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Abstract
In this paper, we study the question of hardness-randomness tradeoffs for bounded depth arith-
metic circuits. We show that if there is a family of explicit polynomials {fn}, where fn is of
degree O(log2 n/ log2 logn) in n variables such that fn cannot be computed by a depth ∆ arith-
metic circuits of size poly(n), then there is a deterministic sub-exponential time algorithm for
polynomial identity testing of arithmetic circuits of depth ∆− 5.

This is incomparable to a beautiful result of Dvir et al.[SICOMP, 2009], where they showed
that super-polynomial lower bounds for depth ∆ circuits for any explicit family of polynomials (of
potentially high degree) implies sub-exponential time deterministic PIT for depth ∆− 5 circuits
of bounded individual degree. Thus, we remove the “bounded individual degree” condition in the
work of Dvir et al. at the cost of strengthening the hardness assumption to hold for polynomials
of low degree.

The key technical ingredient of our proof is the following property of roots of polynomials
computable by a bounded depth arithmetic circuit : if f(x1, x2, . . . , xn) and P (x1, x2, . . . , xn, y)
are polynomials of degree d and r respectively, such that P can be computed by a circuit of
size s and depth ∆ and P (x1, x2, . . . , xn, f) ≡ 0, then, f can be computed by a circuit of size
poly(n, s, r, dO(

√
d)) and depth ∆ + 3. In comparison, Dvir et al. showed that f can be computed

by a circuit of depth ∆ + 3 and size poly(n, s, r, dt), where t is the degree of P in y. Thus, the
size upper bound in the work of Dvir et al. is non-trivial when t is small but d could be large,
whereas our size upper bound is non-trivial when d is small, but t could be large.
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13:2 Hardness vs Randomness for Bounded Depth Arithmetic Circuits

1 Introduction

Arithmetic circuits are one of the most natural and fundamental models of algebraic com-
putation. Formally, an arithmetic circuit Ψ over a field F and variables ~x = (x1, x2, . . . , xn)
is a directed acyclic graph, with the gates of in-degree zero (called leaves) being labeled by
elements in F and variables in ~x, and the internal nodes being labeled by + (sum gates) or
× (product gates). The vertices of out-degree zero in Ψ are called output gates. The circuit
Ψ computes a polynomial in F[~x] in a natural way : the leaves compute the polynomial
equal to its label. A sum gate computes the polynomial equal to the sum of the polynomials
computed at its children, while a product gate computes the polynomial equal to the product
of the polynomials computed at its children. Arithmetic circuits can be thought of as
algebraic analog of Boolean circuits, and provide a succinct representation of multivariate
polynomials, and are natural objects of study in Algebraic Complexity theory. Two of the
most fundamental problems of interest in this area of research are the following.

Lower Bounds. To show that there are explicit polynomial families which are hard, i.e.
they cannot be computed by arithmetic circuits whose size is polynomial in the number
of variables.
Polynomial Identity Testing (PIT). To design an efficient deterministic algorithm
which takes as input an arithmetic circuit C, and outputs if it is identically zero or not.

It is easy to show by an appropriate counting argument that a random polynomial of degree
d in n variables cannot be computed by an arithmetic circuit of size poly(n, d), but no such
explicit1 polynomial families are known. Similarly, a randomized algorithm for the PIT
question immediately follows from the classical Schwartz-Zippel lemma (see Lemma 15). The
key challenge is to accomplish this task without using randomness.

The progress on these questions for general arithmetic circuits has been painfully slow.
To date, there are no non-trivial2 algorithms for PIT for general arithmetic circuits, while
the best known lower bound, due to Bauer and Strassen [2], is a slightly superlinear lower
bound Ω(n logn), established over three decades ago. In fact, even for the class of bounded
depth arithmetic circuits, no non-trivial deterministic PIT algorithms are known, and the
best lower bounds known are just slightly superlinear [22].

In a very influential work, Kabanets and Impagliazzo [10] showed that the questions of
derandomizing PIT and that of proving lower bounds for arithmetic circuits are equivalent
in some sense. Their result adapts the Hardness vs Randomness framework of Nisan and
Wigderson [18] to the algebraic setting. In their proof, Kabanets and Impagliazzo combine the
use of Nisan-Wigderson generator with Kaltofen’s result that all factors of a low degree (degree
poly(n)) polynomial with poly(n) sized circuit are computable by size poly(n) circuits [12].
They showed that given an explicit family of hard polynomials, one can obtain a non-trivial3
deterministic algorithm for PIT.

