Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

Lijie Chen
Massachusetts Institute of Technology
lijieche@mit.edu

Erik D. Demaine
Massachusetts Institute of Technology
edemaine@mit.edu

Yuzhou Gu
Massachusetts Institute of Technology
yuzhougu@mit.edu

Virginia Vassilevska Williams
Massachusetts Institute of Technology
virgi@mit.edu

Yinzhan Xu
Massachusetts Institute of Technology
xyzhan@mit.edu

Yuancheng Yu
Massachusetts Institute of Technology
ycyu@mit.edu

Abstract
Since the introduction of retroactive data structures at SODA 2004, a major unsolved problem has been to bound the gap between the best partially retroactive data structure (where changes can be made to the past, but only the present can be queried) and the best fully retroactive data structure (where the past can also be queried) for any problem. It was proved in 2004 that any partially retroactive data structure with operation time $T_{op}(n, m)$ can be transformed into a fully retroactive data structure with operation time $O(\sqrt{m} \cdot T_{op}(n, m))$, where n is the size of the data structure and m is the number of operations in the timeline [7]. But it has been open for 14 years whether such a gap is necessary.

In this paper, we prove nearly matching upper and lower bounds on this gap for all n and m. We improve the upper bound for $n \ll \sqrt{m}$ by showing a new transformation with multiplicative overhead $n \log m$. We then prove a lower bound of $\min\{n \log m, \sqrt{m}\}^{1-o(1)}$ assuming any of the following conjectures:

Conjecture I: Circuit SAT requires $2^{n-o(n)}$ time on n-input circuits of size $2^{o(n)}$.

This conjecture is far weaker than the well-believed SETH conjecture from complexity theory, which asserts that CNF SAT with n variables and $O(n)$ clauses already requires $2^{n-o(n)}$ time.

Conjecture II: Online $(\min, +)$ product between an integer $n \times n$ matrix and n vectors requires $n^{3-o(1)}$ time.

This conjecture is weaker than the APSP conjectures widely used in fine-grained complexity.
Conjecture III (3-SUM Conjecture): Given three sets A, B, C of integers, each of size n, deciding whether there exist $a \in A, b \in B, c \in C$ such that $a + b + c = 0$ requires $n^{2-o(1)}$ time.

This 1995 conjecture [13] was the first conjecture in fine-grained complexity.

Our lower bound construction illustrates an interesting power of fully retroactive queries: they can be used to quickly solve batched pair evaluation. We believe this technique can prove useful for other data structure lower bounds, especially dynamic ones.

1 Introduction

Retroactive Data Structures

A data structure can be thought of as a sequence of updates being applied to an initial state. In traditional data structures, we can only append updates to the end of this sequence, called the timeline, and can only query about the final state of the data structure resulting from all the updates. Retroactive data structures, introduced at SODA 2004 [7], allow us to add or remove updates in the past, i.e., anywhere in the timeline rather than only at the end.

There are two main kinds of retroactive data structures: partially retroactive data structures, where we are only allowed to query the present, i.e., the final version resulting from the whole update sequence; and fully retroactive data structures, where we are also allowed to query about a past state, i.e., the state resulting from applying only a prefix of the update sequence given by the timeline.

Unlike persistence [11], there is no general efficient transformation from a data structure into a retroactive data structure, even partially retroactive with sublinear multiplicative overhead [7]. Nonetheless, several efficient retroactive data structures have been developed [8, 5, 15, 10, 23, 17, 24, 9].

Motivation: Full Retroactivity versus Partial Retroactivity

A key problem, posed in the original paper on retroactive data structures [7], is whether the full retroactivity requirement makes problems much harder than their partially retroactive counterpart. The same paper established an $O(\sqrt{m})$ multiplicative overhead transformation from a partially retroactive data structure to a fully retroactive one, where m is the number of updates in the timeline.

Prior to our work, there was no data structure problem whose best known fully retroactive version was substantially (more than a polylogarithmic factor) worse than the best known partially retroactive version. Priority queues used to be the only problem with a polynomial gap (between $O(\sqrt{m} \log m)$ and $O(\log m)$ time [7]). But at WADS 2015 it was shown that priority queues have a polylogarithmic fully retroactive solution [9], and more generally, any “time-fusable” data structure can be transformed from partial to full retroactivity with polylogarithmic overhead. Can this transformation be generalized to all data structures?
Our Results: Conditional Lower Bounds

We show that, perhaps surprisingly, the $O(\sqrt{m})$ overhead for transforming partial retroactivity into full retroactivity is nearly optimal for general data structure problems, conditioned on any of three well-believed conjectures:

- **Conjecture I.** In the Word-RAM model of computation with $O(\log n)$ bit words, it takes $2^{n-o(n)}$ time to solve $\text{SIZE}(2^{o(n)})$ Circuit SAT: decide whether a given n-input circuit C of size $2^{o(n)}$ is satisfiable.

