x ≥ ū · π̄ᵀ or x < ū · π̄ᵀ, where x is a shared variable
from Γ, and ū is a vector of elements from U ∪Q. When a parameter does not appear in a
generalized guard, its corresponding component in ū equals zero. We say that a guard is a
sketch guard if its vector ū contains a variable from U . A guard that is not a sketch guard is
called a fixed guard. Previous work [19] was only concerned with fixed guards.

Since threshold guards are a special case of FOL formulas, we can apply substitutions
to them. For instance, given an assignment ν : U → Q and a threshold guard g, the
substitution g[ν] replaces every occurence of an unknown ?i ∈ U in g with the rational ν(?i).

Threshold automata, denoted by TA, are edge-labeled graphs, where vertices are called
locations, and edges are called rules. Rules are labeled by g 7→ act, where expression g is
a fixed threshold guard, and the action act may increment a shared variable. We define
generalized threshold automata GTA, in the same way as threshold automata, with the only
difference that expressions g in the edge labeling are generalized threshold guards. If all
generalized guards in a GTA are fixed, then that GTA is a TA. If at least one of the edges of
a GTA is labeled by a sketch guard, then we call this automaton a sketch threshold automaton,
and we denote it by STA. Given an STA and an assignment ν : U → Q, we obtain a threshold
automaton STA[ν] by applying substitution g[ν] to every sketch guard g in STA.

Counter systems. Executions of threshold automata are formalized as counter systems.
Since processes just wait for messages until a threshold is reached and do not distinguish the
senders, the systems we consider are symmetric. This allows us to represent a global state—
a configuration—by (process) counters: Instead of recording which process is in which local
state (which is done typically in distributed algorithms theory), we capture for each local
state, how many processes are in it, and then use the rules of the threshold automaton
to define the transitions between configurations. In the following, we quickly sketch the
semantics to the extent necessary for this paper. Complete definitions can be found in [19].

For every TA we define a counter system as a transition system. First, for every location `
we introduce a counter κ[`] that keeps track of the number of processes in that particular
location. A configuration σ is defined as an assignment of all counters of locations, all shared
variables from Γ, and all parameters from Π, that respects the resilience condition. If a
rule r is an edge (`, `′) of a TA, then a transition (r,m) represents m processes moving
from the location ` to `′. We call m the acceleration factor. If m = 1 for all transitions in
an execution, we get asynchronous executions where one process moves at a time, that is,
interleaving semantics. If the rule r has a label g 7→ act, then (r,m) can be applied only in
a configuration in which the counter κ[`] has a value at least m, and g evaluates to true, and
remains true during m− 1 applications of act. In other words, only if the threshold from g

is reached, and there are enough processes in location `; see [19] for details. After executing
the transition (r,m), counters are updated such that κ[`] is decreased by m and κ[`′] is
increased by m, and shared variables are updated according to the action act, m times.

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:7

I Example 2. Consider the TA from Figure 3. One configuration is the following: parameters
are n = 7, f = t = 2, satisfying resilience condition n > 3t ≥ 0 ∧ f ≤ t, counters have values
κ[`0] = 2, κ[`SE] = 3, κ[`1] = κ[`AC] = 0 and shared variable echos = 3. (As we only model
correct process explicitly, the counters add up to n− f = 5.) As in this configuration we have
that echos+f = 5 ≥ 5 = n− t, and κ[`0] = 2, we can execute transition (r2, 2). The obtained
configuration has the same parameter values, but counters are changed: κ[`0] = κ[`1] = 0
and κ[`SE] = 3, and κ[`AC] = 2. Also, as the action of the rule r2 is echos++, and two processes
are moving along this edge, then the new value of echos is 5. /

With a TA we associate a set of predicates PTA that track properties of the system states.
The set PTA consists of the TA’s threshold guards and a test κ[`] = 0 for every location ` in TA.
For every configuration σ, one can compute the set ρ(σ) ⊆ PTA of the predicates that hold
true in σ. As was demonstrated in [19], the predicates from PTA and linear temporal logic
are sufficient to express the safety and liveness properties of threshold-guarded distributed
algorithms found in the literature. Essentially, the test κ[`] = 0 evaluates to true if no process
is in location `, and κ[`] 6= 0 evaluates to true if there is at least one process at `. That
all processes are in specific locations can be expressed by a condition that states that “no
processes are in the other locations”, that is, as a Boolean combination of tests for zero. We
include the threshold guards in PTA to be able to express the fairness properties such as: if
echos ≥ t+ 1, then every process should eventually make one of the transitions labelled with
echos + f ≥ t+ 1. Examples of such properties for our benchmarks are given in Section 5.

A system execution is expressed as a path in the counter system. Formally, a path is an
infinite alternating sequence of configurations and transitions, that is, σ0, t1, σ1, . . . , ti, σi, . . . ,
where σ0 is an initial configuration, and σi+1 is the result of applying ti+1 to σi for i ≥ 0. The
infinite sequence ρ(σ0), ρ(σ1), . . . is called the path trace. With TracesTA we denote the set of
all path traces in the TA’s counter system. Correctness of a distributed algorithm then means
that all traces in TracesTA satisfy a specification expressed in linear temporal logic [10]. The
verification approach from [19] discussed in Section 3 specifically looks for traces that violate
the specification. Such traces are characterized by the temporal logic ELTLFT that allows
one to express negations of specifications relevant for fault-tolerant distributed algorithms.

3 Verification machinery

In [19] we introduced a technique for parameterized verification of threshold-based distributed
algorithms. Given a fixed threshold automaton TA, a resilience condition RC, and a set
{¬ϕ1, . . . ,¬ϕk} of ELTLFT formulas representing negation of specifications, we check whether
there is an execution violating the specification (ϕ1 ∧ . . . ∧ ϕk). Thus, as an output, the
algorithm from [19] either confirms correctness, or gives a counterexample. In this paper, we
use this technique as a black box, that is, we assume that there is a function

verifyByMC(TA, RC, {¬ϕ1, . . . ,¬ϕk})

that either reports a counterexample, or that TA is correct. As our synthesis approach learns
from counterexamples, we recall the form of the counterexamples reported by the verifier.

