
Near Isometric Terminal Embeddings for Doubling
Metrics
Michael Elkin1

Department of Computer Science, Ben-Gurion University of the Negev
Beer-Sheva, Israel
elkinm@cs.bgu.ac.il

Ofer Neiman2

Department of Computer Science, Ben-Gurion University of the Negev
Beer-Sheva, Israel
neimano@cs.bgu.ac.il

Abstract
Given a metric space (X, d), a set of terminals K ⊆ X, and a parameter t ≥ 1, we consider
metric structures (e.g., spanners, distance oracles, embedding into normed spaces) that preserve
distances for all pairs in K ×X up to a factor of t, and have small size (e.g. number of edges for
spanners, dimension for embeddings). While such terminal (aka source-wise) metric structures
are known to exist in several settings, no terminal spanner or embedding with distortion close to
1, i.e., t = 1 + ε for some small 0 < ε < 1, is currently known.

Here we devise such terminal metric structures for doubling metrics, and show that essentially
any metric structure with distortion 1 + ε and size s(|X|) has its terminal counterpart, with
distortion 1 +O(ε) and size s(|K|) + 1. In particular, for any doubling metric on n points, a set
of k = o(n) terminals, and constant 0 < ε < 1, there exists

A spanner with stretch 1 + ε for pairs in K ×X, with n+ o(n) edges.
A labeling scheme with stretch 1 + ε for pairs in K ×X, with label size ≈ log k.
An embedding into `d∞ with distortion 1 + ε for pairs in K ×X, where d = O(log k).

Moreover, surprisingly, the last two results apply if only K is a doubling metric, while X can be
arbitrary.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Sparsification and spanners

Keywords and phrases metric embedding, spanners, doubling metrics

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.36

Acknowledgements We are grateful to Paz Carmi for fruitful discussions.

1 Introduction

The area of low-distortion embeddings studies how well different metric spaces can be
approximated by simpler, or more structured, metric spaces. Fundamental results in this
realm include Bourgain’s and Matousek’s embeddings of general metrics into high-dimensional
Euclidean and `∞ spaces [5, 24], respectively, Gupta et al.’s [19] embeddings of doubling
metrics into normed spaces, and constructions of distance oracles and spanners for doubling
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metrics [20, 16]. Linial et al. [23] and Bartal [4] demonstrated that low-distortion embeddings
have numerous applications in Theoretical Computer Science.

All these embeddings [5, 24, 19] have inherent unavoidable dependencies in the total
number of points n in both the distortion and in the dimension of the target space. In
scenarios in which we have a metric space (X, d), and a subset K ⊆ X of important points,
aka terminals, the current authors and Filtser [14] demonstrated that one can devise terminal
embeddings, i.e., embeddings that provide guarantees on the distortion of all pairs that involve
a terminal in K, and whose guarantees on the distortion and the dimension depend on
k = |K|, as opposed to the dependencies on n in the classical embeddings. Specifically, it
is shown in [14] that essentially any known metric embedding into a normed space can be
transformed via a general transformation into a terminal embedding, while incurring only a
constant overhead in distortion.

This constant overhead does not constitute a problem when the distortion of the original
embedding is O(logn), as is the case for Bourgain’s embedding. However, for the important
family of embeddings of doubling metrics [3, 19] the distortion in some cases is just 1 + ε,
for an arbitrarily small ε > 0. (The dimension grows with 1/ε.) This is also the case in the
constructions of spanners and distance oracles for these metrics, due to [32, 16, 20]. Using
the general transformation of [14] on them results in stretch c, for some constant c ≥ 1 +

√
2,

making the resulting embeddings and spanners far less appealing.
A metric (X, d) has doubling constant λ if any ball of radius 2R in the metric (for any

R > 0) can be covered by at most λ radius-R balls. The parameter log2 λ is called also the
doubling dimension of the metric (X, d). A family of metrics is called doubling if the doubling
dimension of each family member is constant.

Doubling metrics constitute a useful far-reaching generalization of Euclidean low-dimensional
metrics. They have been extensively studied, see [3, 19, 6, 20, 16, 7, 18, 8, 15, 17, 28] and
the references therein. Interestingly, these studies of doubling metrics have often produced
improved bounds for low-dimensional Euclidean metrics as well. This was the case, e.g., for
dynamic spanners for doubling and low-dimensional Euclidean metrics [18], spanners with
low diameter, degree and weight [15], and fault-tolerant spanners [8].

In the current paper we devise a suit of terminal embeddings and metric structures, such
as spanners, distance oracles and distance labeling schemes (see Section 2 for definitions), for
doubling metrics with distortion 1 + ε, for an arbitrarily small ε > 0. In particular, Gupta et
al. [19] devised an embedding of metrics with doubling constant λ into `∞ with distortion
1 + ε and dimension logn · λlog 1/ε+O(1). Our terminal embedding of doubling metrics into
`∞ has the same distortion, but the dimension is log k · λlog 1/ε+O(1), i.e., the dependency on
n is replaced by (essentially) the same dependency on k.

Johnson and Lindenstrauss [21] showed that any Euclidean metric can be embedded into
an O( logn

ε2 )-dimensional Euclidean one, with distortion 1+ε. While we are not able to provide
a general terminal counterpart of this fundamental result, we do so in the important special
case of doubling metrics. Specifically, we show that an Euclidean (possibly high-dimensional3)
point set with doubling constant λ admits a terminal embedding with distortion 1 + ε into
an Euclidean space with dimension O((log k + log λ · log 1/ε)/ε2).