- **Remark 1.** The problem $\text{SIZE}(2^{o(n)})$ Circuit SAT is far harder than CNF SAT, and the conjecture above is much weaker than the well-believed Strong Exponential Time Hypothesis (SETH) [21] which states that for every $\varepsilon > 0$, there is a clause length k such that k-SAT on n variables cannot be solved in $2^{(1-\varepsilon)n}$ time. Due to the Sparsification Lemma [21], the formulas that SETH concerns have linear size. It is much easier to believe that Circuit SAT for an unrestricted circuit (as opposed to a formula), of much larger, $2^{o(n)}$ size requires enumeration of all possible inputs.

- **Conjecture II.** Online $(\min,+)$ product between an integer $n \times n$ matrix and n length-n vectors requires $n^{3-o(1)}$ time in the word-RAM model of computation with $O(\log n)$ bit words. That is, given an integer matrix $A \in \mathbb{Z}^{n \times n}$, and n vectors v^1, v^2, \ldots, v^n that are revealed one by one, we wish to compute the $(\min,+)$-products

$$A \odot v := \left(\min_{k=1}^n (A_{1,k} + v_k), \min_{k=1}^n (A_{2,k} + v_k), \ldots, \min_{k=1}^n (A_{n,k} + v_k) \right)$$

between A and each of the v^i's. We get to access v^{i+1} only after we have output $A \odot v^i$. The conjecture asserts that the whole computation requires $n^{3-o(1)}$ time.

- **Remark 2.** The offline (and thus easier) version of the above problem is equivalent to calculating the $(\min,+)$-product of two matrices of size $n \times n$, which is known to be asymptotically equivalent to the famous APSP problem [12]: $(\min,+)$-product is in $O(n^3)$ time if and only if only if APSP is in $O(n^c)$ time, for any constant c.

The online $(\min,+)$-product conjecture is a natural generalization of the online Boolean Matrix-Vector Product conjecture of Henzinger et al. [19] that asserts that given a Boolean $n \times n$ matrix, multiplying it with n Boolean vectors online requires $n^{3-o(1)}$ time, in the Word-RAM model. There is no known relationship between the APSP conjecture and the Online Boolean Matrix-Vector Product conjecture, so one may be true even if the other fails. It is not hard to embed Boolean product into $(\min,+)$-product, and hence our conjecture is a weakening of both of these conjectures simultaneously, making ours very believable.

- **Conjecture III (3-SUM Conjecture).** There exists a constant q, so that given three size-n sets A, B, C of integers in $[-n^q, n^q]$, deciding whether there exist $a \in A, b \in B, c \in C$ such that $a + b + c = 0$ requires $n^{2-o(1)}$ time in the word-RAM model with $O(\log n)$ bit words.

- **Remark 3.** The 3-SUM Conjecture was the first attempt to address fine-grained complexity, back in 1995 [15]. By a standard hashing trick, we can assume that $q \leq 3 + \delta$ for any $\delta > 0.3$ [26]. It remains open despite several slightly subquadratic algorithms [4, 6, 18].

We can now state our lower bounds conditioned on the conjectures above, whose proofs are in Section 2. As in our conjectures above, throughout the paper, we assume that we are working in the word-RAM model with word size $w = \Theta(\log \max\{n, m\})$, where n denotes the size of the data structure problem and m denotes the length of the update sequence (timeline).
Theorem 1. There is a data structure problem that has an $O(n^{1+o(1)})$-time partially retroactive data structure, but conditioned on Conjecture I, requires $\Omega(n^{2-o(1)})$ time for fully retroactive queries when $m = \Theta(n^2)$.

Theorem 2. There is a data structure problem that has an $O(\log n)$-time partially retroactive data structure, but conditioned on Conjecture II, requires $\Omega(n^{1-o(1)})$ time for fully retroactive queries when $m = \Theta(n^2)$.

