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Abstract
We make progress on a number of open problems concerning the area requirement for drawing
trees on a grid. We prove that
1. every tree of size n (with arbitrarily large degree) has a straight-line drawing with area

n2O(
√

log log n log log log n), improving the longstanding O(n logn) bound;
2. every tree of size n (with arbitrarily large degree) has a straight-line upward drawing with

area n
√

logn(log logn)O(1), improving the longstanding O(n logn) bound;
3. every binary tree of size n has a straight-line orthogonal drawing with area n2O(log∗ n), improv-

ing the previous O(n log logn) bound by Shin, Kim, and Chwa (1996) and Chan, Goodrich,
Kosaraju, and Tamassia (1996);

4. every binary tree of size n has a straight-line order-preserving drawing with area n2O(log∗ n),
improving the previous O(n log logn) bound by Garg and Rusu (2003);

5. every binary tree of size n has a straight-line orthogonal order-preserving drawing with area
n2O(

√
log n), improving the O(n3/2) previous bound by Frati (2007).
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1 Introduction

Drawing graphs with small area has been a subject of intense study in combinatorial and
computational geometry for more than two decades [11, 12]. The goal is to determine
worst-case bounds on the area needed to draw any n-vertex graph in a given class, subject to
certain drawing criteria, where vertices are mapped to points on an integer grid {1, . . . ,W}×
{1, . . . ,H}, and the area of the drawing is defined to be the width W times the height H.
All drawings in this paper are required to be planar , where edge crossings are not allowed.
All our results will be about straight-line drawings, where edges are drawn as straight line
segments, although poly-line drawings that allow bends along the edges have also received
considerable attention.

It is well known [10, 23] that every planar graph of size n has a straight-line drawing
with area O(n2) (with width and height O(n)), and this bound is asymptotically tight in the
worst case. Much research is devoted to understanding which subclasses of planar graphs
admit subquadratic-area drawings, and obtaining tight area bounds for such classes.

Drawing arbitrary trees. Among the simplest is the class of all trees. As hierarchical
structures occur naturally in many areas (from VLSI design to phylogeny), visualization of
trees is of particular interest. Although there have been numerous papers on tree drawings
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=⇒

T1 T2 Td

· · ·
T1 T2

· · · Td

Figure 1 The “standard” algorithm to produce a straight-line upward drawing of any tree of size
n, with width at most n and height at most dlog ne: reorder the subtrees so that Td is the largest,
then recursively draw T1, . . . , Td.

(e.g., [2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 26, 24, 27, 28]), the most basic
question of determining the worst-case area needed to draw arbitrary trees, without any
additional criteria other than being planar and straight-line, is surprisingly still open.

An O(n logn) area upper bound is folklore and can be obtained by a straightforward
recursive algorithm, as described in Figure 1, which we will refer to as the standard algorithm
(the earliest reference was perhaps Shiloach’s 1976 thesis [24, page 94]; see also Crescenzi, Di
Battista, and Piperno [8] for the same algorithm for binary trees). The algorithm gives linear
width and logarithmic height. An analogous algorithm, with x and y coordinates swapped,
gives logarithmic width and linear height.

However, no single improvement to the O(n logn) bound has been found for general trees.
No improvement is known even if drawings are relaxed to be poly-line!

In an early SoCG’93 paper by Garg, Goodrich, and Tamassia [15], it was shown that
linear area is attainable for poly-line drawings of trees with degree bounded by O(n1−ε) for
any constant ε > 0. Later, Garg and Rusu [18, 17] obtained a similar result for straight-line
drawings for degree up to O(n1/2−ε).1 These approaches do not give good bounds when the
maximum degree is linear.

To understand why unbounded degree can pose extra challenges, consider the extreme
case when the tree is a star of size n, and we want to draw it on an O(

√
n)×O(

√
n) grid.

A solution is not difficult if we use the fact that relatively prime pairs are abundant, but
most tree drawing algorithms use geometric divide-and-conquer strategies that do not seem
compatible with such number-theoretic ideas.

New results. Our first main result is the first o(n logn) area upper bound for straight-line
drawings of arbitrary trees: the bound is n2O(

√
log log n log log log n), which in particular is

better than O(n logε n) for any constant ε > 0.
Even to those who care less about refining logarithmic factors, our method has one

notable advantage: it can give drawings achieving a full range of width–height tradeoffs (in
other words, a full range of aspect ratios). For example, we can simultaneously obtain width
and height

√
n2O(

√
log n log log n). Although the extra factor is now superpolylogarithmic, the

result is still new. In contrast, the standard algorithm (Figure 1) produces only narrow
drawings, whereas the previous approaches of Garg et al. [15, 18] provided width–height
tradeoffs but inherently cannot give near

√
n perimeter if degree exceeds

√
n.