Representative executions and schemas. The idea of [19] lies in automatically computing
length and structure of representative executions in advance, whose shape we call schemas.
A schema is an alternating sequence of contexts (sets of guards) and sequences of rules.
Precise definition of a schema and its encoding can be found in [20, 19]. Intuitively, a
schema is a concatenation of multiple simple schemas. A simple schema has the form

OPODIS 2017

32:8 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

Algorithm 1 Pseudo-code of the synthesis loop.
1 procedure syntByMC(STA, RC, {¬ϕ1, . . . ,¬ϕk})
2 Θ0 := boundU (RC) and i := 0
3 while (true)
4 call checkSMT(Θi)
5 case unsat ⇒ print ’no more solutions’ and exit()
6 case sat(µ) ⇒ /∗ µ assigns rationals to the variables in U ∗/
7 call verifyByMC(STA[µ], RC, {¬ϕ1, . . . ,¬ϕk})
8 case correct ⇒
9 print ’solution µ’ /∗ exclude this solution and continue ∗/

10 Θi+1 := Θi ∧
∨

?j ∈U
?j 6= µ[?j] and i := i+1

11 case counterexample(S, ν) ⇒ /∗ dom(ν) ∩ U = ∅ ∗/
12 SU := generalize(S, STA)
13 Ψ := formulaSMT(SU)
14 Θi+1 := Θi ∧ ¬Ψ[ν] and i := i+1

{g1, . . . , gk} r1 . . . rs {g′1, . . . , g′k′}, where k, k′, s ∈ N, g1, . . . , gk, g
′
1, . . . , g

′
k′ are guards, and

r1, . . . , rs are rules. Given acceleration factors mi, 1 ≤ i ≤ s, such that 0 ≤ mi ≤ n, the
simple schema generates an execution where all the guards g1, . . . , gk hold in its initial
configuration, and after executing (r1,m1), . . . , (rs,ms), we arrive in a configuration where
all the guards g′1, . . . , g′k′ hold. As proven in [19], specific schemas of fixed length represent
infinite executions (that end in an infinite loop) as required for counterexamples to liveness.

Our verification tool considers each schema in isolation, and basically searches for an
evaluation ν of the parameters (n, t, f), an initial configuration (values of counters of
initial local states), and all the acceleration factors, such that the resulting execution is
admissible (only enabled rules are executed, etc.). Such an execution— if found—constitutes
a counterexample, and the tool reports the corresponding pair (schema, ν).

Solver. Our tool encodes a schema as an SMT formula over parameters, counters of local
states, global variables, and acceleration factors. This formula is a conjunction of equalities
and inequalities in linear integer arithmetic. Inequalities come from guards, and have
shared variables and parameters as free variables. Equalities come from transitions, as every
transition is encoded as updating counters of local states and shared variables. The tool
ByMC [19] calls an SMT solver to check satisfiability of the formula.

4 Synthesis

Synthesis problem. A temporal logic formula ϕ in ELTLFT describes an (infinite) set of
bad traces that the synthesized algorithm must avoid. Therefore, we consider the following
formulation of the synthesis problem. Given a sketch threshold automaton STA and an
(infinite) set of bad traces TracesBad, either:

find an assignment µ : U → Q, in order to obtain the fixed threshold automaton STA[µ]
whose traces TracesSTA[µ] do not intersect with TracesBad, or
report that no such assignment exists.

Our approach is to find values for the unknowns in a synthesis refinement loop and test them
with the verification technique from Section 3.

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:9

Synthesis loop. Algorithm 1 shows the pseudo-code of the synthesis procedure syntByMC.
At its input the procedure receives a sketch threshold automaton STA, a resilience condition,
and a set of ELTLFT formulas {¬ϕ1, . . . ,¬ϕk}, which capture the bad traces TracesBad. In
line 2, formula Θ0, which captures constraints on the unknowns from U , is initialized using a
function boundU . In principle, boundU can be initialized to true (no constraints). However,
to ensure termination, we will discuss later in this section, how we obtain constraints that
bound the coefficients of sane guards. After initialization we enter the synthesis loop.

The SMT solver checks whether Θi has a satisfying assignment to the unknowns in U
(line 4). If Θi is unsatisfiable, the loop terminates with a negative outcome in line 5. Otherwise,
the SMT solver gives us an assignment µ : U → Q that is a solution candidate. To check
feasibility of µ, the verifier is called for the fixed threshold automaton STA[µ] in line 7. The
verifier generates multiple schemas, each being one SMT query, which are checked either
sequentially or in parallel. If the verifier reports that a schema that produces a counterexample
does not exist, then the candidate assignment µ and threshold automaton STA[µ] give us
a solution to the synthesis problem. If we were interested in just one solution, the loop
would terminate here with a positive outcome. However, because we want to enumerate all
solutions, our function does a complete search, such that we exclude the solution µ for the
future search in line 10, and continue.

If the verifier finds a counterexample, the loop proceeds with the branch in line 11. A
counterexample is a schema S of STA[µ] and a satisfying assignment ν : V → Q to the
free variables V of the SMT formula formulaSMT, which include the parameters Π, shared
variables xj for x ∈ Γ, and counters κj [`] for each local state ` ∈ L and every configuration j.
In principle, we could exclude µ from consideration similar to line 10. For efficiency, we want
to exclude a larger set of evaluations, namely all that lead to the same counterexample: We
produce a generalized schema SU , by replacing the rules and guards in S, which belong to the
threshold automaton STA[µ] with the rules and guards of the sketch threshold automaton STA
(line 12). In line 13, we generate a generalized counterexample Ψ. As Ψ is derived from a
counterexample with valuations µ and ν, we know that Ψ[ν][µ] is true. Further, for every
evaluation of the unknowns µ′, if Ψ[ν][µ′] is true, then Ψ[ν][µ′] is a counterexample. To
exclude all these evaluations µ′ at once, we conjoin ¬Ψ[ν] with Θi in line 14, which gives us
new constraints on the unknowns, before entering the next loop iteration.

The synthesis loop terminates only in line 5, that is, if Θi is unsatisfiable. As, in this case,
Θi is equivalent to false, the following observation guarantees that all satisfying assignments
of Θ0 have been explored and all solutions (if any exists) have been reported.

I Observation 3. At the beginning of every iteration i ≥ 0 of the synthesis loop in lines 3–14,
the following invariant holds: if µ : U → Q is a satisfying assignment of formula Θ0 ∧ ¬Θi,
then either: (1) µ was previously reported as a solution in line 9, or (2) µ was previously
excluded in line 14 and thus is not a solution. /

Completeness and termination for sane guards. Without restricting Θ0, the search space
for coefficients is infinite. In the following, we show that restricting the synthesis problem to
sane guards bounds the search space.