Theorem 3. There is a data structure problem that has an $O(\sqrt{n})$-time partially retroactive data structure, but conditioned on Conjecture III, requires $\Omega(n^{1-o(1)})$ time for fully retroactive queries when $m = \Theta(n)$.

Our Results: Matching Upper bound

The three theorems above show that improving the general dependence on \sqrt{m} is impossible based on any of these three conjectures. But we may hope to have a better data structure when $m \gg n^2$. In fact, we show in Section 3 that this is possible, for any “reasonable” data structure, by establishing the following theorem:

Theorem 4. Suppose a data structure of size n satisfies the following conditions:
1. There is a sequence of $O(n)$ queries to extract the whole state S from it.
2. Given a state S of size n, there is a sequence of $O(n)$ operations to update the data structure from empty initial state to S.
3. It is partially retroactive with operation time $T_{op}(n,m)$.

Then the corresponding problem has an amortized fully retroactive data structure with operation time $O \left(\min\{\sqrt{m}, n \log m\} \cdot T_{op}(n,m) \right)$.

Remark 4. The data structure of Theorem 4 is similar to the data structure described in [9, Section 2.2].

Combining the above four theorems, we conclude that under reasonable conditions, the optimal gap between partial and full retroactivity is $\Theta(\min\{\sqrt{m}, n\})$, up to $m^{o(1)}$ factors, for any n and m.

Related Work

The field of fine-grained complexity studies the exact running time for problems in P and beyond, and proves many lower bounds for data structure problems conditioned on various conjectures [25, 3, 19, 22, 1, 20, 16]. Look at the recent survey [26] for a summary of the known results in fine-grained complexity. We mention two of the related papers. Building on work by Patrascu [25] who focused on the 3-SUM conjecture, Abboud and Vassilevska W. [3] proved hardness for data structure problems under a variety of hypotheses: SETH, 3-SUM, APSP etc. [3] introduced SETH as a hardness hypothesis for data structure problems and obtained SETH-hardness for the following dynamic problems: maintaining under edge updates (insertions or deletions) the strongly connected components of a graph, the number of nodes reachable from a fixed source, a 1.3-approximation of the diameter of the graph, or whether there is $(s, t) \in S \times T$ such that s can reach t for two fixed node sets S and T. Henzinger et al. [19] introduces the Online Matrix-Vector Multiplication Conjecture, and shows that it implies tight hardness result for subgraph connectivity, Pagh’s problem, d-failure connectivity, decremental single-source shortest paths, and decremental transitive closure.

3 The state of a data structure is a description of all data it currently stores.

\section{Lower Bounds}

In this section, we first give a data structure framework, which eases the construction of our separation, and then we prove Theorem 1, Theorem 2, and Theorem 3.

\subsection{Data Structure Framework}

We present a data structure framework which turns out to be easy for partially retroactive data structures, but hard for their fully retroactive counterparts. In this framework, a data structure \(\mathcal{D} \) maintains several lists, and answers a certain question on them. The formal definition is given below.

\begin{definition}[Data Structure Problem \(\mathcal{P}_F \)]

In our data structure problem \(\mathcal{P}_F \), we are required to maintain a constant number of lists consisting of items from an entry set \(\mathcal{E} \). Denote the lists as \(L_1, L_2, \ldots, L_k \), and \(F \) is a function defined on these lists.

We can view each list \(L_i \) as a mapping from \(\mathbb{N} \) to \(\mathcal{E} \) and initially every list maps all indices to the idle symbol \(\perp \). We use \(L_i[a] \) to denote the \(a \)-th element of the list \(L_i \), and we measure the size of a list \(L \) (denoted by \(|L| \)) by the number of \(a \)'s such that \(L_i[a] \neq \perp \). The size of the data structure is then measured by sum of the sizes of all its lists.\(^4\)

There are two types of operations.

\begin{itemize}
 \item \textbf{set-element}(\(L_i, a, e \)): Set \(L_i[a] = e \).
 \item \textbf{F-evaluation}: Evaluate \(F \) on the current maintained lists \(L_1, L_2, \ldots, L_k \).
\end{itemize}

The key property for the problem \(\mathcal{P}_F \) is that, once we have a data structure \(\mathcal{D}_F \) for it, it supports partially retroactive queries with essentially no overhead.

\begin{lemma}

Suppose there is a data structure \(\mathcal{D}_F \) for the data structure problem \(\mathcal{P}_F \) with update time \(T_U \) and query time \(T_Q \). Then there is a partially retroactive data structure \(\mathcal{D}_F^{\text{part}} \) for problem \(\mathcal{P}_F \) with update time \(T_U + O(\log m) \) and query time \(T_Q \).