For rooted trees, it is natural to consider upward drawings, where the y-coordinate of
each node is greater than or equal to the y-coordinate of each child. The drawing obtained by
the standard algorithm is upward. We obtain the first o(n logn) area bound for straight-line
upward drawings of arbitrary trees as well: the bound is near O(n

√
logn), ignoring small

1 It is not clear to this author if their analysis assumed a much stronger property, that every subtree of
size m has degree at most O(m1/2−ε).
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Table 1 Worst-case area bounds for straight-line drawings of arbitrary trees. (In all tables, c

denotes some constant, and Θ denotes tight results that have matching lower bounds.)

non-order-preserving order-preserving

non-
upward

O(n log n) by standard alg’m
O(nc

√
log log n log log log n) new

O(n log n)
by Garg–Rusu’03 [16]

upward O(n log n) by standard alg’m
O(n

√
log n logc log n) new O(nc

√
log n) by Chan’99 [6]

strictly
upward Θ(n log n) by standard alg’m [8] O(nc

√
log n) by Chan’99 [6]

Table 2 Worst-case area bounds for straight-line drawings of binary trees.

non-order-preserving order-preserving

non-
upward

Θ(n)
by Garg–Rusu’04 [18]

O(n log log n) by Garg–Rusu’03 [16]
O(nclog∗ n) new

upward O(n log log n)
by Shin–Kim–Chwa’96 [25]

O(n1.48) by Chan’99 [6]
O(nc

√
log n) by Chan’99 [6]

O(n log n) by Garg–Rusu’03 [16]

strictly
upward

Θ(n log n)
by standard alg’m [8]

O(n1.48) by Chan’99 [6]
O(nc

√
log n) by Chan’99 [6]

Θ(n log n) by Garg–Rusu’03 [16]

log log factors. (See Table 1.)
These results represent significant progress towards Open Problems 5, 6, 17, and 18 listed

in Di Battista and Frati’s recent survey [12].
We will describe the near-O(n

√
logn) upward algorithm first, in Section 2, which prepares

us for the more involved n2O(
√

log log n log log log n) non-upward algorithm in Section 3.

Drawing binary trees. Next we turn to drawings of binary trees, where there has been a
large body of existing work, due to the many combinations of aesthetic criteria that may be
imposed. We may consider

upward drawings, as defined earlier;
strictly upward drawings, where the y-coordinate of each node is strictly greater the
y-coordinate of each child;
order-preserving drawings, where the order of children of each node v is preserved, i.e., the
parent, the left child, and the right child of v appear in counterclockwise order around v;
orthogonal drawings, where all edges are drawn with horizontal or vertical line segments.

Tables 2–3 summarize the dizzying array of known results on straight-line drawings. (To
keep the table size down, we omit numerous other results on poly-line drawings, and on
special subclasses of balanced trees. See Di Battista and Frati’s survey [12] for more.)

SoCG 2018
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Table 3 Worst-case area bounds for straight-line orthogonal drawings of binary trees. (Strictly
upward drawings are not possible here.)

non-order-preserving order-preserving

non-
upward

O(n log log n) by Chan–Goodrich–
Kosaraju–Tamassia’96 [7]
& Shin–Kim–Chwa’96 [25]

O(nclog∗ n) new

O(n3/2) Frati’07 [13]
O(nc

√
log n) new

upward Θ(n log n) by standard alg’m [8] Θ(n2)

New results. In this paper, we concentrate on two of the previous O(n log logn) entries in
the table. In 1996, Shin, Kim, and Chwa [25] and Chan et al. [7] independently obtained
O(n log logn)-area algorithms for straight-line orthogonal drawings of binary trees; a few
years later, Garg and Rusu [16] adapted their technique to obtain similar results for straight-
line (non-orthogonal) order-preserving drawings. We improve the area bound for both types
of drawings to almost linear: n2O(log∗ n), where log∗ denotes the iterated logarithm. (We can
also obtain width–height tradeoffs for these drawings.)

Although improving log logn to iterated logarithm may not come as a total surprise,
the problem for straight-line orthogonal drawings has resisted attack for 20 years. (Besides,
improvement should not be taken for granted, since there is at least one class of drawings for
which Θ(n log logn) turns out to be tight: poly-line upward orthogonal drawings of binary
trees [15].)

We have additionally one more result on straight-line orthogonal order-preserving drawings
of binary trees: in 2007, Frati [13] presented an O(n3/2)-area algorithm. We improve the
bound to n2O(

√
log n), which in particular is better than O(n1+ε) for any constant ε > 0.

These results represent significant progress towards Open Problems 9, 12, and 14 listed
in Di Battista and Frati’s survey [12].

(The author has obtained still more new results, on a special class of so-called LR drawings
of binary trees [6, 14], making progress on Open Problem 10 in the survey, which will be
reported later elsewhere.)

