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Abstract
A string graph is the intersection graph of a family of continuous arcs in the plane. The inter-
section graph of a family of plane convex sets is a string graph, but not all string graphs can
be obtained in this way. We prove the following structure theorem conjectured by Janson and
Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques
such that some pair of them is not connected by any edge (n → ∞). We also show that every
graph with the above property is an intersection graph of plane convex sets. As a corollary, we
obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.

2012 ACM Subject Classification Mathematics of computing → Graph theory, Theory of com-
putation → Randomness, geometry and discrete structures

Keywords and phrases String graph, intersection graph, plane convex set

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.68

Related Version A full version of the paper is available at [PRY18], http://arxiv.org/abs/
1803.06710.

Acknowledgements This research was carried out while all three authors were visiting IMPA in
Rio de Janeiro. They would like to thank the institute for its generous support.

1 Overview

The intersection graph of a collection C of sets is a graphs whose vertex set is C and in which
two sets in C are connected by an edge if and only if they have nonempty intersection. A
curve is a subset of the plane which is homeomorphic to the interval [0, 1]. The intersection
graph of a finite collection of curves (“strings”) is called a string graph.

Ever since Benzer [Be59] introduced the notion in 1959, to explore the topology of genetic
structures, string graphs have been intensively studied both for practical applications and
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theoretical interest. In 1966, studying electrical networks realizable by printed circuits,
Sinden [Si66] considered the same constructs at Bell Labs. He proved that not every graph is
a string graph, and raised the question whether the recognition of string graphs is decidable.
The affirmative answer was given by Schaefer and Štefankovič [ScSt04] 38 years later. The
difficulty of the problem is illustrated by an elegant construction of Kratochvíl and Matoušek
[KrMa91], according to which there exists a string graph on n vertices such that no matter
how we realize it by curves, there are two curves that intersect at least 2cn times, for
some c > 0. On the other hand, it was proved in [ScSt04] that every string graph on n

vertices and m edges can be realized by polygonal curves, any pair of which intersect at
most 2c′m times, for some other constant c′. The problem of recognizing string graphs is
NP-complete [Kr91, ScSeSt03].

In spite of the fact that there is a wealth of results for various special classes of string
graphs, understanding the structure of general string graphs has remained an elusive task.
The aim of this paper is to show that almost all string graphs have a very simple structure.
That is, the proportion of string graphs that possess this structure tends to 1 as n tends to
infinity.

Given any graph property P and any n ∈ N, we denote by Pn the set of all graphs
with property P on the (labeled) vertex set Vn = {1, . . . , n}. In particular, Stringn is
the collection of all string graphs with the vertex set Vn. We say that an n-element set is
partitioned into parts of almost equal size if the sizes of any two parts differ by at most n1−ε

for some ε > 0, provided that n is sufficiently large.

I Theorem 1. As n→∞, the vertex set of almost every string graph G ∈ Stringn can be
partitioned into 4 parts of almost equal size such that 3 of them induce a clique in G and the
4th one splits into two cliques with no edge running between them.

I Theorem 2. Every graph G whose vertex set can be partitioned into 4 parts such that 3
of them induce a clique in G and the 4th one splits into two cliques with no edge running
between them, is a string graph.

Theorem 1 settles a conjecture of Janson and Uzzell from [JaU17], where a related weaker
result was proved in terms of graphons.

We also prove that a typical string graph can be realized using relatively simple strings.
Let Convn denote the set of all intersection graphs of families of n labeled convex sets

{C1, . . . , Cn} in the plane. For every pair {Ci, Cj}, select a point in Ci ∩ Cj , provided
that such a point exists. Replace each convex set Ci by the polygonal curve obtained by
connecting all points selected from Ci by segments, in the order of increasing x-coordinate.
Observe that any two such curves belonging to different Cis intersect at most 2n times.
The intersection graph of these curves (strings) is the same as the intersection graph of the
original convex sets, showing that Convn ⊆ Stringn. Taking into account the construction
of Kratochvíl and Matoušek [KrMa91] mentioned above, it easily follows that the sets Convn
and Stringn are not the same, provided that n is sufficiently large.

I Theorem 3. There exist string graphs that cannot be obtained as intersection graphs of
convex sets in the plane.

We call a graph G canonical if its vertex set can be partitioned into 4 parts such that 3
of them induce a clique in G and the 4th one splits into two cliques with no edge running
between them. The set of canonical graphs on n vertices is denoted by Canonn. Theorem 2
states Canonn ⊂ Stringn. In fact, this is an immediate corollary of Convn ⊂ Stringn
and the relation Canonn ⊂ Convn, formulated as
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Figure 1 The graph G1 is the any planar graph with more than 20 vertices. The graph G2 is the
graph from the construction of Kratochvíl and Matoušek [KrMa91].