The role of threshold guards is typically to check whether the number of distinct senders,
from which messages are received, reaches a threshold. We also use threshold guards in our
models to bound the number of processes that go into a special crash state. In both cases,
one counts distinct processes and it is therefore natural to consider only those thresholds

OPODIS 2017

32:10 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

whose value is in [0, n]. More precisely, if the guard has a form x ≥ ū · π̄ᵀ or x < ū · π̄ᵀ, then
for all parameter values that satisfy resilience condition it holds that 0 ≤ ū · π̄ᵀ ≤ n. We call
such guards sane for a given resilience condition.

Theorem 4 considers a general case of hybrid failure models [30] where different failure
bounds exist for different failure models (e.g., t1 Byzantine faults and t2 crash faults), and
these failure bounds are related to the number of processes n by a resilience condition1 of
the form n >

∑k
i=1 δiti ∧ ∀i. ti ≥ 0. We bound the values of the coefficients of sane guards.

I Theorem 4. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where k ∈ N, δi ∈ Q

and δi > 0, for 1 ≤ i ≤ k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard

x ≥ an+ (b1t1 + . . .+ bktk) + c or x < an+ (b1t1 + . . .+ bktk) + c,

where x ∈ Γ, and a, b1, . . . , bk, c ∈ Q. If the guard is sane for the resilience condition, then

0 ≤ a ≤ 1, (1)
−δi − 1 < bi < δi + 1, for all i = 1, . . . , k (2)

−2(δ1 + . . .+ δk)− k − 1 ≤ c ≤ 2(δ1 + . . .+ δk) + k + 1. (3)

The case when k = 1 gives us the classical resilience condition where the system model
assumes one type of faults (e.g., crash), and the assumed number of faults t is related to
the total number of processes n, by a condition n > δt ≥ 0 for some δ > 0. If the guard
that compares a shared variable and an+ bt+ c is sane for the resilience condition, then we
obtain that 0 ≤ a ≤ 1, −δ − 1 < b < δ + 1, and −2δ − 2 ≤ c ≤ 2δ + 2. Any restriction of
the intervals from Theorem 4 to finite sets gives us completeness: If we reduce the domain
of variables from U to integers, or to rationals with fixed denominator (e.g., z

10 for z ∈ Z),
one reduces the search space to a finite set of valuations. All threshold-based distributed
algorithms we are aware of, use guards with coefficients that are either integers or rationals
with a denominator not greater than 3. Thus, we restrict our intervals by intersecting them
with the set of rational numbers whose denominator is at most D, for a given D ∈ N.

The following corollary is a direct consequence of Theorem 4, and it tells us how to modify
intervals if the coefficients are rational numbers with a fixed denominator.

I Corollary 5. Let n >
∑k
i=1 δiti ∧ ∀i. ti ≥ 0 be a resilience condition, where k ∈ N, δi ∈ Q

and δi > 0, 1 ≤ i ≤ k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard

x ≥ ã

D
n+

(
b̃1
D
t1 + . . .+ b̃k

D
tk

)
+ c̃

D
or x <

ã

D
n+

(
b̃1
D
t1 + . . .+ b̃k

D
tk

)
+ c̃

D
,

where x ∈ Γ, ã, b̃1, . . . , b̃k, c̃ ∈ Z, D ∈ N. If the guard is sane for the resilience condition then

0 ≤ ã ≤ D, (4)
D(−δi − 1) < b̃i < D(δi + 1), for all i = 1, . . . , k, (5)

D(−2(δ1 + . . .+ δk)− k − 1) ≤ c̃ ≤ D(2(δ1 + . . .+ δk) + k + 1). (6)

1 Because a guard that is sane for a weaker resilience condition, is also sane for a stronger one,
Theorem 4 and Corollary 5 also hold for any resilience condition that follows from this one, e.g.,
n > max{δ1t1, . . . , δktk} ∧ ∀i. ti ≥ 0. We can use the same intervals, confirmed by the same proofs as
in Appendix A. However, our benchmarks use the form of resilience conditions of Theorem 4.

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:11

`0

`1

`AC `CR

φAC 7→ send

φCR 7→ nc++

φCR 7→
nc++

φCR 7→
nc++, sendF

true 7→
send

φCR 7→ nc++

Figure 5 A sketch threshold automa-
ton for folklore reliable broadcast.

`0

`1

`SE

`AC `CRφ0toSE 7→ send

φAC 7→ send

φCR 7→ nc++

true 7→ send

φCR 7→ nc++

φCR 7→
nc++, sendF

φAC 7→ send

φAC

φCR 7→ nc++

φCR 7→ nc++

Figure 6 A sketch threshold automaton for reliable
broadcast with Byzantine and crash faults.

Constraints (4)–(6) constitute the sanity box that function boundU computes in Algo-
rithm 1. By fixing D, we restrict Θ0 to have finitely many satisfying assignments (integers).
Hence, the loop terminates. Statements similar to Theorem 4 and Corollary 5 can be derived
for other forms of threshold guards, e.g., for thresholds with floor or ceiling functions.2

5 Case Studies and Experiments

We have extended ByMC [20, 19] with the synthesis technique presented in this paper. A
virtual machine with the tool and the benchmarks is available from: http://forsyte.at/
software/bymc.3 ByMC is written in OCaml and uses Z3 [11] as a backend SMT solver.
We ran the experiments on two systems: a laptop and the Vienna Scientific Cluster (VSC-3).
The laptop is equipped with 16 GB of RAM and Intel® Core™ i5-6300U processor with
4 cores, 2.4 GHz. The cluster VSC-3 consists of 2020 nodes, each equipped with 64 GB
of RAM and 2 processors (Intel® Xeon™ E5-2650v2, 2.6 GHz, 8 cores) and is internally
connected with an Intel QDR-80 dual-link high-speed InfiniBand fabric: http://vsc.ac.at.

We synthesize thresholds for asynchronous fault-tolerant distributed algorithms. We
consider reliable broadcast and fast decision for a consensus algorithm. In the case of reliable
broadcast we consider different fault models, namely, crashes [7] and Byzantine faults [29], as
well as a hybrid fault model [30] with both, Byzantine and crash failures. For fast decision,
we consider the one-step consensus algorithm BOSCO for Byzantine faults [28].