We will describe the n2O(log∗ n) algorithm for orthogonal drawings first, in Section 4; the
algorithm for non-orthogonal order-preserving drawings is similar, and is described in the
full paper. The n2O(

√
log n) algorithm for orthogonal order-preserving drawings is different

and is also deferred to the full paper.

Techniques. Various tree-drawing techniques have been identified in the large body of
previous work, and we will certainly draw upon some of these existing techniques in our new
algorithms—in particular, the use of “skewed” centroids for divide-and-conquer in trees (see
Section 2 for the definition), and height–width tradeoffs to obtain better area bounds.

However, as the unusual bounds would suggest, our n2O(
√

log log n log log log n) and our
n2O(log∗ n) algorithms will require new forms of recursion and bootstrapping.

Our n2O(
√

log log n log log log n) result for arbitrary trees requires novelty not just in fancier
recurrences, but also in geometric insights. All existing divide-and-conquer algorithms for tree
drawings divide a given tree into subtrees and recursively draw different subtrees in different,
disjoint axis-aligned bounding boxes. We will depart from tradition and draw some parts of
the tree in distorted grids inside narrow sectors, which are remapped to regular grids through
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affine transformations every time we bootstrap. The key is a geometric observation that any
two-dimensional convex set (however narrow) containing a large number of integer points
must contain a large subset of integer points forming a grid after affine transformation (with
unspecified aspect ratio). The proof of the observation follows from well known facts about
lattices and basis reduction (by Gauss)—a touch of elementary number theory suffices. We
are not aware of previous applications of this geometric observation, which seems potentially
useful for graph drawing on grids in general.

Our n2O(log∗ n) result is noteworthy, because occurrences of iterated logarithm are rare
in graph drawing (to be fair, we should mention that it has appeared before in one work
by Shin et al. [26], on poly-line orthogonal drawings of binary trees with O(1) bends per
edge). We realize that more can be gained from the recursion in the previous O(n log logn)
algorithm, by bootstrapping. This requires a careful setup of the recursive subproblems, and
constant switching of x and y (width and height) every time we bootstrap. (The author is
reminded of an algorithm by Matoušek [21] on a completely different problem, Hopcroft’s
problem, where iterated logarithm arose due to constant switching of points and lines by
duality at each level of recursion.)

Our n2O(
√

log n) result for orthogonal order-preserving drawings has the largest quantit-
ative improvement compared to previous results, but actually requires the least originality in
techniques. We use the exact same form of recursion as in an earlier algorithm of Chan [6]
for non-orthogonal upward order-preserving drawings, although the new algorithm requires
trickier details.

2 Straight-line upward drawings of arbitrary trees

In this section, we consider arbitrary (rooted) trees and describe our first algorithm to
produce straight-line upward drawings with o(n logn) area. It serves as a warm-up to the
further improved algorithm in Section 3 when upwardness is dropped.

2.1 Preliminaries
We begin with some basic number-theoretic and tree-drawing facts. The first, on the denseness
of relatively prime pairs, is well known:

I Fact 1. There are Ω(AB) relatively prime pairs in {1, . . . , A} × {bB/2c+ 1, . . . , B}.

Next, we consider drawing trees not on the integer grid but on a user-specified set of
points. We note that any point set of near linear size that is not too degenerate is “universal”,
in the sense that it can be used to draw any tree.

I Fact 2. Let P be a set of (`− 1)n− `+ 2 points in the plane, with no ` points lying on a
common line. Let T be a tree of size n. Then T has a straight-line upward drawing where all
vertices are drawn in P .

Proof. We describe a straightforward recursive algorithm: Let n1, . . . , nd be the sizes of the
subtrees T1, . . . , Td at the children of the root v0, with

∑d
i=1 ni = n − 1. Place v0 at the

highest point p0 of P (in case of ties, prefer the leftmost highest point). Form d disjoint
sectors with apex at p0, so that the i-th sector Si contains between (` − 1)ni − ` + 2 and
(`− 1)ni points of P −{p0}. This is possible since any line through p0 contains at most `− 2
points of P − {p0}, and

∑d
i=1(`− 1)ni = (`− 1)(n− 1) = |P − {p0}|. For each i = 1, . . . , d,

recursively draw Ti using (` − 1)ni − ` + 2 points of P ∩ Si. Lastly, draw the edges from

SoCG 2018
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=⇒

Figure 2 The drawing in Fact 3.

v0 to the roots of the Ti’s (these edges create no crossings since the roots are drawn at the
highest points of P in their respective sectors). The base case n = 1 is trivial. J

The following is a slight generalization of the standard algorithm (mentioned in the
introduction) for straight-line upward drawings of general trees with width O(n) and height
O(logn). We note that the algorithm can draw any tree on any point set that “behaves” like
an n× dlogne grid.