\end{lemma}

\begin{proof}

Our partially retroactive data structure \(\mathcal{D}_F^{\text{part}} \) simply simulates an instance of the regular structure \(\mathcal{D}_F \) which represents the current version of the data structure. Whenever there is an update in the history, it could be either inserting or deleting an operation \textbf{set-element}(\(L_i, a, e \)) at time \(t \), it only affects the \(a \)-th element in \(L_i \) of the current version of the data structure \(\mathcal{D}_F \).

Therefore, we can use a BST to organize all \textbf{set-element} operations on each location of each list in the chronological order. We update the corresponding BST on the \(a \)-th element of list \(L_i \) when dealing with insertion or deletion of an operation \textbf{set-element}(\(L_i, a, e \)) in the history. When the latest \textbf{set-element} changes in the BST (or the BST becomes empty), we update the corresponding value in \(\mathcal{D}_F \). And the query operation is equivalent to the same query operation on the current data structure \(\mathcal{D}_F \). The time cost is the usual time cost of BST.

\end{proof}

\subsection{Lower Bound from \(\text{SIZE}(2^{2^\alpha(n)}) \) Circuit SAT}

Now we are ready to prove our lower bounds. First we prove Theorem 1, which we repeat here for completeness:

\(^4\) A list can also be viewed as a dictionary over integers. We view them as lists because, in our construction, it is much more convenient to do so.
Reminder: Conjecture 1. In the Word-RAM model with $O(\log n)$ bit words, it takes $2^{n-o(n)}$ time to solve Circuit SAT on n-input circuits of size $2^{o(n)}$.

Reminder: Theorem 1. There is a data structure problem that has an $O(n^{1+o(1)})$-time partially retroactive data structure, but conditioned on Conjecture 1, requires $\Omega(n^{2-o(1)})$ time for fully retroactive queries when $m = \Theta(n^2)$.

Proof. Let $d = n^{o(1)}$. We use the entry set

$$\mathcal{E} := \mathcal{C}_d \times \{0, 1\}^{\leq d},$$

where \mathcal{C}_d is the set of descriptions of all circuits of size at most d, and $\{0, 1\}^{\leq d}$ is the set of binary strings of length at most d. These descriptions take at most $O(\text{poly}(d)) = n^{o(1)}$ bits. Therefore, an item from \mathcal{E} consists of $n^{o(1)}$ bits. Denote this number by d'.

Consider the data structure problem $\mathcal{P}_{F^{(\text{SAT})}}$ with respect to two lists $\mathcal{L}_1, \mathcal{L}_2$ of items in \mathcal{E} and the function $F^{(\text{SAT})}$ defined on them as follows. $F^{(\text{SAT})}(\mathcal{L}_1, \mathcal{L}_2) = 1$ if the following holds:

There exist a and b with $\mathcal{L}_1[a] = (C_1, x_1) \neq \bot$ and $\mathcal{L}_2[b] = (C_2, x_2) \neq \bot$ such that

- $C_1 = C_2$;
- C_2 is a valid description of a circuit of size at most d with exactly $|x_1| + |x_2|$ bits of input;
- $C_2(x_1, x_2) = 1$.

$F^{(\text{SAT})}(\mathcal{L}_1, \mathcal{L}_2) = 0$ otherwise. We say a pair (C_1, x_1) and (C_2, x_2) is good if they satisfy the conditions above.

Let $\ell := (|\mathcal{L}_1| + |\mathcal{L}_2|)$. The size of the whole structure is $n = d'\ell$.

Partially Retroactive Upper Bound. In order to maintain $F^{(\text{SAT})}(\mathcal{L}_1, \mathcal{L}_2)$, we keep a counter n_{SAT} recording the number of pairs a and b such that $\mathcal{L}_1[a]$ and $\mathcal{L}_2[b]$ is a good pair. Whenever we modify an element in lists \mathcal{L}_1 or \mathcal{L}_2, it takes $O(n^{1+o(1)})$ time to update the counter n_{SAT}.

Now, since we have an $O(n^{1+o(1)})$ update time algorithm for $\mathcal{P}_{F^{(\text{SAT})}}$, by Lemma 1, it extends to an algorithm for the partially retroactive version.