Reliable broadcast for crash and/or Byzantine failures. Figure 6 shows a sketch threshold
automaton of a reliable broadcast that should tolerate fc ≤ tc crash and fb ≤ tb Byzantine
faults under the resilience condition n > 3tb + 2tc. For our experiments under simpler failure
models—only Byzantine and crash faults—we use the sketch threshold automata from
Figures 2 and 5. However, the same thresholds can be obtained by setting tc = fc = 0 and
tb = fb = 0 in the automaton from Figure 6, respectively. In Figure 2, we do not need a
dedicated crash state, as we only model correct processes explicitly, while Byzantine faults
are modeled via the guards (cf. Example 1). The automaton from Figure 5 can be obtained
from Figure 6 by removing the location `SE.

2 Theorem 7 and Corollary 8 in Appendix B consider floor and ceiling functions. Our benchmarks do not
make use of such thresholds.

3 See http://forsyte.at/opodis17-artifact/ for detailed instructions on using the tool.

OPODIS 2017

http://forsyte.at/software/bymc
http://forsyte.at/software/bymc
http://vsc.ac.at
http://forsyte.at/opodis17-artifact/

32:12 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

Table 1 Synthesized solutions for reliable broadcast that tolerates: crashes (Figure 5), Byzantine
faults (Figure 2), and Byzantine & crash faults (Figure 6). We used the laptop in the experiments.

Resilience condition Specs #Solutions Threshold τ0toSE Threshold τAC
Calls to
verifier

Time,
seconds

n > tc, tb = 0 U, C, R 1 true 1 12 6

n > 3tb, tc = 0 U, C, R 3
n− 2tb
tb + 1
tb + 1

n− tb
2tb + 1
n− tb

31 16

n ≥ 3tb, tc = 0 U, C, R None — — 25 7

n > 3tb + 2tc U, C, R 3
n− 2tb − 2tc

tb + 1
tb + 1

n− tb − tc
2tb + tc

n− tb − tc
34 50

n ≥ 3tb + 2tc U, C, R None — — 21 12
n > 3tb + tc U, C, R None — — 29 24

The algorithms we consider are the core of broadcasting algorithms, and establish
agreement on whether to accept the message by the broadcaster. Similar to Example 1,
processes start in locations `1 and `0, which capture that the process has received and has
not received a message by the broadcaster, respectively. A correctly designed algorithm
should satisfy the following properties [29]:
(U) Unforgeability: If no correct process starts in `1, then no correct process ever enters `AC.
(C) Correctness: If all correct processes start in `1, then there exists a correct process that

eventually enters `AC.
(R) Relay: Whenever a correct process enters `AC, all correct processes eventually enter `AC.

In the following discussion we use Figure 6 as example. We have to sketch the guards φCR,
φ0toSE, and φAC. At most fc processes can move to the crashed state `CR. The algorithm
designer does not have control over the crashes, and thus we fix the guard φCR to be nc < fc:
The shared variable nc maintains the actual number of crashes (initially zero), which is
used only to model crashes and thus cannot be used in guards other than φCR. To properly
model that a processes can crash during a “send to all” operation (non-clean crash), we
introduce two shared variables: the variable echos stores the number of echo messages that
are sent by the correct processes (some of them may crash later), and the variable echosCF
stores the number of echo messages that are sent by the correct processes and the faulty
processes when crashing. Hence, the action send increases both echos and echosCF, whereas
the action sendF increases only echosCF.

We define the thresholds τ0toSE and τAC as (?SE
a · n + ?SE

b · tb + ?SE
c · tc + ?SE

d) and
(?AC
a · n + ?AC

b · tb + ?AC
c · tc + ?AC

d) respectively. Hence, φ0toSE and φAC are defined as
echosCF + fb ≥ τ0toSE and echosCF + fb ≥ τAC. As discussed in the introduction, we add fb
to echosCF to reflect that the correct processes may—although do not have to—receive
messages from Byzantine processes. For reliable communication, we have to enforce:

Every correct process eventually receives at least echos messages. (RelComm)

As threshold automata do not explicitly store the number of received messages, we
transform (RelComm) into a fairness constraint, which forces processes to eventually leave a
location if the messages by correct processes alone enable a guard of an edge that is outgoing
from this location. That is, there is a time after which the following holds forever:

κ[`1] = 0 ∧ (echos < τ0toSE ∨ κ[`0] = 0) ∧ (echos < τAC ∨ (κ[`0] = 0 ∧ κ[`SE] = 0)). (Fair)

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:13

Table 2 Synthesized solutions for variations of reliable broadcast and specifications (X)–(Z).

Resilience condition Specs #Solutions Threshold τ0toSE Threshold τAC
Calls to
verifier

Time,
seconds

n > 3tb, tc = 0 X, C, R None — — 15 2

n > 3tb + 2, tc = 0 X, C, R 3
n− 2tb
tb + 3
tb + 3

n− tb
2tb + 3
n− tb

35 12

n > 3tb, tc = 0 Y, C, R None — — 28 6

n > 4tb, tc = 0 Y, C, R 3
n− 2tb
2tb + 1
2tb + 1

n− tb
3tb + 1
n− tb

33 12

n > 3tb + 2tc U, Z, R 2 tb + 1
tb + 1

n− tb − tc
2tb + tc + 1 41 31

Table 1 summarizes the experimental results for reliable broadcast, when looking for
integer solutions only. The cases tb = 0 and tc = 0 correspond to the algorithms that tolerate
only crashes (Figure 5) and only Byzantine faults (Figure 2) respectively. For these cases,
we obtained the solutions known from the literature [29, 7] and some variations. Moreover,
when the resilience condition is changed from n > 3tb to n ≥ 3tb, our tool reports no solution,
which also complies with the literature [29]. In the case of fc crashes and fb Byzantine faults,
the tool reports three solutions. Moreover, when we tried to relax the resilience condition to
n ≥ 3tb + 2tc and n > 3tb + tc, the tool reported that there is no solution, as expected.

Variations of the specification. Our logic allows us to easily change the specifications. For
instance, we can replace the precondition of unforgeability “if no correct process starts in `1”
by giving an upper bound (number or parameter) on correct processes starting in `1 that
still prevents entering `AC, in specifications (X) and (Y). We also changed the precondition
of correctnesss “if all correct processes start in `1” in specification (Z):
(X) If at most two correct processes start in `1, then no correct process ever enters `AC.
(Y) If at most tb correct processes start in `1, then no correct process ever enters `AC.
(Z) If at least tb + tc + 1 non-Byzantine processes (correct or crash faulty) start in `1, then

there exists a correct process that eventually enters `AC.