I Fact 3. Let G be a set of dlogne parallel (non-vertical) line segments in the plane. Let
P be a set of n dlogne points, with n points lying on each of the dlogne line segments in G.
Let T be a tree of size n. Then T has a straight-line drawing where all vertices are drawn in
P , and the root is drawn on the segment of G whose line has the highest y-intercept.

Furthermore, if the segments of G are horizontally separated (i.e., the y-projections are
disjoint), the drawing is upward.

Proof. Without loss of generality, assume that the segments have negative slope, and arrange
the segments of G in decreasing order of y-intercepts. Apply the standard algorithm to get
a straight-line upward grid drawing of T with width at most n and height at most dlogne.
Map the vertices on the i-th topmost row of the grid drawing to the points on the i-th
segment of G, while preserving the left-to-right ordering of the vertices. (See Figure 2.) The
resulting drawing is planar (since each edge is drawn either on a segment or in the region
between two consecutive segments, and there are no crossings in the region between two
consecutive segments). Note that the drawing is upward if the segments of G are horizontally
separated. J

2.2 The augmented-star algorithm
The main difficulty of drawing arbitrary trees is due to the presence of vertices of large degree.
In the extreme case when the tree is a star of size n, we can produce a straight-line drawing
of width O(A) and O(n/A) for any given 1 ≤ A ≤ n, by placing the root at the origin and
placing the remaining vertices at points with co-prime x- and y-coordinates, using Fact 1.

We first study a slightly more general special case which we call augmented stars, where
the input tree is modified from a star by attaching to each leaf a small subtree of size ≤ s.

I Lemma 4. Let T be a tree of size n such that the subtree at each child of the root has
size at most s. For any given n ≥ A ≥ 1, T has a straight-line upward drawing with width
O(A log s) and height O((n/A) · s log2 s), where the root is placed at the top left corner of the
bounding box, and the left side of the box contains no other vertices.

Proof. Let ` = s dlog se. Let B = dc`n/Ae for some constant c. Let P = {(x, y) ∈
{1, . . . , A}×{−B, . . . ,−bB/2c−1} : x and y are relatively prime}. By Fact 1, |P | = Ω(AB),
and so |P | ≥ `n by making c sufficiently large.

Let n1, . . . , nd be the sizes of the subtrees T1, . . . , Td at the children of the root v0, with∑d
i=1 ni = n− 1 and ni ≤ s for each i. Place v0 at the origin. Form d disjoint sectors, where
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the i-th sector Si contains exactly `ni points of P . This is possible, since any line through the
origin contains at most one point of P and

∑d
i=1 `ni < `n ≤ |P |. We will draw T using not

just the points of P , but also scaled copies of these points, up to scaling factor t := dlog se.
For each i, consider two cases, depending on how degenerate Si ∩ P is:
Case 1: Si does not contain ` points of P on a common line. Here, we can draw Ti using
the `ni > (`− 1)ni − `+ 2 points of Si ∩ P by Fact 2.
Case 2: Si contains ` points of P on a common line L. (Note that L does not pass
through the origin, by definition of P .) Let σ be a horizontal slab of height B/(2t) that
contains at least `/t = s points of L ∩ Si ∩ P . Let L = L ∩ Si ∩ σ. Let G be the set of
t line segments L, 2L, . . . , tL, where αL denotes the scaled copy of L by factor α (with
respect to the origin). Each of the t = dlog se segments of G contain s integer points
inside Si, and the segments are horizontally separated. Thus, we can draw Ti using the
integer points on G by Fact 3.

Lastly, draw the edges from v0 to the roots of the Ti’s. The total width is O(tA) = O(A log s)
and the height is O(tB) = O((n/A) · s log2 s). J

2.3 The general algorithm
We are now ready to present the algorithm for the general case, using the augmented-star
algorithm as a subroutine:

I Theorem 5. For any given n ≥ A ≥ 1, every tree T of size n has a straight-line upward
drawing with width O(A+ logn) and height O((n/

√
A) log2 A), where the root is placed at

the top left corner of the bounding box.

Proof. We describe a recursive algorithm to draw T : Let s be a fixed parameter with
A ≥ log s. Let v0 be the root of T , and define vi+1 to be the child of vi whose subtree is the
largest (the resulting root-to-leaf path v0v1v2 · · · is called the heavy path of T ). Let k be the
largest index such that the subtree at vk has size more than n−A (we will call the node vk

the A-skewed centroid). Then the total size of the subtrees at the siblings of v1, . . . , vk is at
most A, the subtree at vk+1 has size at most n−A, and the subtree at each sibling of vk+1
has size at most min{n−A, n/2}.

The drawing of T , depicted in Figure 3, is constructed as follows (which includes multiple
applications of the standard algorithm in steps 1 and 3, one application of the augmented-star
algorithm in step 2, and recursive calls in step 4):
1. Draw the subtrees at the siblings of v1, . . . , vk by the standard algorithm. Stack these

drawings horizontally. Since these subtrees have total size at most A, the drawing so far
has total width O(A) and height O(logA).