Har-Peled and Mendel [20], following [32], and extending previous classical results about
low-dimensional Euclidean spanners (see, e.g., [2, 9, 12, 27]), showed that for any n-point
metric with doubling constant λ and ε > 0, there exists a (1 + ε)-spanner with n · λO(log 1/ε)

edges. Note that when ε is very small, the coefficient of n may be pretty large even in

3 By “high-dimensional" we mean here typically dimension logn or greater.
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Euclidean two-dimensional space. We devise a terminal (1 + ε)-spanner for doubling metrics
with n+ k ·λO(log 1/ε) edges. In other words, when the number of terminals k is much smaller
than n, the number of edges is just n+ o(n), as opposed to n multiplied by a large constant.
(Note, however, that the distortion that our spanner provides is for pairs in K × X, as
opposed to X×X.) To the best of our knowledge, no such terminal spanners are known even
for two-dimensional Euclidean point sets. We also provide analogous terminal counterparts
of Har-Peled and Mendel’s distance oracles [20], and Slivkins’ distance labeling schemes [31].

In addition, we study the setting in which the set of terminals K induces a doubling
metric, while the entire point set X is a general (as opposed to doubling) metric. Surprisingly,
we show that our terminal distance labeling and also embedding of doubling metrics into
`∞ apply in this far more general scenario as well, with the same stretch 1 + ε, and the
same size/dimension as when X is a doubling metric. We also devise terminal spanners and
terminal distance oracles for this more general scenario that K is doubling, while X is a
general metric.

Related work. There has been several works which devised metric structures for partial
subsets. Already [10] considered distance preservers for a designated set of pairs. In
[11, 29, 22] pairwise spanners for general metrics were studied, and in particular terminal
spanners. Recently [1] introduced reachability preservers from a given set of sources.

Interestingly, lately we realized that the general transformation from [14] can also be
easily extended to produce terminal embeddings that apply to this general scenario (that
points of X \K lie in a general metric, while points of K lie in a special metric). However,
as was mentioned above, that transformation increases the stretch by at least a constant
factor, and is thus incapable of producing terminal embeddings with stretch 1 + ε.

The only known to us terminal metric structure with distortion 1 + ε is a prioritized
distance labeling scheme for graphs that exclude a fixed minor, due to the current authors
and Filtser [13]. In the current paper we provide the first near-isometric (i.e., having stretch
1 + ε) terminal spanners and embeddings.

1.1 Technical overview
The naive approach for building a terminal spanner for a given metric space (X, d), is to
apply a known construction on the set of terminals K, and extend the spanner to X \K
by adding an edge from each point in X \K to its nearest terminal. (The same approach
can be used for distance oracles/labeling and embeddings.) This is essentially the approach
taken by [14] (albeit in a much more general setting). Unfortunately, such a construction
cannot provide small 1 + ε stretch (it can be easily checked that it may give stretch at least
3). We need several ideas in order to provide small stretch.

First, we use the well known property of doubling metrics, that balls contain bounded
size nets (see Section 2 for definitions). We construct nets in all relevant distance scales, and
enrich K by a set Y ⊇ K of net points. The points of Y are those net points that are, to a
certain extent, close to K, depending on their distance scale. Then we apply a black-box
construction of a spanner on the set Y . Finally, we extend the spanner to every x ∈ X \ Y ,
by adding a single edge from x : either to the nearest terminal, or to a single net point y ∈ Y .
The set Y is carefully chosen so that each non-terminal x ∈ X \K, either has a close-by
terminal that "takes care" of it, and otherwise there is a net point y ∈ Y sufficiently close to
x so that x will have good stretch going via y.

One issue to notice is that even though Y is larger than K, it is still |Y | = O(|K|) (at least
for constant ε, λ). So we can have many points in X \ Y that do not have a representative

SoCG 2018
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y ∈ Y . The main technical part of the paper is devoted to proving that the particular choice
of Y guarantees low stretch for any pair (x, v) ∈ X ×K, even when x has no representative
y ∈ Y , by using the path through the nearest terminal to x.

It is instrumental to think of the set Y as an "enriched" terminal set. This idea of
enriching the terminal set K with additional points may be useful in other settings as well.

In the setting when only K is doubling, our construction of terminal spanners (and also
distance oracles/labeling schemes) is done by adding multiple edges from each x ∈ X \K to
nearby terminals that constitute a net. This approach can not work, however, for embeddings
into normed spaces. A certain type of embedding (such as the embedding of doubling metrics
into `∞) can be used in a non-black-box manner, and we show how to incorporate the points
of X \K into the embedding for K, without increasing the dimension.

2 Preliminaries

2.1 Embeddings, spanners and distance oracles/labeling scheme
Let (X, d) be a finite metric space. For a target metric (Z, dZ), an embedding is a map
f : X → Z, and the distortion of f is the minimal α (in fact, it is the infimum), such that
there exists a constant c that for all x, y ∈ X

d(x, y) ≤ c · dZ(x, y) ≤ α · d(x, y) . (1)

When Z is the shortest path metric of a graph H and c = 1, we say that H is an α-spanner
of (X, d). Given a set of terminals K ⊆ X, a terminal embedding guarantees (1) only for
pairs in K ×X.