Interestingly, we obtain new distributed computing problems that put quantitative
conditions on the initial state. These specifications are related to the specifications of
condition-based consensus [27]. Our tool automatically generates solutions, or shows their
absence in the case resilience conditions are too strong. Table 2 summarizes these results.

Byzantine one-step consensus. Figure 7 shows a sketch threshold automaton of a one-
step Byzantine consensus algorithm that should tolerate f ≤ t Byzantine faults under the
assumption n > 3t. It is a formalization of the BOSCO algorithm [28]. The purpose of
the algorithm is to quickly reach consensus if (a) n > 5t and f = 0, or (b) n > 7t. In this
encoding, correct processes make a “fast” decision on 0 or 1 by going in the locations `D0
and `D1, respectively. When neither (a) nor (b) holds, the processes precompute their votes
in the first step and then go to the locations `U0 and `U1, from which an underlying consensus
algorithm is taking over. In this sense, BOSCO can be seen as an asynchronous preprocessing
step for general consensus algorithms, and the properties given below contain preconditions
for calling consensus in a safe way (see Fast Agreement below). Every run of a synthesized
threshold automaton must satisfy the following properties (for i ∈ {0, 1} and j = 1− i):

OPODIS 2017

32:14 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

`0

`1

`SE0

`SE1

`D0

`D1

`U0

`U1

true 7→ s0++, s01++

true 7→ s1++, s01++

φA ∧ s0 + f ≥ τD0

φA ∧ s1 + f ≥ τD1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 + f ≥ τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 < τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 < τU0 ∧ s1 < τU1

φA ∧ s1 <
τD0 ∧ s1 <

τD1 ∧ s0 + f ≥ τU0 ∧ s1 <
τU1

Figure 7 A sketch threshold automaton for one-step Byzantine consensus. Labels of dashed
edges are omitted; they can be obtained from the respective solid edges by swapping 0 and 1.

(A) Fast agreement [28, Lemmas 3–4]: Condition κ[`Di] 6= 0 implies κ[`Dj] = κ[`Uj] = 0.
(O) One step: If n > 5t ∧ f = 0 or n > 7t, and initially κ[`j] = 0, then it always holds that

κ[`Dj] = 0 and κ[`U0] = κ[`U1] = 0. That is, the underlying consensus is never called.
(F) Fast termination: If n > 5t ∧ f = 0 or n > 7t, and initially κ[`j] = 0, then it eventually

holds that κ[`] = 0 for all local states different from `Di.
(T) Termination: It eventually holds that κ[`0] = κ[`1] = 0 and κ[`SE0] = κ[`SE1] = 0.

We define thresholds τA, τD0, τD1, τU0, τU1 as ?xa ·n+?xb · t+?xc for x ∈ {A,D0,D1,U0,U1}.
Then, the guard φA is defined as: s01 + f ≥ τA. Interestingly, the thresholds appear in
different roles in the guards, e.g., s0 + f ≥ τD0 and s0 < τD0. These cases correspond to
BOSCO’s decisions on how many messages have been received and how many messages have
not been received “modulo Byzantine faults.”

As with reliable broadcast, we model reliable communication with the following fairness
constraint: For i ∈ {0, 1}, from some point on, the following holds: κ[`0] = 0 ∧ κ[`1] =
0 ∧ (s01 < τA ∨ si < τDi ∨ κ[`SEi] = 0).

We bound denominators of rationals with two and use the sanity box provided by
Corollary 5. To reduce the search space, we assume that the guards for 0 and 1 are
symmetric, that is ?D0

a = ?D1
a and ?U0

a = ?U1
a . Still, BOSCO is a challenging benchmark for

verification [19] and synthesis. Since the verification procedure from Section 3 independently
checks schemas with SMT, we parallelized schema checking with OpenMPI, and ran the
experiments at Vienna Scientific Cluster (VSC-3) using 8–128 cores; Table 3 summarizes the
results. The tool has found four solutions for the guards: τA = n−t [− 1

2], τD0 = τD1 = n+3t+1
2 ,

and τU0 = τU1 = n−t
2 [+ 1

2]. In addition to the guards from [28], the tool also reported that
one can add or subtract ½ from several guards. Figure 8 demonstrates that increasing the
number of cores above 64 slows down synthesis times for this benchmark.

Variations of the BOSCO specifications. We relaxed the precondition for fast termination:
(U) If n ≥ 5t ∧ f = 0 and initially κ[`j] = 0, then it eventually holds that κ[`] = 0 for all

local states different from `Di.
(V) If n ≥ 7t and initially κ[`j] = 0, then it eventually holds that κ[`] = 0 for all local states

different from `Di.
As can be seen from Table 3, specifications (U) and (V) have no solutions.

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:15

Table 3 Experiments for one-step Byzantine consen-
sus for n > 3t running the parallel verifier at VSC-3.

Specs
Nr. of

solutions
Calls to
verifier

Nr. of
cores

Time
min.

AOFT 4 516 128 39
AOFT 4 432 96 25
AOFT 4 425 64 24
AOFT 4 502 16 44
AOFT 4 440 8 51
AOUT 0 376 8 40
AOVT 0 337 8 33

39 min

25 min24 min

31 min

44 min

51 min

Ti
m

e,
 s

ec
.

1500

3000

Number of cores (16 cores per node)
816 32 64 128

Figure 8 Synthesis times for BOSCO
at Vienna Scientific Cluster (VSC-3).

6 Discussions

The classic approach to establish correctness of a distributed algorithm is to start with a system
model, a specification, and pseudo code, all given in natural language and mathematical
definitions, and then write a manual proof that confirms that “all fits together.” Manual
correctness proofs mix code inspection, system assumptions, and reasoning about events in
the past and the future. Slight modifications to the system assumptions or the code require
us to redo the proof. Thus, the proofs often just establish correctness of the algorithm,
rather than deriving details of the algorithm— like the threshold guards— from the system
assumption or the specification.