2. Draw the subtrees at the children of vk that have size ≤ s, together with the edges
from vk to the roots of these subtrees, by the augmented-star algorithm in Lemma 4
with parameter Ã = dA/ log se. By reflection, make vk lie on the top-right corner of its
corresponding bounding box. Place the drawing below the drawings from step 1. This
part has width O(Ã log s) = O(A) and height O((n′/Ã) · s log2 s) = O((n′/A) · s log3 s)
where n′ is the total size of these subtrees.
(Note that if n′ ≤ A, we can just use the standard algorithm with width O(A) and height
O(logA) for this step.)

3. Draw the subtrees at the children of vk that have size > s and ≤ A, by the standard
algorithm. By reflection, make the roots lie on the top-right corners of their respective
bounding boxes. Stack these drawings vertically, underneath the drawing from step 2. This

SoCG 2018



23:8 Tree Drawings Revisited

v0

vk

vk+1

· · ·
≤ n/2 ≤ n/2

vk

· · ·

...

v0

subtree of size > s and ≤ A

all subtrees of size ≤ s
total
size ≤ A

v1
v1 v1

subtree of size > A and ≤ n/2

vk+1

subtree of size ≤ n− A

...

≤ n−A

. . .

=⇒
by augmented-star

alg’m

by standard
alg’m

by standard
alg’m

by recursion

Figure 3 The general algorithm in Theorem 5.

part has width O(A) and height O((number of these subtrees) · logA) ≤ O((n′′/s) · logA),
where n′′ is the total size of these subtrees.

4. Recursively draw the subtrees at the children of vk that have size > A. By reflection,
make the roots lie on the top-right corners of their respective bounding boxes. Stack
these drawings vertically, underneath the drawings from step 3. Put the drawing of the
subtree at vk+1 at the bottom.

The special case k = 1 is similar, except that we place vk on the left, and so do not reflect
in steps 2–4. The special case k = 0 is also similar, but bypassing step 1.

The overall width satisfies the following recurrence W (n) ≤ max{O(A), W (n/2) +
1, W (n−A)}, which solves to W (n) = O(A+ logn).

The overall height satisfies the following recurrence

H(n) ≤
∑m

i=1 H(ni) + c(logA+ (n′/A)s log3 s+ (n′′/s) logA)

for some n′, n′′,m, n1, . . . , nm with n′ + n′′ +
∑

i ni ≤ n, ni ≤ n−A, and ni ≥ A, for some
constant c. It is straightforward to verify by induction that H(n) ≤ c((2n/A− 1) logA+
(n/A)s log3 s + (n/s) logA). (The constraint ni ≤ n − A is needed in the m = 1 case.)
Choosing s = Θ(

√
A/ logA) to balance the last two terms gives the height bound in the

theorem. J

Finally, choosing A = dlogne gives area O(n
√

logn log2 logn).

3 Straight-line drawings of arbitrary trees

To obtain still better area bounds for straight-line non-upward drawings of arbitrary trees,
the idea is to bootstrap: we show how to use a given general algorithm to obtain an improved
augmented-star algorithm, which in turn is used to obtain an improved general algorithm.
In order to bootstrap, we need to identify large grid substructures inside each sector in the
augmented-star algorithm. This requires an interesting geometric observation about lattices,
described in the following subsection.
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S

Figure 4 Observation 6: A convex set that contains many lattice points must contain a large
affine grid in the lattice.

3.1 An observation about lattices
A two-dimensional lattice is a set of the form Λ = {iu + jv : i, j ∈ Z} for some vectors
u,v ∈ R2. The vector pair {u,v} is called a basis of Λ.

In this paper, we use the term a× b affine grid to refer to a set of the form {iu + jv : i ∈
{x0 + 1, . . . , x0 +a}, j ∈ {y0 + 1, . . . , y0 + b}} for some vectors u,v ∈ R2 and some x0, y0 ∈ R.
In other words, it is a set that is equivalent to the regular a× b grid {1, . . . , a} × {1, . . . , b}
after applying some affine transformation.

The following observation is the key (see Figure 4). The author is not aware of any
references of this specific statement (but would not be surprised if this was known before).

I Observation 6. If a convex set S in the plane contains n points from a lattice Λ, then
S ∩ Λ contains an a× b affine grid for some a and b with ab = Ω(n).

Proof. First, apply an affine transformation to make S fat, i.e., D− ⊂ S ⊂ D+ for some disks
D− and D+ with diam(D−) = Ω(diam(D+)). (This follows immediately from well-known
properties of the Löwner–John ellipsoid; or see [1, 3] for simple, direct algorithms.)