I Theorem 4. The vertices of every canonical graph G can be represented by convex sets in
the plane such that their intersection graph is G.

The converse is not true. Every planar graph can be represented as the intersection graph
of convex sets in the plane (Koebe [Ko36]). Since no planar graph contains a clique of size
exceeding four, for n > 20 no planar graph with n vertices is canonical.

Combining Theorems 1 and 4, we obtain the following.

I Corollary 5. Almost all string graphs on n labeled vertices are intersection graphs of convex
sets in the plane.

See Figure 1 for a sketch of the containment relation of the families of graphs discussed
above.

The rest of this paper is organized as follows. In Section 2, we recall the necessary tools
from extremal graph theory, and adapt a partitioning technique of Alon, Balogh, Bollobás,
and Morris [AlBBM11] to analyze string graphs; see Theorem 8. In Section 3, we collect
some simple facts about string graphs and intersection graphs of plane convex sets, and
combine them to prove Theorem 4. In Section 4, we strengthen Theorem 8 in two different
ways and, hence, prove Theorem 1 modulo a small number of exceptional vertices. We wrap
up the proof of Theorem 1 in Section 5.

2 The structure of typical graphs in an hereditary family

A graph property P is called hereditary if every induced subgraph of a graph G with property
P has property P, too. With no danger of confusion, we use the same notation P to denote
a (hereditary) graph property and the family of all graphs that satisfy this property. Clearly,
the properties that a graph G is a string graph (G ∈ String) or that G is an intersection
graph of plane convex sets (G ∈ Conv) are hereditary. The same is true for the properties
that G contains no subgraph, resp., no induced subgraph isomorphic to a fixed graph H.

It is a classic topic in extremal graph theory to investigate the typical structure of graphs
in a specific hereditary family. This involves proving that almost all graphs in the family
have a certain structural decomposition. This research is inextricably linked to the study
of the growth rate of the function |Pn|, also known as the speed of P, in two ways. Firstly,
structural decompositions may give us bounds on the growth rate. Secondly, lower bounds
on the growth rate help us to prove that the size of the exceptional family of graphs which
fail to have a specific structural decomposition is negligible. In particular, we will both use a
preliminary bound on the speed in proving our structural result about string graphs, and
apply our theorem to improve the best known current bounds on the speed of the string
graphs.

SoCG 2018
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In a pioneering paper, Erdős, Kleitman, and Rothschild [ErKR76] approximately determ-
ined for every t the speed of the property that the graph contains no clique of size t. Erdős,
Frankl, and Rödl [ErFR86] generalized this result as follows. Let H be a fixed graph with
chromatic number χ(H). Then every graph of n vertices that does not contain H as a (not
necessarily induced) subgraph can be made (χ(H)− 1)-partite by the deletion of o(n2) edges.
This implies that the speed of the property that the graph contains no subgraph isomorphic
to H is

2
(

1− 1
χ(H)−1 +o(1)

)
(n2). (1)

Prömel and Steger [PrS92a, PrS92b, PrS93] established an analogous theorem for graphs
containing no induced subgraph isomorphic to H. Throughout this paper, these graphs will be
called H-free. To state their result, Prömel and Steger introduced the following key notion.

I Definition 6. A graph G is (r, s)-colorable for some 0 ≤ s ≤ r if there is a r-coloring of the
vertex set V (G), in which the first s color classes are cliques and the remaining r − s color
classes are independent sets. The coloring number χc(P) of a hereditary graph property P is
the largest integer r for which there is an s such that all (r, s)-colorable graphs have property
P. Consequently, for any 0 ≤ s ≤ χc(P) + 1, there exists a (χc(P) + 1, s)-colorable graph
that does not have property P.

The work of Prömel and Steger was completed by Alekseev [Al93] and by Bollobás and
Thomason [BoT95, BoT97], who proved that the speed of any hereditary graph property P
satisfies

|Pn| = 2
(

1− 1
χc(P) +o(1)

)
(n2). (2)

The lower bound follows from the observation that for χc(P) = r, there exists s ≤ r such
that all (r, s)-colorable graphs have property P. In particular, Pn contains all graphs whose
vertex sets can be partitioned into s cliques and r − s independent sets, and the number of
such graphs is equal to the right-hand side of (2).