Fully Retroactive Lower Bound. Given a circuit C of size $2^{o(u)}$ with u inputs. Let $\ell = 2^{u/4}$ be the size of the lists in the data structure (assuming u is divisible by 4 for simplicity).

Let A and B be two identical lists of entries in \mathcal{E} with size $2^{u/2} = \ell^2$, such that the i-th element of A and B is (C, w_i), where w_i is the i-th length $u/2$ binary string in lexicographic order. Then we divide A and B into $\ell = 2^{u/4}$ groups of equal size, and denote them by A_1, A_2, \ldots, A_ℓ and B_1, B_2, \ldots, B_ℓ correspondingly, where each A_i and each B_i is a list of size ℓ.

The circuit C is satisfiable if and only if there exists $a \in A$ and $b \in B$ such that a and b is a good pair. Consider the following operation sequences:

- First, for each $k \in [\ell]$, we add an operation set-element(\mathcal{L}_1, k, \bot). We denote the operation time by t_k.
- Next for each $j \in [\ell]$, we add an operation set-element($\mathcal{L}_2, k, B_j[k]$) for each $k \in [\ell]$. We denote the time right after adding the last operation for each j (set-element($\mathcal{L}_2, \ell, B_j[\ell]$)) by q_j.
Now, for each \(i \in [t] \), we replace the operation on time \(t_k \) by an operation \(\text{set-element}(\mathcal{L}_1, k, A_1[k]) \) for each \(k \in [t] \), and after that, we make fully retroactive query \(F^{(\text{SAT})}-\text{evaluation} \) at time \(q_j \) for each \(j \in [t] \). From the definition of \(F^{(\text{SAT})} \), it tells us whether there exists \(a \in A_1, b \in B_2 \) such that \(a \) and \(b \) is a good pair, for each \(i, j \in [t] \).

The whole procedure consists of \(m = \Theta(t^3) = O(n^2) \) operations. Conditioning on Conjecture I, the whole sequence takes at least \(2^{n(1-o(1))} = 2^{t(1-o(1))} = n^{1-o(1)} \) time, which means a fully retroactive operation takes at least amortized \(\Omega(n^{2-o(1)}) \) time, and completes the proof.

2.3 Lower Bounds from Online \((\min, +)\)-product

Next we prove Theorem 2, which we recap here for completeness:

▶ Reminder: Conjecture II. Online \((\min, +)\) product between an integer \(n \times n \) matrix and \(n \) length-\(n \) vectors requires \(n^{3-o(1)} \) time in the word-RAM model with \(O(\log n) \) bit words. That is, given an integer matrix \(A \in \mathbb{Z}^{n \times n} \), and \(n \) vectors \(v^1, v^2, \ldots, v^n \) which are revealed one by one, we wish to compute the \((\min, +)\)-product

\[
A \odot v := \left(\min_{k=1}^{n}(A_{1,k} + v_k), \min_{k=1}^{n}(A_{2,k} + v_k), \ldots, \min_{k=1}^{n}(A_{n,k} + v_k) \right)
\]

between \(A \) and each of the \(v^i \)'s. We get to access \(v^{i+1} \) only after we have output \(A \odot v^i \). The conjecture asserts that the whole computation requires \(n^{3-o(1)} \) time.

▶ Reminder: Theorem 2. There is a data structure problem that has an \(O(\log n) \)-time partially retroactive data structure, but conditioned on Conjecture II, requires \(\Omega(n^{1-o(1)}) \) time for fully retroactive queries when \(m = \Theta(n^2) \).

Proof. Let \(c \) be a constant such that all entries from \(A \) and all \(v^i \)'s lie in \([0, n^c]\).

Now, consider the data structure problem \(\mathcal{P}_{F^{(\min, +)}} \) with respect to two lists \(\mathcal{L}_1, \mathcal{L}_2 \) and the function \(F^{(\min, +)} \) defined on them as

\[
F^{(\min, +)}(\mathcal{L}_1, \mathcal{L}_2) := \min_{a: \mathcal{L}_1[a] \not\perp \mathcal{L}_2[a]} (\mathcal{L}_1[a] + \mathcal{L}_2[a]).
\]

The entry set \(\mathcal{E} \) here is the integers in \([0, n^c]\).