After the transformation, Λ is still a lattice. It is well known that there exists a basis
{u,v} for Λ satisfying 60◦ ≤ ∠(u,v) ≤ 120◦. (A Gauss-reduced basis satisfies this property;
for example, see [29, Section 27.2].)

Let R+ be the smallest rhombus containing D+, with sides parallel to u and v. Let R−
be the largest rhombus R− contained in D−, with sides parallel to u and v. Then R+ and
R− have side lengths r+ = O(diam(D+)) and r− = Ω(diam(D−)) respectively, since ∠(u,v)
is bounded away from 0◦ or 180◦. It follows that r− = Ω(r+).

Now, S ∩ Λ ⊂ R+ ∩ Λ is contained in an dr+/‖u‖e × dr+/‖v‖e affine grid. Thus,
n ≤ dr+/‖u‖e · dr+/‖v‖e .

On the other hand, S ∩ Λ ⊃ R− ∩ Λ contains an br−/‖u‖c × br−/‖v‖c affine grid,
withbr−/‖u‖c × br−/‖v‖c = Ω(dr+/‖u‖e · dr+/‖v‖e) = Ω(n) points, assuming that
‖u‖, ‖v‖ ≤ r−.

This almost completes the proof. It remains to address the special case when ‖u‖ > r−

(the case ‖v‖ > r− is similar). Here, S ∩ Λ ⊂ R+ ∩ Λ is contained in an O(1)× dr+/‖v‖e
affine grid. Some row of the grid must contain Ω(n) points of S ∩ Λ. The row is a 1× Ω(n)
affine grid. J

3.2 Improved augmented-star algorithm
We first show how to use a given general algorithm G0 to obtain an improved algorithm for
the augmented-star case:

I Lemma 7. Suppose we are given a general algorithm G0 that takes as input any n ≥ A ≥
g0(n) and any tree of size n, and outputs a straight-line drawing of width at most A and
height at most (n/A)f0(A), where the root is drawn at the top left corner of the bounding
box. Here, f0 and g0 are some increasing functions satisfying f0(n) ≥ g0(n).
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Then we can obtain an improved augmented-star algorithm that takes as input any
n ≥ A ≥ 1 and a tree of size n such that the subtree at each child of the root has size at most
s, and outputs a straight-line drawing with width O(A log s) and height O((n/A) · f0(s) log s),
where the root is placed at the top left corner of the bounding box, and the left side of the box
contains no other vertices.

Proof. Let ` = cf0(s) for some constant c. Let B = dc`n/Ae. Let P = {(x, y) ∈ {1, . . . , A}×
{−B, . . . ,−1} : x and y are relatively prime}. By Fact 1, |P | = Ω(AB), and so |P | ≥ `n by
making c sufficiently large.

Let n1, . . . , nd be the sizes of the subtrees T1, . . . , Td at the children of the root v0, with∑d
i=1 ni = n− 1 and ni ≤ s for each i. Place v0 at the origin. Form d disjoint sectors, where

the i-th sector Si contains exactly `ni points of P . This is possible, since any line through
the origin contains at most one point of P and

∑d
i=1 `ni < `n ≤ |P |.

Take a fixed i. Applying Observation 6 to the convex set Si ∩ ((0, A]× [−B, 0)), we see
that Si ∩ ({1, . . . , A} × {−B, . . . ,−1}) must contain an a × b affine grid for some a and b
with ab = Ω(`ni). Note that b ≥ (ni/a)f0(s) by making c sufficiently large. Consider two
cases:

Case 1: g0(ni) ≤ a ≤ ni. Here, we can draw Ti in the a × b affine grid by the given
algorithm G0, after applying an affine transformation to convert to a standard integer
a× b grid. Note that planarity and straightness are preserved under the transformation
(but not upwardness). The root of Ti can be placed at the highest corner of the grid.
Case 2: a > ni or a < g0(ni). Note that in the latter subcase, b ≥ (ni/a)f0(s) ≥
(ni/a)g0(ni) ≥ ni. In either subcase, Si contains ni points of P on a common line L.
(Note that L does not pass through the origin, by definition of P .) Let t = dlog se and
L = L ∩ Si. Let G be the t line segments L, 2L, . . . , tL. Then each of the t = dlog se
segments of G contain ni integer points inside Si. Thus, we can draw Ti using the integer
points on G by Fact 3. The root is placed on the highest segment of G.

Lastly, draw the edges from v0 to the roots of the Ti’s. The total width is O(tA) = O(A log s)
and height is O(tB) = O((n/A) · f0(s) log s). J

3.3 Improved general algorithm
Using the improved augmented-star algorithm, we can then obtain an improved general
algorithm, by following the same approach as in the proof of Theorem 5, except with Lemma 4
replaced by the improved Lemma 7 in step 2. The same analysis shows the following:

I Theorem 8. Suppose we are given a general algorithm G0 that takes as input any n ≥
A ≥ g0(n) and any tree of size n, and outputs a straight-line drawing of width at most A and
height at most (n/A)f0(A), where the root is drawn at the top left corner of the bounding
box. Here, f0 and g0 are some increasing functions satisfying f0(n) ≥ g0(n).