As for string graphs, Pach and Tóth [PaT06] proved that

χc(String) = 4. (3)

Hence, (2) immediately implies

|Stringn| = 2( 3
4 +o(1))(n2). (4)

If we want to tighten the above estimates, another idea of Prömel and Steger [PrS91] is
instructive. They noticed that the vertex set of almost every C4-free graph can be partitioned
into a clique and an independent set, and no matter how we choose the edges between these
two parts, we always obtain a C4-free graph. Therefore, the speed of C4-freeness is at most
(1+o(1))2n2

1
2 (n2), which is much better than the general bound 2( 1

2 +o(1))(n2) that follows from
(2). Almost all C5-free graphs permit similar “certifying partitions”. It is an interesting open
problem to decide which hereditary families permit such partitions and what can be said
about the inner structure of the subgraphs induced by the parts. This line of research was
continued by Balogh, Bollobás, and Simonovits [BaBS04, BaBS09, BaBS11]. The strongest
result in this direction was proved by Alon, Balogh, Bollobás, and Morris [AlBBM11], who
proved that for almost every graph with a hereditary property P, one can delete a small
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fraction of the vertices in such a way that the rest can be partitioned into χc(P) parts with
a very simple inner structure. This allowed them to replace the bound (2) by a better one:

|Pn| = 2
(

1− 1
χc(P)

)
(n2)+O(n2−ε)

.

This will be the starting point of our analysis of string graphs. As we shall see, in the case of
string graphs, our results allow us to replace the 2O(n2−ε) in this bound by 2 9n

4 +o(n). See
[BB11, KKOT15, RY17, ReSc17], for related results.

We need some notation. Following Alon et al., for any integer k > 0, define U(k) as a
bipartite graph with vertex classes {1, . . . , k} and {I : I ⊂ {1, ..., k}}, where a vertex i in the
first class is connected to a vertex I in the second if and only if i ∈ I. We think of U(k) as a
“universal” bipartite graph on k+ 2k vertices, because for every subset of the first class there
is a vertex in the second class whose neighborhood is precisely this subset.

As usual, the neighborhood of a vertex v of a graph G is denoted by NG(v) or, if there is
no danger of confusion, simply by N(v). For any disjoint subsets A,B ⊂ V (G), let G[A] and
G[A,B] denote the subgraph of G induced by A and the bipartite subgraph of G consisting
of all edges of G running between A and B, respectively. The symmetric difference of two
sets, X and Y , is denoted by X 4 Y .

I Definition 7. Let k be a positive integer. A graph G is said to contain U(k) if there are
two disjoint subsets A,B ⊂ V (G) such that the bipartite subgraph G[A,B] ⊆ G induced by
them is isomorphic to U(k). Otherwise, with a slight abuse of terminology, we say that G is
U(k)-free.

By slightly modifying the proof of the main result (Theorem 1) in [AlBBM11] and
adapting it to string graphs, we obtain

I Theorem 8. For any sufficiently large positive integer k and for any δ > 0 which is
sufficiently small in terms of k, there exist ε > 0 and a positive integer b with the following
properties.

The vertex set Vn (|Vn| = n) of almost every string graph G can be partitioned into eight
sets, S1, ...S4, A1, ...., A4, and a set B of at most b vertices such that
(a) G[Si] is U(k)-free for every i (1 ≤ i ≤ 4);
(b) |A1 ∪A2... ∪A4| ≤ n1−ε; and
(c) for every i (1 ≤ i ≤ 4) and v ∈ Si ∪Ai there is a ∈ B such that

|(N(v)4N(a)) ∩ (Si ∪Ai)| ≤ δn.

In other words, for the right choice of parameters, almost all string graphs have a
partition into 4 parts satisfying the following conditions. There is a set of sub-linear size in
the number of vertices such that deleting its elements, the subgraphs induced by the parts
are U(k)-free. Moreover, there is another set B of at most constantly many vertices such
that the neighborhood of every vertex with respect to the part it belongs to is similar to
the neighbourhood of some vertex in B. In the full version of the paper [PRY18], we sketch
the proof of this result, indicating the places where we slightly deviate from the original
argument in [AlBBM11].

3 String graphs vs. intersection graphs of convex sets – proof of
Theorem 4

Instead of proving Theorem 4, we establish a somewhat more general result.

SoCG 2018
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tij

m ∈ A
pij(A)

CjM = conv PjM

Cim = conv Pim

tij

N(vjM) ∩ {vim : m ≤ ni} = {vim : m ∈ A}

Figure 2 The point pij(A) is included in PjM .