Partially Retroactive Upper Bound. Clearly, the operations in \(\mathcal{P}_{F^{(\min, +)}} \) can be supported in \(O(\text{polylog}(n)) \) time: we use a priority queue to maintain the sums \(\mathcal{L}_1[a] + \mathcal{L}_2[a] \) for all the valid \(a \)'s, and update the priority queue correspondingly after each \(\text{set-element} \) operations. Therefore, by Lemma 1, we know the update/query operations in the partially retroactive version of \(\mathcal{P}_{F^{(\min, +)}} \) can be supported in \(O(\text{polylog}(n) + \log m) \) time.

Fully Retroactive Lower Bound. Let \(a_1, a_2, \ldots, a_n \) be the \(n \) rows of \(A \), and \(v \) be a vector. Computing the \((\min, +)\) product of \(A \) and \(v \) is equivalent to compute

\[
(a_i \odot v) := \min_{k=1}^{n} (a_{i,k} + v_k)
\]

for each \(i \in [n] \).

We are going to show that a fully retroactive algorithm for \(\mathcal{P}_{F^{(\min, +)}} \) can be utilized to compute \((a_i \odot v^j) \) for each \(i, j \in [n] \) in an online fashion.

Consider the following operation sequences. First we add \(\text{set-element}(\mathcal{L}_1, k, 0) \) for each \(k \in [n] \); then for each \(j \in [n] \), we add \(\text{set-element}(\mathcal{L}_2, k, a_{j,k}) \) for each \(k \in [n] \). We use \(t_j \) to
denote the time right after adding the operation \textit{set-element}(\mathcal{L}_2, n, a_j, n), i.e., the time we have just set \mathcal{L}_2 to represent vector \(a_j\).

Then for each \(i \in [n]\), we delete the first \(n\) operations in the history (that is, we clear all the \textit{set-element} operations on \mathcal{L}_1); and then we add \textit{set-element}(\mathcal{L}_1, k, v^i_k) for each \(k \in [n]\) at the beginning of the operation sequence (that is, we set \mathcal{L}_1 to represent the vector \(v^i\)); next we make a fully retroactive query \(F(\min^+, \text{-})\)-evaluation at the time \(t_j\) for each \(j \in [n]\). It is easy to see that querying at time \(t_j\) gives us the value of \((a_j \diamond v^i)\). So, after performing the above procedure for \(v^i\), we have calculated the \((\min^+, \text{+})\) product between \(A\) and \(v^i\).

The size of data structure is \(\Theta(n)\), and there are \(m = \Theta(n^2)\) operations in total. Hence, conditioned on Conjecture II, any fully retroactive data structure running on the above algorithm takes at least amortized \(n^{1-o(1)}\) time for either update or query operation.

2.4 Lower Bounds from 3-SUM

Next, we prove Theorem 3, which we recap here for completeness:

- **Reminder: Conjecture III (3-SUM Conjecture).** There is a constant \(q\) such that, given three size-\(n\) sets \(A, B, C\) of integers in \([-n^q, n^q]\), deciding whether there exist \(a \in A, b \in B, c \in C\) such that \(a + b + c = 0\) requires \(n^{2-o(1)}\) time in the word-RAM model with \(O(\log n)\) bit words.

- **Reminder: Theorem 3.** There is a data structure problem that has an \(O(\sqrt{n})\)-time partially retroactive data structure, but conditioned on Conjecture III, requires \(\Omega(n^{1-o(1)})\) time for fully retroactive queries when \(m = \Theta(n)\).

Proof. Consider the data structure problem \(\mathcal{P}_{F(3SUM)}\) with respect to three lists \(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3\) and the function \(F(\text{3SUM})\) defined on them as follows:

\[
F(\text{3SUM})(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3) := \begin{cases}
1 & |\mathcal{L}_2|^2 \leq |\mathcal{L}_1|, |\mathcal{L}_3|^2 \leq |\mathcal{L}_1|, \text{ and there exist } a, b, c \text{ such that } \\
0 & \mathcal{L}_1[a] \neq \perp, \mathcal{L}_2[b] \neq \perp, \mathcal{L}_3[c] \neq \perp \text{ and } |\mathcal{L}_1[a] + \mathcal{L}_2[b] + \mathcal{L}_3[c]| = 0; \\
\end{cases}
\]

Let \(n := \sum_{i=1}^{3} |\mathcal{L}_i|\) be size of the whole structure, and \(n_i := |\mathcal{L}_i|\).