Then we can obtain an improved general algorithm that takes as input any n ≥ A ≥ log s
and any tree of size n, and outputs a straight-line upward drawing with width O(A+ logn)
and height O((n/A) logA+ (n/A)f0(s) log2 s+ (n/s) logA), where the root is placed at the
top left corner of the bounding box.

Assume inductively that there is a general algorithm G0 satisfying the assumption of the
above theorem with f0(A) = CjA

1/j logj A and g0(n) = c0 logn for some Cj and c0. For
j = 1, this follows from the standard algorithm, which has logarithmic width and linear
height after swapping x and y, with C1, c0 = O(1).
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Choosing s =
⌈
Aj/(j+1)/ logj A

⌉
to balance the last two terms in the above theorem gives

a width bound of O(A+ logn) and height bound of

O((n/A) logA+ (n/A)Cjs
1/j logj+2 s+ (n/s) logA) = O(Cj(n/A)A1/(j+1) logj+1 A).

By setting Ã = c0A and Cj+1 = O(1) · Cj , with a sufficiently large absolute constant c0, the
width is at most Ã and the height is at most Cj+1(n/Ã)Ã1/(j+1) logj+1 Ã for any n ≥ Ã ≥
c0 logn. We have thus obtained a new general algorithm with f0(Ã) = Cj+1Ã

1/(j+1) logj+1 Ã

and g0(n) = c0 logn.
Note that Cj = 2O(j). For the best bound, we choose a nonconstant

j = Θ(
√

logA/ log logA) so that f0(A) = 2O(j)A1/j logj A = 2O((log A)/j+j log log A) =
2O(
√

log A log log A), yielding:

I Corollary 9. For any given n ≥ A ≥ logn, every tree of size n has a straight-line drawing
with width O(A) and height (n/A)2O(

√
log A log log A).

Finally, choosing A = dlogne gives area n2O(
√

log log n log log log n).
I Remark. It is straightforward to implement the algorithms in Section 2 and this section
in polynomial time. One open question is whether the improved bound holds for upward
drawings. Another open question is whether further improvements are possible if we allow
poly-line drawings.

4 Straight-line orthogonal drawings of binary trees

In this section, we consider binary trees and describe algorithms to produce straight-line
orthogonal (non-upward) drawings. We improve previous algorithms with O(n log logn) area
by Shin, Kim, and Chwa [25] and Chan et al. [7]. The idea is (again) to bootstrap.

Given a binary tree T and two distinct vertices u and v, such that v is a descendant of
u but not an immediate child of v, the chain from u to v is defined to be the subtree at u
minus the subtree at v. (To explain the terminology, note that the chain consists of the path
from u to the parent of v, together with a sequence of subtrees attached to the nodes of
this path.) We show how to use a given algorithm for drawing chains to obtain a general
algorithm for drawing trees, which together with the given chain algorithm is used to obtain
an improved chain algorithm.

4.1 The general algorithm
Given a chain algorithm C0, we can naively use it to draw the entire tree, since a tree can be
viewed as a chain from the root to an artificially created leaf. We first show how to use a
given chain algorithm C0 to obtain a general algorithm that achieves arbitrary width–height
tradeoffs. This is done by adapting previous algorithms [25, 7].

I Lemma 10. Suppose we are given a chain algorithm C0 that takes as input any binary
tree and a chain from v0 to vk where the size of the chain is n, and outputs a straight-line
orthogonal drawing of the chain with width at most W0(n) and height at most H0(n), where
v0 is placed at the top left corner of the bounding box, and the parent of vk is placed at the
bottom left corner of the box. Here, W0(n) and H0(n) are increasing functions.

Then we can obtain a general algorithm that takes as input n ≥ A ≥ 1 and any binary
tree T of size n, and outputs a straight-line orthogonal drawing with width O(W0(A) + logn)
and height O((n/A)H0(A)), where the root is placed at the top left corner of the bounding
box.
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Figure 5 The general algorithm in Lemma 10 for orthogonal drawings.
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by

Figure 6 The improved chain algorithm in Theorem 11 for orthogonal drawings.

Proof. We describe a recursive algorithm to draw T : Let v0v1v2 · · · be the heavy path, and
vk be the A-skewed centroid, as in the proof of Theorem 5. Then the chain from v0 to vk has
size at most A, the subtree at vk+1 has size at most n−A, and the subtree at the sibling of
vk+1 has size at most min{n−A,n/2}.