I Theorem 9. Given a planar graph H with labeled vertices {1, . . . , k} and positive integers
n1, . . . , nk, let H(n1, . . . , nk) denote the class of all graphs with n1 + . . .+nk vertices that can
be obtained from H by replacing every vertex i ∈ V (H) with a clique of size ni, and adding
any number of further edges between pairs of cliques that correspond to pairs of vertices i 6= j

with ij ∈ E(G).
Then every element of H(n1, . . . , nk) is the intersection graph of a family of plane convex

sets.

Proof. Fix any graph G ∈ H(n1, . . . , nk). The vertices of H can be represented by closed
disks D1, . . . , Dk with disjoint interiors such that Di and Dj are tangent to each other for
some i < j if and only if ij ∈ E(H) (Koebe, [Ko36]). In this case, let tij = tji denote the
point at which Di and Dj touch each other. For any i (1 ≤ i ≤ k), let oi be the center of Di.
Assume without loss of generality that the radius of every disk Di is at least 1.

G has n1 + . . .+ nk vertices denoted by vim, where 1 ≤ i ≤ k and 1 ≤ m ≤ ni. In what
follows, we assign to each vertex vim ∈ V (G) a finite set of points Pim, and define Cim to be
the convex hull of Pim. For every i, 1 ≤ i ≤ k, we include oi in all sets Pim with 1 ≤ m ≤ ni,
to make sure that for each i, all sets Cim, 1 ≤ m ≤ ni have a point in common, therefore,
the vertices that correspond to these sets induce a clique.

Let ε < 1 be the minimum of all angles ]tijoitil > 0 at which the arc between two
consecutive touching points tij and til on the boundary of the same disc Di can be seen from
its center, over all i, 1 ≤ i ≤ k and over all j and l. Fix a small δ > 0 satisfying δ < ε2/100.

For every i < j with ij ∈ E(H), let γij be a circular arc of length δ on the boundary
of Di, centered at the point tij ∈ Di ∩Dj . We select 2ni distinct points pij(A) ∈ γij , each
representing a different subset A ⊆ {1, . . . , ni}. A point pij(A) will belong to the set Pim if
and only if m ∈ A. (Warning: Note that the roles of i and j are not interchangeable!)

If for some i < j with ij ∈ E(H), the intersection of the neighborhood of a vertex
vjM ∈ V (G) for any 1 ≤M ≤ nj with the set {vim : 1 ≤ m ≤ ni} is equal to {vim : m ∈ A},
then we include the point pij(A) in the set PjM assigned to vjM , see Figure 2 for a sketch.
Hence, for every m ≤ ni and M ≤ nj , we have

vimvjM ∈ E(G) ⇐⇒ Pim ∩ PjM 6= ∅.

In other words, the intersection graph of the sets assigned to the vertices of G is isomorphic
to G.

It remains to verify that

vimvjM ∈ E(G) ⇐⇒ Cim ∩ CjM 6= ∅.
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t12

t1j
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Di
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Figure 3 Tangent disks Di and Dj touching at tij .

Suppose that the intersection graph of the set of convex polygonal regions

{Cim : 1 ≤ i ≤ k and 1 ≤ m ≤ ni}

differs from the intersection graph of

{Pim : 1 ≤ i ≤ k and 1 ≤ m ≤ ni}.

Assume first, for contradiction, that there exist i,m, j,M with i < j such that Di and
Dj are tangent to each other and CjM contains a point pij(B) for which

B 6= NjM ∩ {vim : 1 ≤ m ≤ ni}. (5)

Consider the unique point p = pij(A) ∈ γij that belongs to PjM , that is, we have

A = NjM ∩ {vim : 1 ≤ m ≤ ni}.

Draw a tangent line ` to the arc γij at point p. See Figure 3. The polygon CjM has two
sides meeting at p; denote the infinite rays emanating from p and containing these sides by
r1 and r2. These rays either pass through oj or intersect the boundary of Dj in a small
neighborhood of the point of tangency of Dj with some other disk Dj′ . Since δ was chosen
to be much smaller than ε, we conclude that r1 and r2 lie entirely on the same side of `
where oj , the center of Dj , is. On the other hand, all other points of γij , including the point
pij(B) satisfying (5) lie on the opposite side of `, which is a contradiction.