Partially Retroactive Upper Bound. We use \(\tilde{\mathcal{L}}_2\) (resp. \(\tilde{\mathcal{L}}_3\)) to denote the sublists consisting of the first (at most) \(\sqrt{n}\) elements of \(\mathcal{L}_2\) (resp. \(\mathcal{L}_3\)). Then by maintaining a BST for each list, an operation on \(\mathcal{L}_2\) (resp. \(\mathcal{L}_3\)) can be easily reduced to at most one operation on \(\mathcal{L}_2\) (resp. \(\tilde{\mathcal{L}}_3\)). Since whenever \(\mathcal{L}_2 \neq \tilde{\mathcal{L}}_2\) or \(\tilde{\mathcal{L}}_3 \neq \mathcal{L}_3\), \(F(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3)\) is defined to be zero, we can pretend to work with \(\tilde{\mathcal{L}}_2\) and \(\tilde{\mathcal{L}}_3\).

We build a hash table \(\mathcal{H}\) storing all the elements in \(\mathcal{L}_1\), and every value of the form \(-a - b\) for \(a \in \tilde{\mathcal{L}}_2, b \in \tilde{\mathcal{L}}_3\). Using this table, we can count and maintain the number of the triples \((a, b, c)\) such that \(\mathcal{L}_1[a] + \tilde{\mathcal{L}}_2[b] + \tilde{\mathcal{L}}_3[c] = 0\). We denote this number by \(n_{\text{triple}}\).

Whenever we modify the list \(\mathcal{L}_1\), we make the corresponding change on \(\mathcal{H}\). This may also cause \(O(1)\) additional operations on \(\tilde{\mathcal{L}}_2\) and \(\tilde{\mathcal{L}}_3\), as \(n_{\text{triple}}\) can be larger or smaller. And when we modify the list \(\tilde{\mathcal{L}}_2\) or \(\tilde{\mathcal{L}}_3\), this causes updating at most \(max(|\tilde{\mathcal{L}}_2|, |\tilde{\mathcal{L}}_3|) = O(\sqrt{n})\) values in \(\mathcal{H}\).

Since we have an \(O(\sqrt{n})\) update time algorithm for \(\mathcal{P}_{F(3SUM)}\), by Lemma 1, it extends to an algorithm for the partially retroactive version.

Fully Retroactive Lower Bound. Let \(A, B, C\) be three integer lists of size \(n\). For convenience we assume that \(n\) is a square number. We divide \(B\) and \(C\) into \(\sqrt{n}\) groups of
equal size, and denote them by \(B_1, B_2, \ldots, B_{\sqrt{n}} \) and \(C_1, C_2, \ldots, C_{\sqrt{n}} \) correspondingly. Then each \(B_i \) and each \(C_i \) is a list of size \(\sqrt{n} \).

Consider the following operation sequence.

- First, for each \(i \in [n] \), we add an operation \(\text{set-element}(L_1, i, A[i]) \), that is, we set the list \(L_1 \) to represent the set \(A \); then for each \(k \in [\sqrt{n}] \), we add an operation \(\text{set-element}(L_2, k, 0) \), whose operation time is denoted by \(t_k \).
- Next for each \(j \in [\sqrt{n}] \), we add an operation \(\text{set-element}(L_3, k, C_j[k]) \) for each \(k \in [\sqrt{n}] \). We denote the time right after adding the operation \(\text{set-element}(L_3, \sqrt{n}, C_j[\sqrt{n}]) \) as time \(q_j \).
- Now, for each \(i \in [\sqrt{n}] \), we replace the operation on time \(t_k \) by an operation \(\text{set-element}(L_2, k, B_i[k]) \). After that, we make a fully retroactive query \(F^{3\text{SUM}}\text{-evaluation} \) at time \(q_j \) for each \(j \in [\sqrt{n}] \). From the definition of \(F^{3\text{SUM}} \), the queries tell us whether there exists \(a \in A, b \in B_i, c \in C_j \) such that \(a + b + c = 0 \) for each \(i, j \in [\sqrt{n}] \), and thus solve the 3SUM problem.

The data structure above has size \(\Theta(n) \), and the whole procedure consists of \(m = \Theta(n) \) operations. Therefore, conditioned on Conjecture III, either update or query for a fully retroactive data structure for problem \(\mathcal{F}_{F^{3\text{SUM}}} \) takes amortized \(\Omega(n^{1-o(1)}) \) time.