An approximate distance oracle is a data structure that can report a multiplicative
approximation of d(x, y), for all x, y ∈ X. For K ⊆ X, it is a terminal distance oracle if
it can report only pairs in K ×X. The relevant parameters of an oracle are: its size (we
measure the size in machine words), query time, and stretch factor (and to some extent, also
the preprocessing time required to compute it). If one can distribute the data structure by
storing a short label L(x) at each vertex x ∈ X, and compute the approximation to d(x, y)
from L(x) and L(y) alone, this is called a distance labeling scheme.

For x ∈ X and r > 0, let B(x, r) = {y ∈ X : d(x, y) ≤ r} be a closed ball. The doubling
constant of X, denoted λ, is the minimal integer such that for every r > 0, every ball of
radius 2r can be covered by λ balls of radius r.

2.2 Terminal nets
For r > 0, an r-net is a set N ⊆ X satisfying the following:
1. For all u, v ∈ N , d(u, v) > r, and
2. for each x ∈ X, there exists u ∈ N with d(x, u) ≤ r.
The following claim is obtained by iteratively applying the definition of doubling constant.

I Claim 1 ([19]). Fix any q, r > 0, and let N be an r-net. For any x ∈ X we have that

|B(x, q) ∩N | ≤ λlogd2q/re .

It is well-known that a greedy algorithm that iteratively picks an arbitrary point u ∈ X to
be in N , and removes every point within distance r of u, will create an r-net. Given a set of
terminals K ⊆ X, we say that the greedy algorithm constructs a terminal r-net, if it prefers
to take points from K until it is exhausted, and only then picks other points to N . We also
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observe that given a terminal 2r-net N , one may choose a terminal r-net N ′ that contains
every terminal of N (by greedily picking to N ′ the terminals of N first – note that N ′ is not
guaranteed to contain all points of N , just the terminals).

2.3 Extendable metric structure
Given a metric (X, d), we denote by d̂ the distance function of some metric structure on it.
We say that a family of structures is extendable, if the structure on a subset Y ⊆ X can
be extended to the entire X (so that d̂ remains the same for pairs in Y ), by hanging each
x ∈ X \ Y on some u = u(x) ∈ Y and having that:
1. d̂(x, u) = d(x, u).
2. For any v ∈ Y , max{d(x, u), d̂(u, v)} ≤ d̂(x, v) ≤ d(x, u) + d̂(u, v).
We argue that essentially all known structures are extendable. For each x ∈ X \ Y , let
u = u(x) ∈ Y be the point onto which x is hanged.

Spanners. If the structure is a spanner on Y , then the extension for each x is done
by adding the edge {x, u} with weight d(x, u). For any v ∈ Y , we indeed have that
d̂(x, v) = d(x, u) + d̂(u, v), satisfying both requirements.
Distance labeling. For a distance labeling (or oracle), x stores the label of u and also
d(x, u). For a query on (x, v) where v ∈ Y , return d̂(x, v) = d(x, u) + d̂(u, v).
Embeddings. If the structure is an embedding f : Y → `sp, then the extension f̂

can be done by adding a new coordinate, and defining f̂ : X → `s+1
p by setting for

v ∈ Y , f̂(v) = (f(v), 0) and f(x) = (f(u), d(x, u)). Then we get that for all v ∈ Y ,

d̂(x, v) =
(
d̂(u, v)p + d(x, u)p

)1/p
, which satisfies both requirements for every 1 ≤ p ≤ ∞.

3 Terminal metric structures for doubling metrics

In this section we present our main result. For ease of notation, we measure the size of the
structure as the size per point (e.g. for a spanner with m edges over n points we say the size
is m/n). Our main result is:

I Theorem 2. Let (X, d) be a metric space with |X| = n that has doubling constant λ, and
fix any set K ⊆ X of size |K| = k. For 0 < ε < 1, assume that there exists an extendable
metric structure for any Y ⊆ X that has stretch 1 + ε and size s(|Y |), then there exists a
structure for X with 1 +O(ε) stretch for pairs in K ×X and size s(k · λO(log(1/ε))) + 1.

The following corollary follows by applying this theorem with known embeddings/distance
oracles/spanners constructions.

I Corollary 3. Let (X, d) be a metric space with |X| = n that has doubling constant λ, and
fix any set K ⊆ X of size |K| = k. Then for any 0 < ε < 1, the following metric structures
exists:
1. If (X, d) is Euclidean, then there exists a terminal embedding into `2 with distortion 1 + ε

and dimension O((log k + log λ · log(1/ε))/ε2).
2. A terminal embedding into `∞ with distortion 1 + ε and dimension log k · λlog(1/ε)+O(1) ·

log(1/ε).
3. A terminal spanner for (X, d) with stretch 1 + ε and k · λO(log(1/ε))) + n edges.
4. A terminal distance oracle with stretch 1 + ε, with size k · λO(log(1/ε)) +O(n) and query

time λO(1).

SoCG 2018
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5. A terminal distance labeling scheme with stretch 1 + ε, with label size λO(log(1/ε)) · log k ·
log log ∆k (where ∆k is the aspect ratio of K).

6. A terminal embedding into a distribution of tree-width t graphs4 with expected distortion
1 + ε for t ≤ λO(log logλ+log(1/ε)+log log ∆K).