We introduced an automated method that synthesizes a correct distributed algorithm
from the specifications and the basic assumptions. Our tool computes threshold expressions
from the resilience condition and the specification, by learning the constraints that are
derived from counterexamples. Learning dramatically reduces the number of verifier calls. In
case of BOSCO, the sanity box contains 236 vectors of unknowns, which makes exhaustive
search impractical, while our technique only needs to check approximately 500 vectors.

In addition to synthesizing known algorithms from the literature, we considered several
modified specifications. For some of them, our tool synthesizes thresholds, while for others it
reports that no algorithm of a specific form exists. The latter results are indeed impossibility
results (lower bounds on the fraction of correct processes) for fixed sketch threshold automata.

To ensure termination of the synthesis loop, we restrict the search space, and thus the
class of algorithms for which the impossibility result formally applies. First, while we restrict
the search to sane guards, the same synthesis loop can also be used to synthesize other
guards. However, in order to ensure termination, a suitable characterization of sought-after
guards should be provided by the user. Second, for reliable broadcast we consider only
threshold guards with integer coefficients that can express thresholds like n− t or 2t+ 1. For
BOSCO, we only allow division by 2, and can express thresholds like n

2 or n−t
2 . While from

a theoretical viewpoint these restrictions limit the scope of our results, we are not aware of
a distributed algorithm where processes wait for messages from, say, n7 or n

1000 processes.
To strengthen our completeness claim, we would need to formally explain why only small
denominators are used in fault-tolerant distributed algorithms.

References
1 Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,

Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek

OPODIS 2017

32:16 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

Udupa. Syntax-guided synthesis. In FMCAD, pages 1–8, 2013.
2 K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.

IPL, 15:307–309, 1986.
3 Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,

Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In CAV, pages 171–177, 2011.
4 Benjamin Bisping, Paul-David Brodmann, Tim Jungnickel, Christina Rickmann, Henning

Seidler, Anke Stüber, Arno Wilhelm-Weidner, Kirstin Peters, and Uwe Nestmann. A con-
structive proof for FLP. Archive of Formal Proofs, 2016.

5 Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs. Synthesis of self-stabilising and
Byzantine-resilient distributed systems. In CAV, volume 9779 of LNCS, pages 157–176,
2016.

6 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith,
and Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers, 2015.

7 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

8 Bernadette Charron-Bost and André Schiper. The heard-of model: computing in dis-
tributed systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

9 Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Verifying safety
properties with the TLA+ proof system. In IJCAR, volume 6173 of LNCS, pages 142–148,
2010.

10 Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
1999.

11 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS, volume
1579 of LNCS, pages 337–340. Springer Berlin Heidelberg, 2008.

12 Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H. Korhonen, Christoph Lenzen, Joel
Rybicki, Jukka Suomela, and Siert Wieringa. Synchronous counting and computational
algorithm design. J. Comput. Syst. Sci., 82(2):310–332, 2016.

13 Cezara Drăgoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and Damien Zufferey.
A logic-based framework for verifying consensus algorithms. In VMCAI, volume 8318 of
LNCS, pages 161–181, 2014.

14 Fathiyeh Faghih and Borzoo Bonakdarpour. SMT-based synthesis of distributed self-
stabilizing systems. TAAS, 10(3):21:1–21:26, 2015.

15 Fathiyeh Faghih, Borzoo Bonakdarpour, Sébastien Tixeuil, and Sandeep S. Kulkarni.
Specification-based synthesis of distributed self-stabilizing protocols. In FORTE, volume
9688 of LNCS, pages 124–141, 2016.

16 Adrià Gascón and Ashish Tiwari. A synthesized algorithm for interactive consistency. In
NFM, volume 8430 of LNCS, pages 270–284. Springer, 2014.

17 Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving safety and liveness of practical
distributed systems. Commun. ACM, 60(7):83–92, 2017.

18 Swen Jacobs and Roderick Bloem. Parameterized synthesis. LMCS, 10(1:12), 2014.
19 Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A short counterexample

property for safety and liveness verification of fault-tolerant distributed algorithms. In
POPL, pages 719–734, 2017.

20 Igor Konnov, Helmut Veith, and Josef Widder. SMT and POR beat counter abstraction:
Parameterized model checking of threshold-based distributed algorithms. In CAV (Part I),
volume 9206 of LNCS, pages 85–102, 2015.

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:17

21 Igor Konnov, Josef Widder, Francesco Spegni, and Luca Spalazzi. Accuracy of message
counting abstraction in fault-tolerant distributed algorithms. In VMCAI, pages 347–366,
2017.

22 Leslie Lamport. Specifying systems: The TLA+ language and tools for hardware and
software engineers. Addison-Wesley, 2002.

23 Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: certified causally consistent
distributed key-value stores. In POPL, pages 357–370, 2016.

24 Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
25 Ognjen Maric, Christoph Sprenger, and David A. Basin. Cutoff bounds for consensus

algorithms. In CAV, pages 217–237, 2017.
26 Laure Millet, Maria Potop-Butucaru, Nathalie Sznajder, and Sébastien Tixeuil. On the

synthesis of mobile robots algorithms: The case of ring gathering. In SSS, volume 8756 of
LNCS, pages 237–251, 2014.

27 Achour Mostéfaoui, Eric Mourgaya, Philippe Raipin Parvédy, and Michel Raynal. Evalu-
ating the condition-based approach to solve consensus. In DSN, pages 541–550, 2003.

28 Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asynchronous con-
sensus. In DISC, volume 5218 of LNCS, pages 438–450, 2008.

29 T.K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp., 2:80–94, 1987.

30 Josef Widder and Ulrich Schmid. Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Dist. Comp., 20(2):115–140, 2007.

31 James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas E. Anderson. Verdi: a framework for implementing and formally
verifying distributed systems. In PLDI, pages 357–368, 2015.

APPENDIX

A Detailed Proofs

In order to prove Theorem 4, we first prove mathematical background of it, i.e., Lemma 6.

I Lemma 6. Fix a k ∈ N, and for every i ∈ {1, . . . , k} fix δi > 0. Let a, b1, . . . , bk, c be
rationals for which the following holds: for every n, t1, . . . , tk ∈ N such that n >

∑k
i=1 δiti ≥ 0,

it holds that 0 ≤ an+
∑k
i=1 biti + c ≤ n. Then it is the case that

0 ≤ a ≤ 1, (7)
−δi − 1 < bi < δi + 1, for all i = 1, . . . , k (8)

−2(δ1 + . . .+ δk)− k − 1 ≤ c ≤ 2(δ1 + . . .+ δk) + k + 1. (9)

Proof. Let PRC be the set of all tuples (n, t1, . . . , tk) ∈ Nk+1 that satisfy n >
∑k
i=1 δiti ≥ 0.