3 \quad Upper Bounds

In this section, we prove Theorem 4:

\begin{itemize}
 \item **Reminder: Theorem 4.** Suppose a data structure of size \(n \) satisfies the following conditions:
 \begin{enumerate}
 \item There is a sequence of \(O(n) \) queries to extract the whole state \(S \) from it.
 \item Given a state \(S \) of size \(n \), there is a sequence of \(O(n) \) operations to update the data structure from empty initial state to \(S \).
 \item It is partially retroactive with operation time \(T_{op}(n, m) \).
 \end{enumerate}
 Then the corresponding problem has an amortized fully retroactive data structure with operation time \(O \left(\min(\sqrt{n}, n \log m) \cdot T_{op}(n, m) \right) \).
\end{itemize}

Proof. We use a weight-balanced binary tree (WBT) \(T \) to maintain the whole operation sequence \[14\]. The subtree of each node \(u \) corresponds to an interval of operations \(S_u \) in the whole operation sequence. We can build a partially retroactive data structure \(D_u \) on \(S_u \) as augmented information in node \(u \). One property of WBT is that when we insert or delete its nodes, the amortized total number of element changes to all \(S_u \) is only \(O(\log m) \). More formally, if \(S_u \) is the set of operations before a node insertion or deletion, and \(S_u' \) is the set of operations after the insertion or deletion, then WBT ensures

\[
\sum_u |S_u \setminus S_u'| + |S_u' \setminus S_u|
\]

is amortized \(O(\log m) \). For each element change in \(S_u \), we can update \(D_u \) using the partially retroactive data structure in \(O(T_{op}(n, m) \cdot \log m) \) amortized time per insert/delete of an operation.

For each fully retroactive query, we first extract the corresponding prefix of the operation sequence from the WBT. By properties of WBT, in \(O(\log m) \) time, we can get \(k = O(\log m) \) nodes, \(u_1, u_2, \ldots, u_k \), such that the concatenation of these \(S_u \)'s is exactly the prefix we are asking. Next we maintain a data structure state \(S \) initialized as the empty state. We go through each \(u_i \) in order: first append \(O(n) \) operations at the beginning of \(D_u \) to set the initial state inside \(D_u \) to be \(S \), and then make \(O(n) \) queries on \(D_u \), to extract its final state,
and set S to be that state. By a simple induction, we can see that after we finished processing node u_i, the final state of D_u corresponds to the state resulting from the concatenation of $S_{u_1}, S_{u_2}, \ldots, S_{u_i}$. Therefore, we can then query D_{u_k} to get the answer we want. Finally, we delete all the operations we added in those D_u, so they can be used for the future queries. To summarize, we invoke partially retroactive update/query $O(n \cdot \log m)$ times, and hence the whole query takes $O(n \cdot \log m \cdot T_{op}(n,m))$ time.

Demaine et al. [7] showed a reduction with $O(\sqrt{m})$ overhead. Roughly, their transformation maintains \sqrt{m} equally distributed checkpoints, and for each checkpoint, they maintain a partially retroactive data structure for the prefix up to that checkpoint. For update, they need to update all the \sqrt{m} partially retroactive data structures; for query of a prefix, they first find the closest checkpoint, adding or deleting operations to this checkpoint in order for it to match the prefix, and then do the query. For both update and query, there are $O(\sqrt{m})$ calls to the partially retroactive data structure, hence the $O(\sqrt{m})$ overhead.

Combining these two transformations gives an $O(\min\{\sqrt{m}, n \cdot \log m\})$ overhead. There is a subtle issue here as this requires us to know n and m beforehand. We can avoid that by using the standard technique that maintains two structures D_1 and D_2 simultaneously, one with \sqrt{m} overhead and one with $n \cdot \log m$ overhead. We simulate D_1 and D_2 in an interleaving fashion, and answer the query as soon as one of them gives its answer.

\section*{4 Discussion}

Many lower bounds for algorithm problems are based on plausible conjectures from fine-grained complexity theory. Besides the three canonical ones (SETH, APSP, 3-SUM) mentioned above, some interesting hardness candidates include Boolean Matrix Multiplication [27], Online Matrix Vector Multiplication [19], and the Triangle Collection problem [2]. Their relationship and applications are discussed in detail in [26].

Our lower bound constructions reveal that fully retroactive queries facilitate batched pair evaluation. We believe this technique can prove useful for other data structure lower bounds, especially dynamic ones. Some examples include the total update time for partially-dynamicalgorithms, worst-case update time, query/update time tradeoffs [19], and space/time tradeoffs [16].

\begin{thebibliography}{9}
\end{thebibliography}

Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