Proof. The first item follows from [21], the second using [19, 28], the third and fourth items
use [20] results, the fifth applies a result of [31], and the sixth from [32].5 J

In what follows we prove Theorem 2. Let (X, d) be a metric space with |X| = n and
doubling constant λ, and let K ⊆ X be a set of terminals. Fix any 0 < ε < 1/20, set b =
dlog(1/ε)e, and let ∆ = maxu,v∈K{d(u, v)}, δ = minu 6=v∈K{d(u, v)} and s = dlog(∆/(ε2δ))e.
Let S = {0, 1, . . . , s}, and for each i ∈ S define ri = 2i · ε2δ. Observe that r0 = ε2δ and
rs ≥ ∆.

3.1 Construction
3.1.1 Multi-scale partial partitions
We begin by constructing partial partitions, based on terminal nets, in various scales. The
clusters of the partition at level i are created by iteratively taking balls of radius ri centered
at the points of a terminal ri-net. Some of these balls may be sufficiently far away from K,
we call such clusters final, and do not partition them in lower levels. See Algorithm 1 for the
full details.

Algorithm 1 Partial-Partitions ((X, d),K)
1: Rs = X;
2: for i = s, s− 1, . . . , 0 do
3: Let Ni = {xi,1, . . . , xi,bi

} be a terminal ri-net of Ri; (For i < s, each u ∈ K ∩ Ni+1
will be in Ni as well);

4: for j = 1, . . . , bi do
5: Ci,j ← B(xi,j , ri) ∩Ri;
6: Ri ← Ri \ Ci,j ;
7: if d(xi,j ,K) ≥ ri/ε then
8: Let final(Ci,j) = true;
9: else

10: Let final(Ci,j) = false

11: end if
12: end for
13: Ri−1 =

⋃
j : final(Ci,j)=false Ci,j ;

14: end for

For every scale i ∈ S this indeed forms a partition of Ri ⊆ X, because Ni is an ri-net.
Also, every cluster Ci,j in the partition of Ri has a center xi,j . Observe that every cluster
containing a terminal is not final, and that each point in X has at most one final cluster
containing it. In addition, the definition of terminal net guarantees that the prefix of Ni
consists of terminals, so each terminal u ∈ K must be assigned to a cluster centered at a
terminal. Finally, notice that at level 0, every terminal is a center of its own cluster (since
r0 < δ).

4 See [30] for definition of tree-width.
5 For the last two results, we note that our proof provides Y ⊇ K satisfying ∆Y ≤ O(∆K/ε

4), on which
we apply the labeling scheme of [31], or the embedding of [32].
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3.1.2 Marking stage
We now mark some of the clusters, these marked clusters are the "important" clusters whose
center will participate in the black-box construction. For every terminal u ∈ K, let iu ∈ S be
the maximal index such that u ∈ Niu , and mark every cluster Ci,j with center xi,j satisfying
both conditions (recall that b = dlog(1/ε)e.)
1. iu − 2b ≤ i ≤ iu, and
2. d(u, xi,j) ≤ 2riu/ε2.

3.1.3 Constructing the metric structure
Let Y ⊆ X be the collection of centers of marked clusters (note that K ⊆ Y ). Apply the
black-box construction on Y , and extend it to X \ Y as follows. For every x ∈ X that lies in
a final marked cluster C with center y, hang x on y (recall that x can be in at most one final
cluster). In every other case (e.g., x is in a final unmarked cluster, or does not have a final
cluster containing it), hang x on u ∈ K, the nearest terminal to x.

3.2 Analysis
First we show that |Y | is sufficiently small.

I Claim 4. |Y | ≤ |K| · λ5b.

Proof. We will show that each u ∈ K marks at most λ5b clusters. By Claim 1, the ball
B(u, riu+2b+1) contains at most λlog(riu+2b+1/riu−2b) = λ4b+2 net points of Niu−2b (and only
less net points from the other nets Niu−2b+1, . . . , Niu). The second condition for marking
implies that only centers in this ball can be marked by u. Since there are 2b+ 1 possible
levels i ∈ [iu − 2b, iu], at most (2b+ 1) · λ4b+2 ≤ λ5b clusters may be marked by u. J

The bound on the size follows from Claim 4, and from the fact that each point in X \ Y
is hanged from a single y ∈ Y , so it requires a single edge/memory word/coordinate. It
remains to bound the stretch by 1 +O(ε) for pairs in K ×X. By the assumption, the metric
structure for Y induces a distance function d̂ which is a 1 + ε approximation of d, w.l.o.g we
assume that distances cannot contract, and expand by a factor of at most 1 + ε. Fix some
x ∈ X and v ∈ K. Recall that by definition, if x was hanged on u ∈ Y , then d̂(x, u) must
satisfy

max{d(x, u), d̂(u, v)} ≤ d̂(x, u) ≤ d(x, u) + d̂(u, v) .

Consider the following cases.