Essentially the same argument and a little trigonometric computation show that for every
j and M , the set CjM \Dj is covered by the union of some small neighborhoods (of radius
< ε/10) of the touching points tij between Dj and the other disks Di. This, together with
the assumption that the radius of every disk Di is at least 1 (and, hence, is much larger than
ε and δ) implies that CjM cannot intersect any polygon Cim with i 6= j, for which Di and
Dj are not tangent to each other. J

Applying Theorem 9 to the graph obtained fromK5 by deleting one of its edges, Theorem 4
follows.

SoCG 2018
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X1

Z1

X2

Z2

X3

Z3

X4

Z4

Figure 4 A sketch of a typical string graph as in Theorem 10. The edges between the parts are
not drawn. The sets shaded grey are cliques.

4 Strengthening Theorem 8

In this section, we strengthen Theorem 8 in two different ways. To avoid confusion, in the
formulation of our new theorem, we use Xi in place of Si and Zi in place of Ai. We will
see that we can insist that the four parts of the partition have approximately the same size.
Secondly, we can guarantee that X1, X2, and X3 are cliques and X4 induces the disjoint
union of two cliques. More precisely, setting Z = Z1 ∪ Z2... ∪ Z4, we prove the following
result, which is similar in flavour to a result in [ReSc17].

I Theorem 10. For every sufficiently small δ, there are γ > 0, b > 4 + 2
δ with the fol-

lowing property. For almost every string graph G on Vn, there is a partition of Vn into
X1, ..., X4, Z1, ..., Z4 such that for some set B of at most b vertices the following conditions
are satisfied:

(I) G[X1], G[X2], and G[X3] are cliques and G[X4] induces the disjoint union of two
cliques.

(II) |Z1 ∪ Z2 ∪ Z3 ∪ Z4| ≤ n1−γ ,
(III) for every i (1 ≤ i ≤ 4) and every v ∈ Xi ∪ Zi, there exists a ∈ B such that

|(N(v)4N(a)) ∩ (Xi ∪ Zi)| ≤ δn,

(IV) for every i (1 ≤ i ≤ 4), we have
∣∣|Zi ∪Xi| − n

4
∣∣ ≤ n1−γ .

See Figure 4 for an illustration of Theorem 10.
For the proof of Theorem 10 we need the following statement which is a slight generalization

of Lemma 3.2 in [PaT06], and it can be established in precisely the same way, details are
given in the full version of the paper [PRY18].

I Lemma 11. Let H be a graph on the vertex set {v1, . . . , v5} ∪ {vij : 1 ≤ i 6= j ≤ 5}, where
vij = vji and every vij is connected by an edge to vi and vj. The graph H may have some
further edges connecting pairs of vertices (vij , vik) with j 6= k. Then H is not a string graph.

I Corollary 12. For each of the following types of partition, there exists a non-string graph
whose vertex set can be partitioned in the specified way:
(a) 2 stable (that is, independent) sets each of size at most 10;
(b) 4 cliques each of size at most five and a vertex;
(c) 3 cliques each of size at most five and a stable set of size 3;
(d) 3 cliques each of size at most five and a path with three vertices;
(e) 2 cliques both of size at most five and 2 graphs that can be obtained as the disjoint union

of a point and a clique of size at most 3.

See Figure 5 for an illustration of Corollary 12.
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(a) (b) (c)

(d) (e)

Figure 5 Possible partitions of a non-string graph.

Proof of Theorem 10. We choose k sufficiently large and then δ < 1
40 sufficiently small in

terms of k. We choose ε, b > 0 such that Theorem 8 holds for this choice of k and δ and so
that ε is less than the ρ of Lemma 14 for this choice of k. We set γ = ε

10 and consider n
large enough to satisfy certain implicit inequalities below. We know that the subset S(k, δ)n
of Stringn, consisting of those graphs for which there is a set B of at most b vertices and a
partition into Si and Ai satisfying (a),(b), and (c) set out in Theorem 8, contains almost every
string graph. We call such a partition, certifying. We need to show that almost every graph
in S(k, δ)n has a certifying partition for which we can repartition Si ∪Ai into Xi ∪Zi so that
(I),(II), and (IV) all hold (that (III) holds, is simply Theorem 8 (c) and Si ∪Ai = Xi ∪ Zi).

We prove this fact via a sequence of lemmas. In doing so, for a specific partition, we
let m = m(A1 ∪ S1, A2 ∪ S2, A3 ∪ S3, A4 ∪ S4) be the number of pairs of vertices not lying
together in some Ai ∪ Si. The first lemma gives us a lower bound on |S(k, δ)n|, obtained by
simply counting the number of graphs which permits a partition into four cliques all of size
within one of n4 . Its proof is given in the full version of the paper [PRY18].