Thus, we assume that for a, b1, . . . , bk, c ∈ Q the following holds:

0 ≤ an+
k∑
i=1

biti + c ≤ n, for all (n, t1, . . . , tk) ∈ PRC . (10)

We show that if any of the conditions (7)–(9) is violated, we obtain a contradiction by finding
(n0, t01, . . . , t

0
k) ∈ PRC such that 0 ≤ an0 +

∑k
i=1 bit

0
i + c ≤ n0 does not hold.

Proof of (7). Let us first show that 0 ≤ a ≤ 1.

OPODIS 2017

32:18 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

Assume by contradiction that a > 1. From (10) we know that for every (n, t1, . . . , tk) ∈
PRC holds n ≥ an +

∑k
i=1 biti + c, that is, (1 − a)n ≥

∑k
i=1 biti + c. Since 1 − a < 0, we

obtain

n ≤
∑k
i=1 biti + c

1− a , for all (n, t1, . . . , tk) ∈ PRC . (11)

Consider any tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 where n0 > max

{∑k
i=1 δit

0
i ,

∑k

i=1
bit

0
i +c

1−a

}
. By

construction, we obtain: (i) the tuple is in PRC because n0 >
∑k
i=1 δit

0
i , and (ii) we have

n0 >

∑k

i=1
bit

0
i +c

1−a , such that we arrive at the required contradiction to (11).
Assume now that a < 0. Again from (10) we have that for all (n, t1, . . . , tk) ∈ PRC holds

an+
∑k
i=1 biti + c ≥ 0, or in other words an ≥ −

∑k
i=1 biti − c. As a < 0, this means that

n ≤
−
∑k
i=1 biti − c
a

, for every (n, t1, . . . , tk) ∈ PRC . (12)

Consider a tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 with n0 > max

{∑k
i=1 δit

0
i ,
−
∑k

i=1
bit

0
i−c

a

}
. By

construction it holds that n0 >
∑k
i=1 δit

0
i , and thus the tuple is in PRC . Also by construction

it holds that n0 >
−
∑k

i=1
bit

0
i−c

a which is a contradiction with (12).
Proof of (8). Let us now prove that −δi−1 < bi < δi+1, for an arbitrary i ∈ {1, . . . , k}.
Assume by contradiction that bi ≥ δi+1. Recall from (10) that for all (n, t1, . . . , tk) ∈ PRC

holds an+
∑k
j=1 bjtj + c ≤ n, or in other words (1− a)n ≥

∑k
j=1 bjtj + c. Since a ∈ [0, 1],

then (1−a)n ≤ n, for every n ≥ 0. Since bi ≥ δi+1, and ti ≥ 0, it holds that biti ≥ (δi+1)ti.
Thus, we have that for every (n, t1, . . . , tk) ∈ PRC holds that

n ≥ (1− a)n ≥
k∑
j=1

bjtj + c ≥ (δi + 1)ti +
∑
j 6=i

bjtj + c.

In other words, we have that

(n− δiti)−
∑
j 6=i

bjtj − c ≥ ti, for all (n, t1, . . . , tk) ∈ PRC . (13)

Consider the tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 such that t0i = max{1,

∑
j 6=i(δj − bj) − c + 2},

t0j = 1 for j 6= i, and n0 =
∑k
j=1 δjt

0
j + 1 =

∑
j 6=i δj + δit

0
i + 1. This tuple is in PRC

since n0 >
∑k
j=1 δjt

0
j . Let us check the inequality from (13). By construction we have

(n0−δit0i)−
∑
j 6=i bjt

0
j−c =

∑
j 6=i δj+δit0i +1−δit0i −

∑
j 6=i bj−c, that is,

∑
j 6=i(δj−bj)−c+1,

which is strictly smaller than t0i by construction. Thus, we obtained a contradiction with (13).
Let us now assume bi ≤ −δi − 1. Recall from (10) that for all (n, t1, . . . , tk) ∈ PRC holds

0 ≤ an+
∑k
j=1 bjtj + c. Since a ∈ [0, 1], for every n ∈ N holds an ≤ n, and since bi ≤ −δi−1,

we have biti ≤ −δiti − ti, for every ti ≥ 0. Thus, for every (n, t1, . . . , tk) ∈ PRC we have

0 ≤ an+
k∑
j=1

bjtj + c ≤ n+ (−δiti − ti) +
∑
j 6=i

bjtj + c.

In other words, we have that

ti ≤ (n− δiti) +
∑
j 6=i

bjtj + c, for all (n, t1, . . . , tk) ∈ PRC . (14)

M. Lazić, I. Konnov, J. Widder, and R. Bloem 32:19

Consider the tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 where t0i = max{

∑
j 6=i(δj + bj) + c + 2, 1},

t0j = 1, for every j 6= i, and n0 =
∑k
j=1 δjt

0
j + 1 =

∑
j 6=i δj + δit

0
i + 1. This tuple is

in PRC , since n0 >
∑k
i=1 δit

0
i . Let us check the inequality from (14). By construction

we have (n0 − δit
0
i) +

∑
j 6=i bjt

0
j + c =

∑
j 6=i δj + δit

0
i + 1 − δit

0
i +

∑
j 6=i bj + c, that is,∑

j 6=i(δj + bj) + c + 1, which is strictly smaller than t0i by construction. This gives us a
contradiction with (14).

Proof of (9). And finally, let us prove that −2
∑k
i=1 δi − k − 1 ≤ c ≤ 2

∑k
i=1 δi + k + 1.

Assume by contradiction that c > 2
∑k
i=1 δi +k+ 1. Recall that for every (n, t1, . . . , tk) ∈

PRC holds n ≥ an+
∑k
i=1 biti + c, by (10). Since a ≥ 0, bi > −δi − 1, for every i = 1, . . . , k,

and c > 2
∑k
i=1 δi + k + 1, then we have that

n ≥ an+
k∑
i=1

biti + c >

k∑
i=1

(−δi− 1)ti + 2
k∑
i=1

δi + k+ 1, for all (n, t1, . . . , tk) ∈ PRC . (15)

Consider the tuple (n0, t01, . . . , t
0
k) where t01 = . . . = t0k = 1, and n0 =

∑k
i=1 δit

0
i + 1 =∑k

i=1 δi + 1. The tuple is in PRC since n0 >
∑k
i=1 δit

0
i , but by construction it holds that∑k

i=1(−δi − 1)t0i + 2
∑k
i=1 δi + k + 1 =

∑k
i=1 δi + 1 = n0, which is a contradiction with (15).