Case 1: x does not have a final cluster containing it. In this case x lies very close to its
nearest terminal u ∈ K, and all other terminals are at least 1/ε times farther away, so
the stretch guaranteed for u will suffice for x. More formally: the cluster C containing x
at level 0 centered at y is not final, that is, d(y,K) < r0/ε. Since C has radius r0 = ε2δ,
we have that

d(x, u) = d(x,K) ≤ d(x, y) + d(y,K) ≤ ε2δ + εδ = (1 + ε)εδ . (2)

We have that d(u, v) ≤ d(u, x) + d(x, v) ≤ (1 + ε)εδ + d(x, v) ≤ 2ε · d(u, v) + d(x, v), so
that

d(u, v) ≤ d(x, v)/(1− 2ε) . (3)

SoCG 2018



36:8 Near Isometric Terminal Embeddings for Doubling Metrics

Since d̂ approximates d with stretch 1 + ε on K,
d̂(x, v) ≤ d(x, u) + d̂(u, v)

≤ d(x, u) + (1 + ε)d(u, v)
(2)
≤ (1 + ε)εδ + (1 + ε)d(u, v) ≤ (1 + 3ε)d(u, v)
(3)
≤ (1 + 6ε)d(x, v) ,

where the last two inequalities use that ε < 1/12. On the other hand,
d̂(x, v) ≥ d̂(u, v)

≥ d(u, v)
= (1− ε) · d(u, v) + ε · d(u, v)
≥ (1− ε) · (d(x, v)− d(x, u)) + εδ

(2)
≥ (1− ε) · d(x, v)− (1− ε)(1 + ε)εδ + εδ

≥ (1− ε) · d(x, v) .
Case 2: x lies in a final marked cluster. Let C be the final marked cluster at level i ∈ S

with center y that contains x. In this case we show that d(x, y) is smaller by roughly 1/ε
than d(x,K), so that the stretch guaranteed for y ∈ Y will also be sufficient for x. Since
C is final, d(y, v) ≥ d(y,K) > ri/ε, therefore

d(x, v) ≥ d(y, v)− d(x, y) ≥ ri/ε− ri > ri/(2ε) . (4)

Using that the structure built for Y has stretch at most 1 + ε, we have that
d̂(x, v) ≤ d(x, y) + d̂(y, v)

≤ d(x, y) + (1 + ε)d(y, v)
≤ d(x, y) + (1 + ε)(d(x, y) + d(x, v))
= (2 + ε)d(x, y) + (1 + ε)d(x, v)
≤ (2 + ε)ri + (1 + ε)d(x, v)
(4)
≤ 2ε(2 + ε)d(x, v) + (1 + ε)d(x, v)
≤ (1 + 6ε)d(x, v) .

And also,
d̂(x, v) ≥ d̂(y, v)

≥ d(y, v)
≥ d(x, v)− d(x, y)
≥ d(x, v)− ri
(4)
≥ (1− 2ε)d(x, v) .

Case 3: x lies in a final non-marked cluster C. Let u be the nearest terminal to x. Intuitively,
since x is in a final cluster, all terminals are 1/ε farther away than the radius of C. However,
since C is not marked, its center does not participate in the black-box construction for Y .
Fortunately, the marking of clusters guarantees that u, the closest terminal to x, must be
in a terminal net of very high scale (otherwise it would have marked C), and it follows
that every other terminal is either very far away from u (and thus from x as well), or
very close to u. Surprisingly, in both cases we can use the stretch bound guaranteed for
K. We prove this observation formally in the following lemma.
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I Lemma 5. For any point x contained in a final non-marked cluster C of level i with
i < s, there exists a terminal u′ ∈ K such that d(x, u′) ∈ [ri/(2ε), 3ri/ε] and for any other
terminal w ∈ K it holds that d(u′, w) ≤ ri or d(u′, w) ≥ ri/ε2.

Proof. Since C with center y is the only final cluster containing x, the cluster C ′ with
center y′ containing x at level i + 1 is not final (recall we assume i < s). Thus there
exists a terminal z ∈ K with d(y′, z) ≤ ri+1/ε. Consider the terminal u′ ∈ Ni+1 which
is the center of the cluster containing z at level i + 1 (we noted above that clusters
containing a terminal must have a terminal as a center). By the triangle inequality
d(x, u′) ≤ d(x, y′) + d(y′, z) + d(z, u′) ≤ ri+1 + ri+1/ε+ ri+1 < 3ri/ε (note that the same
bound holds for d(y, u′)). On the other hand, since C is final we have that d(y, u′) ≥ ri/ε,
and thus d(x, u′) ≥ d(y, u′)− d(y, x) ≥ ri/ε− ri ≥ ri/(2ε).
Next we show that u′ ∈ Ni+2b+1. Seeking contradiction, assume u′ /∈ Ni+2b+1 (or that
i ≥ s − 2b so such a net does not exist), and consider the largest j such that u′ ∈ Nj .
Since the nets are hierarchical and u′ ∈ Ni+1, it must be that i+ 1 ≤ j ≤ i+ 2b, which
implies that d(u′, y) ≤ 3ri/ε < ri+b+2 < 2rj/ε2. By the marking procedure, the cluster
C would have been marked by u′. Contradiction. We conclude that u′ ∈ Ni+2b+1.
Fix any terminal w ∈ K, and we know show that d(u′, w) ≤ ri or d(u′, w) ≥ ri/ε

2.
Seeking contradiction, assume that ri < d(u′, w) < ri/ε

2. Let v′ ∈ K be the center
of the cluster containing w at level i, that is v′ ∈ Ni. Note that d(v′, w) ≤ ri, and
thus v′ 6= u′. Since Ni+2b+1 is an ri+2b+1 = 2ri/ε2 net, and as d(u′, v′) ≤ ri + ri+2b,
it must be that v′ /∈ Ni+2b+1. The contradiction will follow once we establish that v′
will mark C. Indeed, the largest j such that v′ ∈ Nj satisfies i ≤ j ≤ i + 2b, and also
d(v′, y) ≤ d(v′, w) + d(w, u′) + d(u′, y) ≤ ri + ri+2b + 3ri+b ≤ 2rj/ε2, so C should have
been marked. J