I Lemma 13. |S(k, δ)n| ≥ 2
3(n2)

4 .

The second gives us an upper bound on the number of choices for G[Si] for graphs G in
S(k, δ)n for which S1, S2, S3, S4, A1, A2, A3, A4 is a certifying partition. It is Corollary 8 in
[AlBBM11].

I Lemma 14. For every k, there is a positive ρ such that for every sufficiently large l, the
number of U(k)-free graphs with l vertices is less than 2l2−ρ .

Next we prove:

I Lemma 15. The number of graphs in S(k, δ)n which have a certifying partition such that
for some i, ||Ai ∪ Si| − n

4 | > n1−γ is o(|S(k, δ)n|).

Proof. The number of choices for a partition of Vn into S1, S2, S3, S4, A1, A2, A3, A4 is at
most 8n. If this partition demonstrates that Si is U(k)-free and n is large, Lemma 14 tells
us that there are only 2n2−ε choices for G[Si]. The number of choices for the edges out
of each vertex of Ai is 2n−1. So, since |Ai| is at most n1−ε, we know there are at most
2n2−ε choices for the edges out of Ai. It follows that there are at most 211(n2−ε) choices for

SoCG 2018
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our partition and the graphs G[S1 ∪ A1], ...., G[S4 ∪ A4] over all G in S(k, δ)n which can
be certified using this partition. Furthermore,the number of graphs in S(k, δ)n permitting

such a certifying choice is at most 2m. Since, |S(k, δ)n| ≥ 2
3(n2)

4 , it follows that almost every
graph G in S(k, δ)n has no certifying partition for which m <

3(n2)
4 − 12(n2−ε). The desired

result follows. J

Setting l = ln = dn1− ε7 e, we have the following.

I Lemma 16. The number of graphs in S(k, δ)n which have a certifying partition for which
there are distinct i and j such that both Si and Sj contain l disjoint independent sets of size
10 is o(|S(k, δ)n|).

Proof. Consider a choice of certifying partition and induced subgraphs H1, H2, H3, H4 where
V (Hi) = Ai ∪ Si. By Corollary 12(a), for any pair of independent sets of size 10, at least
one of the 2100 choices of edges between the sets yields a bipartite non-string graph. Thus,
the number of choices for edges between the partitions which extend our choice to yield a
graph in Stringn is at most 2m(1 − 1

2100 )l2 . Since m <
3(n2)

4 and l2 = ω(n2− ε2 ), it follows
that for almost every graph in S(k, δ)n, almost every certifying partition does not contain
two distinct such i and j. J

Ramsey theory tells us that if a graph J does not contain l disjoint stable sets of size
10, it contains |V (J)| − 10(l − 1)− 215 disjoint cliques of size 5. Combining applications of
this fact to three of the G[Si], Corollary 11(c), and an argument similar to that used in the
proof of Lemma 16 allows us to prove the following lemma. Details can be found in the full
version of the paper [PRY18].

I Lemma 17. The number of graphs G in S(k, δ)n which have a certifying partition for which
there is an i = i(G) such that Si does not contain l disjoint cliques of size 5 is o(|S(k, δ)n|)

With this lemma in hand, we can mimic the argument used in its proof to obtain the
following two lemmas. In doing so, we apply Corollary 11 (c),(d), and (e).

I Lemma 18. The number of graphs G in S(k, δ)n which have a certifying partition for
which there is an i = i(G) such that Si contains l disjoint sets of size three each inducing a
stable set or a path is o(|S(k, δ)n|).

I Lemma 19. The number of graphs G in S(k, δ)n which have a certifying partition for
which there are two distinct i such that Si contains l disjoint sets of size four each inducing
the disjoint union of a vertex and a triangle is o(|S(k, δ)n|).

Combining these lemmas, and possibly permuting indices, we see that almost every graph
in S(k, δ)n has a certifying partition for which for every i ≤ 4 we have ||Zi ∪Xi|− n

4 | ≤ n
1−γ ,

no Si contains more than l sets inducing a path of length three or a stable set of size three,
and for every k ≤ 3, Sk does not contain l disjoint sets inducing the disjoint union of a vertex
and a triangle. For each such graph, we consider such a partition. For all i < 4, we let Zi be
the union of Ai and a maximum family of disjoint sets in Xi each inducing a path of length
3, a stable set of size three, or the disjoint union of a triangle and a vertex. We let Z4 be
the union of A4 and a maximum family of disjoint sets in X4 each inducing a path of length
three or a stable set of size three. We set Xi = Si − Zi. J
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5 Completing the proof of Theorem 1

In this section, we prove our main result. By a great partition of G we mean a partition of
its vertex set into X1, X2, X3, X4 such that for i ≤ 3, Xi is a clique and X4 is the disjoint
union of two cliques. We call a graph great if it has a great partition and mediocre otherwise.
Theorem 1 simply states that almost every string graph G on Vn is great.