Assume by contradiction that c < −2
∑k
i=1 δi − k − 1. Recall that for all (n, t1, . . . , tk) ∈

PRC holds 0 ≤ an+
∑k
i=1 biti + c, by (10). Since a ≤ 1, bi < δi + 1, for every i = 1, . . . , k,

and c < −2
∑k
i=1 δi − k − 1, then we have that

0 ≤ an+
k∑
i=1

biti+c < n+
k∑
i=1

(δi+1)ti−2
k∑
i=1

δi−k−1, for all (n, t1, . . . , tk) ∈ PRC . (16)

Consider the tuple (n0, t01, . . . , t
0
k) where t01 = . . . = t0k = 1, and n0 =

∑k
i=1 δit

0
i + 1 =∑k

i=1 δi + 1. This tuple is in PRC since n0 >
∑k
i=1 δit

0
i , but by construction it holds that

n0 +
∑k
i=1(δi + 1)t0i − 2

∑k
i=1 δi − k − 1 = 0, which is a contradiction with (16). J

Proof of Theorem 4. As the given guard is sane for the resilience condition, the number
compared against a shared variable should have a value from 0 to n. For every tuple
(n, t1, . . . , tk) of parameter values satisfying the resilience condition, it should hold that
0 ≤ an+

∑k
i=1 biti + c ≤ n. We may thus apply Lemma 6 and the theorem follows. J

Proof of Corollary 5. Using the fact that x ≤ d̃
D ≤ y implies that Dx ≤ d̃ ≤ Dy, for a

D ∈ N, this corollary follows directly from Theorem 4. J

B Thresholds with floor and ceiling functions

The following theorem considers threshold guards that use the ceiling or the floor function.
It uses the same reasoning as in Theorem 4, combined with the properties of these functions.
Namely, for every x ∈ R it holds that x ≤ dxe < x+ 1 and x− 1 < bxc ≤ x.

I Theorem 7. Fix a k ∈ N. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where

δi > 0, i = 1, . . . , k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard of the form

x ≥ f (an+ (b1t1 + . . .+ bktk) + c) or x < f (an+ (b1t1 + . . .+ bktk) + c) ,

OPODIS 2017

32:20 Synthesis of Distributed Algorithms with Parameterized Threshold Guards

where x ∈ Γ is a shared variable, a, b1, . . . , bk, c ∈ Q are rationals, and f is either the ceiling
or the floor function. If the guard is sane for the resilience condition, then it holds that

0 ≤a ≤ 1, (17)
−δi − 1 <bi < δi + 1, for all i = 1, . . . , k, (18)

−2(δ1 + . . .+ δk)− k − 2 ≤c ≤ 2(δ1 + . . .+ δk) + k, if f is floor, or (19)
−2(δ1 + . . .+ δk)− k ≤c ≤ 2(δ1 + . . .+ δk) + k + 2, if f is ceiling. (20)

Proof sketch. The proof largely follows the arguments of the proof of Lemma 6 with fixed
denominators as in Corollary 5. The only remaining issue is that instead of constraints of
the form 0 ≤ an+

∑k
i=1 biti + c ≤ n, that are considered in Lemma 6, here we have to argue

about constraints of the form 0 ≤ f
(
an+

∑k
i=1 biti + c

)
≤ n, where f is the ceiling or the

floor function.
Let us first discuss the case when f is the ceiling function. As for every x ∈ R holds that

x ≤ dxe < x+ 1, we have that

an+ (b1t1 + . . .+ bktk) + c ≤ dan+ (b1t1 + . . .+ bktk) + ce < an+ (b1t1 + . . .+ bktk) + c+ 1.

Still, as the guard is sane, we have that 0 ≤ dan+ (b1t1 + . . .+ bktk) + ce ≤ n. Combining
these two constraints, we obtain that

0 < an+ (b1t1 + . . .+ bktk) + (c+ 1) and an+ (b1t1 + . . .+ bktk) + c ≤ n.

With these constraints, we can derive a contradiction following the proof of Lemma 6.
Similarly, if f is the floor function, we use the fact that for every x ∈ R holds that

x− 1 < bxc ≤ x. Therefore, we have that

an+ (b1t1 + . . .+ bktk) + c− 1 < ban+ (b1t1 + . . .+ bktk) + cc ≤ an+ (b1t1 + . . .+ bktk) + c.

As 0 ≤ ban+ (b1t1 + . . .+ bktk) + cc ≤ n, we obtain that

0 ≤ an+ (b1t1 + . . .+ bktk) + c and an+ (b1t1 + . . .+ bktk) + (c− 1) < n.

And again, the rest of the proof follows the line of the proof of Lemma 6. J

If coefficients in guards have a fixed denominator, we can obtain intervals for numerators
as a direct consequence of Theorem 7.

I Corollary 8. Fix a k ∈ N. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where

δi > 0, i = 1, . . . , k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard of the form

x ≥ f

(
ã

D
n+

k∑
i=1

b̃i
D
ti + c̃

D

)
or x < f

(
ã

D
n+

k∑
i=1

b̃i
D
ti + c̃

D

)
,

where x ∈ Γ is a shared variable, ã, b̃1, . . . , b̃k, c̃ ∈ Z are integers, D ∈ N, and f is either the
ceiling or the floor function. If the guard is sane for the resilience condition, then it holds

0 ≤a ≤ D, (21)
D(−δi − 1) <bi < D(δi + 1), for all i = 1, . . . , k, (22)

D(−2(δ1 + . . .+ δk)− k − 2) ≤c ≤ D(2(δ1 + . . .+ δk) + k), if f is floor, or (23)
D(−2(δ1 + . . .+ δk)− k) ≤c ≤ D(2(δ1 + . . .+ δk) + k + 2), if f is ceiling. (24)

	Introduction
	Modelling Threshold-Guarded Distributed Algorithms
	Verification machinery
	Synthesis
	Case Studies and Experiments
	Discussions
	Detailed Proofs
	Thresholds with floor and ceiling functions