Next, we prove the stretch bound for the pair (x, v). Observe that if the final cluster C
containing x and centered at y is of level s, then d(y,K) ≥ rs/ε, and thus

d(x,K) ≥ d(y,K)− d(y, x) ≥ rs/(2ε) . (5)

This implies that
d̂(x, v) ≤ d(x, u) + d̂(u, v)

≤ d(x, u) + (1 + ε)d(u, v)
≤ d(x, v) + (1 + ε)rs
(5)
≤ d(x, v) + 2ε(1 + ε)d(x, v)
≤ (1 + 3ε)d(x, v) .

Since d(u, v) ≤ ∆ ≤ rs, we get that
d̂(x, v) ≥ d(x, u)

≥ (1− 2ε) · (d(x, v)− d(u, v)) + 2ε · d(x, u)
(5)
≥ (1− 2ε) · d(x, v)− rs + rs

≥ (1− 2ε) · d(x, v) .
From now on we may assume that C is of level i with i < s. By Lemma 5 there exists
u′ ∈ K such that d(x, u′) ∈ [ri/(2ε), 3ri/ε] and for any terminal w ∈ K, it holds that
d(u′, w) ≤ ri or d(u′, w) ≥ ri/ε2. Note that since u is the nearest terminal to x, it must
be that d(u, u′) ≤ ri, so we have that d(x, u) ∈ [ri/(3ε), 4ri/ε]. Finally, we consider the

SoCG 2018



36:10 Near Isometric Terminal Embeddings for Doubling Metrics

two cases for v: close or far from u′.
Sub-case a: d(u′, v) ≤ ri. In this case d(u, v) ≤ 2ri, and thus d(x, v) ≥ d(x, u)−d(u, v) ≥
ri/(3ε)− 2ri ≥ ri/(4ε). It follows that

d̂(x, v) ≤ d(x, u) + d̂(u, v)
≤ d(x, u) + (1 + ε)d(u, v)
≤ d(x, v) + (1 + ε)2ri
≤ d(x, v) + 5ri
≤ (1 + 9ε)d(x, v) .

Since d(u, v) ≤ 2ri ≤ 8ε · d(x, v), we also have
d̂(x, v) ≥ d(x, u)

≥ d(x, v)− d(u, v)
≥ (1− 8ε) · d(x, v) .

Sub-case b: d(u′, v) ≥ ri/ε
2. Now we have that d(u′, v) ≤ d(u′, x) + d(x, v) ≤ 3ri/ε +

d(x, v) ≤ 3εd(u′, v) + d(x, v), and so d(u′, v) ≤ d(x, v)/(1− 3ε). It follows that
d̂(x, v) ≤ d(x, u) + d̂(u, v)

≤ d(x, u) + (1 + ε)d(u, v)
≤ (2 + ε)d(x, u) + (1 + ε)d(x, v)
≤ (2 + ε)4ri/ε+ (1 + ε)d(x, v)
≤ 9ε · d(u′, v) + (1 + ε)d(x, v)
≤ (1 + 12ε)d(x, v) .

Using that d(u, u′) ≤ ri and that d(x, v) ≥ (1− 3ε)d(u′, v) ≥ (1− 3ε)ri/ε2 ≥ ri/(2ε2), we
conclude that

d̂(x, v) ≥ d̂(u, v)
≥ d(u, v) ≥ d(v, x)− d(x, u′)− d(u′, u)
≥ d(v, x)− 3ri/ε− ri
≥ (1− 8ε) · d(v, x) + 8ε · ri/(2ε2)− 3ri/ε− ri
≥ (1− 8ε) · d(v, x) .

4 The case where only K is doubling

So far we assumed that the entire metric (X, d) is doubling. It is quite intriguing to understand
what results can be obtained where only the terminal set K is doubling, while X is arbitrary.
We show that in such a case one can obtain terminal metric structures with guarantees similar
to the standard results (non-terminal) that apply when the entire metric (X, d) is doubling.
For spanners and distance labeling this follow by a simple extension of the black-box result,
but unlike [26, 14], we use multiple points of K for extending each x ∈ X \K.

I Theorem 6. Let (X, d) be a metric space on n points, and let K ⊆ X so that (K, d) has
doubling constant λ. Then for any 0 < ε < 1 there exist:

A terminal spanner with stretch 1 + ε and O(n · λO(log(1/ε))) edges.
A terminal distance oracle with stretch 1 + ε, size n · λO(log(1/ε)), and query time λO(1).
A terminal labeling scheme with stretch 1 + ε, with label size λO(log(1/ε)) log k · log log ∆k

(where ∆k is the aspect ratio of K).
Observe that the result for the labeling scheme seems to improves Corollary 3, which requires
that the whole metric is doubling. (In fact, the label size in Theorem 6 is slightly larger, this
fact is hidden by the constant in the O(·) notation.)
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For embeddings, it is unclear how to use this extension approach, since it involves multiple
points. We thus need to adjust the embedding itself. As an example to this adjustment, we
have the following result, which strictly improves the corresponding item in Corollary 3. Its
proof is in Section 4.2.