Thus, we are trying to show that almost every string graph has a partition into sets
X1, X2, X3, X4, Z1, Z2, Z3, Z4 satisfying Theorem 10 (I) with the sets Zi empty. We choose δ
so small that Theorem 10 holds and δ also satisfies certain inequalities implicitly given below.
We apply Theorem 10 and obtain that for some positive γ and b, for almost every graph
in Stringn there is a partition of Vn into X1, ..., X4, Z1, .., Z4 satisfying (I), (II), (III), and
(IV). Note that if we reduce γ the theorem remains true. We insist that γ is at most 1

64000000 .
We call such partitions good. We need to show that the number of mediocre string graphs on
Vn with a good partition is of smaller order than the number of great graphs on Vn.

The following result tells us that the number of great graphs on Vn is of the same order
as the number of great partitions of graphs on Vn.

I Claim 20. The ratio between the number of great partitions of graphs on Vn and the
number of graphs which permit such partitions is 6 + o(1).

So, it is sufficient to show that the number of mediocre string graphs with a good partition
on Vn is of smaller order than the number of graphs with a great partition on Vn. In doing so,
we consider each partition separately. For every partition Y = (Y1, Y2, Y3, Y4) of Vn we say
that a good partition satisfying (I)-(IV) with Yi = Xi ∪ Zi for every i is Y-good. We prove:

I Claim 21. For every partition Y = (Y1, Y2, Y3, Y4) of Vn, the number of graphs which
permit a great partition with Xi = Yi for every i is of larger order then the size of the set
F = FY of mediocre string graphs which permit a Y-good partition.

To complete the proof of Theorem 1 we need to show that our two claims hold.
Before doing so, we deviate momentarily and discuss the speed of the string graphs.

Combining Theorem 1 and Claim 20, we see that the ratio of the size of |Stringn| over the
number of ordered great partitions of graphs on Vn is 1

6 + o(1), so we need only count the
latter. There are 22n ordered partitions of Vn into Y1, ..., Y4, and there are 2m+|Y4| graphs for
which this is a great partition, where, as before, m = m(Y1, Y2, Y3, Y4) is the number of pairs

of vertices not lying together in some Yi. This latter term is at most 2
3(n2)

4 +n
4 , which gives us

the claimed upper bound on the speed of string graphs. Furthermore, a simple calculation of
the 22n ordered 4-partitions of Vn shows that there is an Ω( 1

n
3
2

) proportion where no two
parts differ in size by more than one. This gives us the claimed lower bound.

We now prove our two claims. In proving both, we exploit the fact that if a string graph
has a great partition and we fix the subgraph induced by the parts of the partition, then any
choice we make for the edges between the sets Xi will yield another string graph permitting
the same great partition.

This fact implies that the edge arrangements between the partition elements of a graph
permitting a particular great partition are chosen uniformly at random and, hence, are
unlikely to lead to a graph permitting some other great partition. This allows us to prove
Claim 20, which we do in the full version of the paper [PRY18].

Proof of Claim 21. Let m be the number of pairs of vertices not contained in a partition
element and note that there are exactly (2|Y4|−1) choices for G[Y4] for a graph for which Y is
a great partition, and hence 2m(2|Y4|−1) graphs for which Y is a great partition.

SoCG 2018
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Our approach is to show that while there may be more choices for the G[Yi] for mediocre
graphs for which Y is a good partition, for each such choice we have many fewer than 2m
choices for mediocre string graphs extending these subgraphs.

We note that by the definition of good, we need only consider partitions such that each
Yi has size n

4 + o(n).
Let G ∈ F and let P (G) be the projection of G on the sets (Y1, Y2, Y3, Y4), that is, the

disjoint union of the sets G[Y1], G[Y2], G[Y3], and G[Y4].
Now, (I) of Theorem 10 bounds the number of choices for G[Yi] by 1 if i < 3 and 2|Y4| if

i = 4. Furthermore, (III) bounds the number of edges out of Zi in terms of its size and (II)
bounds its size. Putting this all together we obtain the following lemma. Its proof can be
found in the full version of the paper [PRY18].