The drawing of T , depicted in Figure 5, is constructed as follows:
1. Draw the chain from v0 to vk by the given algorithm C0, with width at most W0(A) and

height at most H0(A).
2. Recursively draw the subtrees at the two children of vk. Stack the two drawings vertically,

underneath the drawing from step 1. Put the drawing of the subtree at vk+1 at the
bottom. (Note that if any of these subtrees has size at most A, we can just use algorithm
C0 with width at most W0(A) and height at most H0(A).)

The special case k = 1 is similar, except that in step 1 we can just apply algorithm C0 to
draw the subtree at the sibling of v1, and connect v0 to vk directly. The special case k = 0 is
also similar, but bypassing step 1.

The overall width satisfies the recurrence W (n) ≤ max{O(W0(A)), W (n/2)+1, W (n−
A)}, which solves to W (n) = O(W0(A) + logn).

The overall height satisfies the recurrence H(n) ≤
∑m

i=1 H(ni) + cH0(A) for some
m,n1, . . . , nm with m ≤ 2,

∑
i ni ≤ n, ni ≤ n − A, and ni ≥ A, for some constant c. The

recurrence solves to H(n) ≤ c(2n/A− 1)H0(A) (similarly to the proof of Theorem 5). J

4.2 The improved chain algorithm
Using both the general algorithm from Lemma 10 and the given chain algorithm C0, we
describe an improved chain algorithm:
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I Theorem 11. Suppose we are given a chain algorithm C0 that takes as input any binary
tree and a chain from v0 to vk where the size of the chain is n, and outputs a straight-line
orthogonal drawing of the chain with width at most W0(n) and height at most H0(n), where
v0 is placed at the top left corner of the bounding box, and the parent of vk is placed at the
bottom left corner of the box. Here, W0(n) and H0(n) are increasing functions.

Then we can obtain an improved chain algorithm that takes as input any n ≥ A ≥ 1
and any binary tree and a chain from v0 to vk where the size of the chain is n, and
outputs a straight-line orthogonal drawing of the chain with width O((n/A)H0(A)) and height
O(W0(A) + logn), where v0 is placed at the top left corner of the bounding box, and the
parent of vk is placed at the bottom left corner.

Proof. Let v0v1 · · · vk denote the path from v0 to vk. Let Ti denote the subtree at the sibling
of vi+1. Let ni be the size of Ti plus 1.

Divide the sequence v0v1 · · · vk−4 into subsequences, where each subsequence is either (i) a
singleton vi, or (ii) a contiguous block vivi+1 · · · v` of length at least 2 with ni+ni+1+· · ·+n` ≤
A. By making the blocks maximal, we can ensure that the number of singletons and blocks
is O(n/A). We add vk−3, . . . , vk−1 as 3 extra singletons.

For each singleton vi, draw Ti by the general algorithm in Lemma 10 if ni ≥ A, or
directly by the given algorithm C0 if ni < A. By swapping x and y, the width is
O((ni/A+ 1)H0(A)) and the height is O(W0(A) + logn).
For each block vivi+1 · · · v`, draw the subchain from vi to v`+1, which has size at most A,
by the given algorithm C0. By swapping x and y, the width is O(H0(A)) and the height
is O(W0(A)).

All these drawings are stacked horizontally as shown in Figure 6, except for Tk−2 and Tk−1,
which are placed below and flipped upside-down.

The special cases with k ≤ 3 are simpler: just stack the O(1) drawings vertically, with
the bottom drawing of Tk−1 flipped upside-down.

The total width due to singletons is O(
∑

i(ni/A+ 1)H0(A)) = O((n/A)H0(A)), and the
total width due to blocks is also O((n/A)H0(A)), because the number of singletons and
blocks is O(n/A). The overall height is O(W0(A) + logn). J

Assume inductively that there is a chain algorithm C0 satisfying the assumption of
Theorem 11 with W0(n) = Cj(n/ logn) log(j) n and H0(n) = Cj logn for some Cj , where
log(j) denotes the j-th iterated logarithm. For j = 1, this follows by simply applying the
standard algorithm to draw the subtrees Ti in the proof of Theorem 11, with C1 = O(1).

Choosing A =
⌈
logn log logn/ log(j+1) n

⌉
in Theorem 11 gives a width bound of

O((n/A)H0(A)) = O((n/A)Cj logA) = O(Cj(n/ logn) log(j+1) n) and a height bound
of O(W0(A) + logn) = O(Cj(A/ logA) log(j) A+ logn) = O(Cj logn). By setting Cj+1 =
O(1)·Cj , we have thus obtained a new chain algorithm withW0(n) = Cj+1(n/ logn) log(j+1) n

and H0(n) = Cj+1 logn.
Note that Cj = 2O(j). For the best bound, we choose a nonconstant j = log∗ n, yielding:

I Corollary 12. Every binary tree of size n has a straight-line orthogonal drawing with area
n2O(log∗ n).
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