I Theorem 7. Let (X, d) be a metric space, and let K ⊆ X of size |K| = k so that (K, d)
has doubling constant λ. Then for any 0 < ε < 1 there exists a terminal embedding of X into
`∞ with distortion 1 + ε, and dimension log k · λO(log(1/ε)).

We remark that any embedding of (X, d) into `∞ with distortion less than 3 for all pairs,
requires in general dimension Ω(n) [25]. We also note that a terminal version of the JL
lemma is impossible whenever only K is Euclidean, and X \ K is not. To see this, note
that any three vertices of K2,2 admit an isometric embedding to `2, but embedding all four
requires distortion

√
2. When only one vertex is non-terminal, all pairwise distances must be

preserved up to 1 + ε, which is impossible for ε < 1/3, say.

4.1 Proof of Theorem 6
We prove the spanner result first. Let H be a spanner for (K, d) with stretch 1 + ε and
k · λO(log(1/ε)) edges given by [20], say. For any x ∈ X, let u = u(x) ∈ K be the closest
terminal to x, and denote R = d(x, u). Take N(x) to be an εR-net of B(x, 2R/ε) ∩K, by
Claim 1, |N(x)| ≤ λO(log(1/ε)). Add the edges {(x, v)}v∈N(x), each with weight d(x, v) to the
spanner. Since we added λO(log(1/ε)) edges for each point, the bound on the number of edges
follows, and it remains to bound the stretch by 1 +O(ε). Clearly no distances can contract,
and we bound the expansion. Fix x ∈ X and v ∈ K, and denote u = u(x) with R = d(x, u).
In the case v /∈ B(x, 2R/ε) we have that R ≤ ε · d(x, v)/2, so that

dH(x, v) ≤ dH(x, u) + dH(u, v) ≤ d(x, u) + (1 + ε)d(u, v)
≤ (2 + ε)d(x, u) + (1 + ε)d(x, v) = (2 + ε)R+ (1 + ε)d(x, v)
≤ (1 + 3ε)d(x, v) .

Otherwise, v ∈ B(x, 2R/ε). Let v′ ∈ N(x) be the nearest net point to v, with d(v, v′) ≤
εR ≤ ε · d(x, v) (recall u is the nearest terminal to x). Then

dH(x, v) ≤ dH(x, v′) + dH(v′, v)
≤ d(x, v′) + (1 + ε)d(v′, v)
≤ d(x, v) + (2 + ε)d(v′, v)
≤ d(x, v) + (2 + ε)ε · d(x, v)
≤ (1 + 3ε)d(x, v) .

The proof for the labeling scheme (and also distance oracle) is similar. Apply the black-
box scheme on (K, d), and for each x ∈ X \K define N(x) as above, and x stores all labels
for v′ ∈ N(x) along with d(x, v′). Given a query (x, v), return minv′∈N(x){d(x, v′) + d̂(v, v′)},
where d̂ is the distance function of the labeling scheme.

4.1.1 Lower bound
We now show that when only K is doubling, one cannot achieve a result as strong as
Theorem 2 (there the number of edges in a spanner with stretch 1 + ε can be as low as
n+ o(n)). In fact, Theorem 6 is tight up to a constant factor in the exponent of λ.
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I Claim 8. There exists a constant c > 0, so that for any (sufficiently large) integer n and
any integer λ > 1, there is a metric (X, d) on n points with a subset K ⊆ X, so that (K, d)
has doubling constant O(λ), but for any 0 < ε < 1, any terminal spanner of X with stretch
1 + ε must have at least n · λlog(c/ε) edges.

Proof. Let t = dlog λe, and let K be an ε-net of the unit sphere of Rt. It is well known that
|K| = Θ(1/ε)t−1 = λlog(c/ε) for some constant c.

Define (X, d) by setting for each x, y ∈ X, d(x, y) =


‖x− y‖2 x, y ∈ K

1 x ∈ X \K, y ∈ K
2 x, y ∈ X \K

. Note

that distances between points in K correspond to the Euclidean distance, and are at most 2,
so that K has doubling constant O(λ). Observe that any spanner with stretch 1 + ε must
contain all the edges in K ×X, because the distance between any two points in K is larger
than ε, so any path from x ∈ X \K to y ∈ K that does not contain the edge (x, y), will be
of length greater than 1 + ε. J

4.2 Proof of Theorem 7

We follow the embedding technique of [28], but with different edge contractions defined
below. Assume w.l.o.g that the minimal distance in (X, d) is 1. Let ∆ = diam(X), and for
all 0 ≤ i ≤ log ∆ let (X, di) be the metric defined as follows: consider the complete graph
on vertex set X, with edge {u, v} having weight d(u, v). For every x ∈ X and v ∈ K with
d(x, v) < 2i−1 · ε/k, replace the weight of this edge by 0, and let di be the shortest path
metric on this graph. Since any shortest path in this graph has at most 2k edges that contain
a vertex in K, we have that d(x, y)− ε · 2i ≤ di(x, y) ≤ d(x, y) for all x, y ∈ X.