I Lemma 22. Let (Y1, Y2, Y3, Y4) be a partition of Vn, the number of possible projections on
(Y1, Y2, Y3, Y4) of graphs in F is o(2nb+1+

√
δn|Z|) = o(2|Y4|−1 · 2

√
δn2−γ ).

For a mediocre graph G in F , we call a set D versatile if for each i ∈ [4] with Yi ∩D = ∅,
there is clique Ci in Yi such that for all subsets D′ of D there are n

logn vertices of Ci which
are adjacent to all elements of D′ and to none of D \D′.

I Lemma 23. The number of mediocre string graphs in F such that for some i there is a
versatile subset Ti of 3 vertices of Yi inducing a path or a stable set of size three,is o(2m).

Proof. To begin, we count the number of mediocre graphs which extend a given projection
on (Y1, Y2, Y3, Y4) where Ti induces such a graph. We first expose the edges from Yi to
determine if Ti is versatile and then count the number of choices for the remaining edges
between the partition elements. If Ti is versatile we choose cliques Ck which show this is the
case.

By Corollary 12 (c) or (d), there is a non-string graph J whose vertex set can be partitioned
into 3 cliques of size at most five, and a graph Ji isomorphic to the subgraph of the projection
induced by Ti. We label these three cliques as Jk for k ∈ {1, 2, 3, 4} − {i} and let f be an
isomorphism from Ji to Ti. For each vertex v ∈ V (Jk), let N(v) = f(NJ(v) ∩ V (Ji)) and
Zv be those vertices of Ck whose neighbourhhod on Ti is N(v). Now, since |Zv| ≥ n

logn for
all v in each V (Jk), for each k 6= i, we can choose n′ = d n

10 logne cliques of size at most five
Ck1 , ..., C

k
n′ such that there is bijection hk,l from Jk to Ckl with hk,l(v) ∈ Zv for every v ∈ Jk.

If we choose our cliques in this way then for any set of three cliques {Cki(k)|k 6= i} there
is a choice of edges between the cliques which would make the union of these three cliques
with Ti induce J . Thus, there is one choice of edges between the cliques which cannot be
used in any extension of H to a string graph. Mimicking an earlier argument, this implies
that the number of choices for edges between the partition elements which extend H to a
string graph is at most 2m−

n2
log3 n . By the bound in Lemma 22 on the number of possible

projections, the desired result follows. J

Using Corollary 12 (e) in places of (c) & (d), we can (and do in the in the full version of
the paper [PRY18]) prove an analogous result for sets of size 8 intersecting two partition
elements. To state it we need a definition. A graph J is extendible if there is some non-string
graph whose vertex set can be partitioned into two cliques of size five and a set inducing J .

I Lemma 24. The number of mediocre string graphs in F such that for some distinct i and
k there are subsets Ti of Yi and Tk of Yk, both of size four, whose union is both versatile and
induces an extendible graph is o(2m).
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For every mediocre string graph G in F , we choose a maximum family W = WG of
disjoint sets each of which is either (a) contained in some Yi and induces one of a stable set
of size three or a path of length three, or (b) contains exactly four vertices from each of two
distinct partition elements and is extendible. For every such choice we count the number of
elements of F whose projection yields the given choice of W.

Now, by the definition of a good partition, each Yk contains a clique Ck containing half
the vertices of Xk and hence at least n

10 vertices. Lemmas 23 and 24 imply that we can
restrict our attention to graphs for which for any subset T in W, there is a subset N of T
and a j with Yj disjoint from T such that there are fewer than n

logn vertices of Ck which are
adjacent to all of N and none of T −N . This implies that the number of choices for the
edges from T to other partition elements is o(2

3n|T |
4 − n

10000 ).
Every element of W must intersect Z, so that |W| ≤ |Z|. Set W ∗ = ∪W∈WW , and let

Y ′i = Yi −W ∗. Note that for every i, Y ′i has more than n
5 vertices and G[Y ′i ] is the disjoint

union of two cliques. Given a choice of W , the number of choices for projections on Vn \W ∗
is less than 2n. Mimicking the proof of Lemma 22, the number of choices for the vertices of
W ∗, and the edges of G from the vertices in W ∗ which remain within the partition elements
of Y is O(2bn+

√
δ|W∗|n). Combining this with the result of the last paragraph yields:

I Lemma 25. There is a constant C such that the number of mediocre string graphs in F
for which |W| > C is o(2m+|Y4|).

So, we can restrict our attention to mediocre graphs which have a partition for which
|W| ≤ C. Similar tradeoffs allow us to handle them. Full details are found in the full version
of the paper [PRY18]. J
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