For each 0 ≤ i ≤ log ∆ take a ri-net Ni with respect to (K, di) (i.e., take only terminals
to the net), where ri = ε · 2i−2. Partition each Ni into t = λO(log(1/ε)) sets Ni1, . . . , Nit, such
that for each u, v ∈ Nij , di(u, v) ≥ 5 · 2i. (To obtain Nij , one can greedily choose points
from Ni \ (

⋃
j′<j Nij′) until no more can be chosen. See [28] for details.) Next we define

the embedding, fix D = d2t log(2k/ε)e, and let {e0, . . . , eD−1} be the standard orthonormal
basis for RD, extended to an infinite sequence {ej}j∈N (that is, ej = ej (mod D) for all j ∈ N).
For any 0 ≤ i ≤ log ∆ and 0 ≤ j ≤ t− 1, for x ∈ X let

gij(x) = min{2i+1, di(x,Nij)} .

Define the embedding f : X → RD by

f(x) =
log ∆∑
i=0

t−1∑
j=0

gij(x) · eit+j .

Expansion Bound. Now we show that the embedding f under the `∞ norm does not expand
distances for pairs in X ×K by more than a factor of 1 + ε. Fix a pair x ∈ X and v ∈ K,
and consider the h-th coordinate of the embedding fh, with 0 ≤ h ≤ D − 1. We have
that fh(x) − fh(v) =

∑
i,j : h=it+j(mod D) gij(x) − gij(v). Let 0 ≤ i′ ≤ log ∆ be such that

2i′−1 ≤ d(x, v) < 2i′ , then for all i > i′ + log(2k/ε) it holds that d(x, v) < 2i−1 · ε/k and
thus di(x, v) = 0, in particular, gij(x) = gij(v) and so there is no contribution at all from
such scales. By the triangle inequality we also have that gij(x) − gij(v) ≤ di(x, v) and
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gij(x)− gij(v) ≤ 2i+1 for all 0 ≤ i ≤ log ∆ and 0 ≤ j ≤ t− 1.

fh(x)− fh(v) ≤
∑

i,j : i≤i′+log(2k/ε),h=it+j(mod D)

gij(x)− gij(v)

≤
∑

i,j : i′−log(2k/ε)<i≤i′+log(2k/ε),h=it+j(mod D)

gij(x)− gij(v)

+
∑

i≤i′−log(2k/ε)

2i+1

≤ di(x, v) + 2i
′+1 · ε/k

≤ d(x, v)(1 + ε) .

The third inequality holds, since by the choice of D there is at most one possible choice
of i, j with i′ − log(2k/ε) < i < i′ + log(2k/ε) such that h = it + j(mod D), and the last
inequality uses that k ≥ 4. By symmetry it follows that |fh(x)− fh(v)| ≤ d(x, v)(1 + ε), and
thus |f(x)− f(v)| ≤ d(x, v)(1 + ε).

Contraction Bound. Now we bound the contraction of the embedding for pairs containing
a terminal. Fix x ∈ X and v ∈ K. We will show that there exists a single coordinate
0 ≤ h ≤ D − 1 such that |fh(x) − fh(v)| ≥ (1 − ε)d(x, v). Let 0 ≤ i ≤ log ∆ such that
2i ≤ d(x, v) < 2i+1, and let 0 ≤ j ≤ t− 1 be such that di(v,Nij) ≤ ri (such a j must exist
because Ni is an ri-net of K). Denote by u ∈ Nij the point satisfying di(v,Nij) = di(v, u).
Since ri = ε · 2i−2 also gij(v) ≤ ri.

We claim that di(x,Nij) = di(x, u). To see this, first observe that di(x, u) ≤ di(x, v) +
di(v, u) ≤ 2i+1 + ri < (5/4) · 2i+1. Consider any other y ∈ Nij , by the construction
of Nij , di(y, u) ≥ 5 · 2i, so di(y, x) ≥ di(y, u) − di(x, u) > (5/2) · 2i+1 − (5/4) · 2i+1 =
(5/4) · 2i+1 > di(x, u). Thus it follows that either gij(x) = 2i+1 ≥ di(x, y), or gij(x) =
di(x, u) ≥ di(x, v)− di(v, u) ≥ di(x, v)− ri. Using that di(x, v) ≥ d(x, v)− ε · 2i, we conclude
that

gij(x)−gij(v) ≥ (di(x, v)−ri)−ri = di(x, v)−ε ·2i−1 ≥ d(x, v)−2ε ·2i ≥ (1−2ε) ·d(x, v) .

Let 0 ≤ h ≤ D − 1 be such that h = it + j(mod D), for the values of i, j fixed above.
Then we claim that any other pair i′, j such that h = i′k + j(mod D) has either 0 or very
small contribution to the h coordinate. If i′ > i then it must be that i′ ≥ log(2k/ε) + i+ 1 so
that d(x, v) ≤ 2i+1 < 2i′−1 · ε/k, thus as before gi′j(x) = gi′j(v). For values of i′ such that
i′ < i, then i′ ≤ i− log(2k/ε), thus∑

i′<i,j : h=i′t+j(mod D)

|gi′j(x)− gi′j(v)| ≤
∑

i′≤i−log(2k/ε)

2i
′+1

≤ 2i · 2ε/k
≤ ε · d(x, v) .

Finally,

‖f(x)− f(v)‖∞ ≥ |fh(x)− fh(v)|
≥ |gij(v)− gij(x)| −

∑
i′<i,j : h=i′t+j(mod D)

|gi′j(x)− gi′j(v)|

≥ d(x, v)(1− 3ε) .
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