The extremely slow progress on the lower bound and PIT questions for general circuits
has led to a lot of attention on understanding these questions for more structured sub-classes
of arithmetic circuits. Arithmetic formula [11], algebraic branching programs [15], multilinear
circuits [21, 25, 24], and constant depth arithmetic circuits [19, 22, 9, 7, 17] are some examples
of such circuit classes. A natural question is to ask if the equivalence of PIT and lower bounds

1 See Definition 10 for a formal definition.
2 Here, non-trivial means anything which is better than the brute force algorithm for general arithmetic

circuits given by the Schwartz-Zippel lemma.
3 Here, non-trivial means subexponential time, or quasipolynomial time, based on the hardness assumption.
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also carries over to these more structured circuit classes. For example, does super-polynomial
lower bounds for arithmetic formulas imply non-trivial deterministic algorithms for PIT for
arithmetic formulas, and vice-versa?

The answers to these questions do not follow directly from the results in [10]; unlike
general arithmetic circuits, none of these sub-classes are known to be closed under factoring,
i.e., given a polynomial P which has a small formula (or bounded depth circuit), it is
not known whether the factors of P also have small formulas (or bounded depth circuits).
Recently, there has been some progress on these questions (see [20, 4]), but in general, these
questions of being closed under factoring for arithmetic formulas and bounded depth circuits
continue to remain open.

1.1 Bounded Depth Circuits
Dvir, Shpilka and Yehudayoff [5] initiated the study of this question of equivalence of PIT
and lower bounds for bounded depth circuits. Dvir et al. observed that a part of the proof
in [10] can be generalized to show that non-trivial PIT for bounded depth circuits implies
lower bounds for such circuits. For the converse, the authors only showed a weaker statement;
they proved that super-polynomial lower bounds for depth ∆ arithmetic circuit implies
non-trivial PIT for depth ∆ − 5 arithmetic circuits with bounded individual degree. The
bounded individual degree condition is a bit unsatisfying, and so, the following question is of
fundamental interest.

I Question 1. Does a super-polynomial lower bound for depth ∆ arithmetic circuits imply
non-trivial deterministic PIT for depth ∆′ arithmetic circuits4? In particular, can we get rid
of the “bounded individual degree” condition from the results in [5]?

In this paper, we partially answer Question 1 in the affirmative. Informally, we prove the
following theorem.

I Theorem 2 (Informal). A super-polynomial lower bound for depth ∆ arithmetic circuits
for an explicit family of low degree polynomials implies non-trivial deterministic PIT for
depth ∆− 5 arithmetic circuits.

Here, by low degree polynomials, we mean polynomials in n variables and degree at most
O(log2 n/ log2 logn). Thus, by strengthening the hardness hypothesis in [5], we remove the
bounded individual degree restriction from the implication. We now formally state our results
and elaborate further how they compare with prior work.

1.2 Our Results
We start by stating our main theorem, which is a formal restatement of Theorem 2.

I Theorem 3. Let ∆ ≥ 6 be a positive integer, and let ε > 0 be any real number. Let {fm}
be a family of explicit polynomials such that fm is an m-variate multilinear polynomial of
degree d = O

(
log2m/log2 logm

)
which cannot be computed by an arithmetic circuit of depth

∆ and size poly(m). Then, there is a deterministic algorithm, which, given as input a circuit
C ∈ C[~x] of size s, depth ∆− 5 and degree D on n variables, runs in time (snD)O(n2ε) and
determines if the polynomial computed by C is identically zero.

4 Here, we think of ∆′ as ∆ − O(1).

CCC 2018
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Some remarks on the above theorem statement.
I Remark. Our algorithm works as long as the characteristic of the underlying field is
sufficiently large or zero, but for simplicity, the presentation in this paper just focuses on the
field Q of rational numbers.
I Remark. The bound d ≤ log2m/ log2 logm can be relaxed to d ≤ logk m/ logk logm for
any positive integer k, but we would need lower bounds for depth ∆ + 2k + 2 to be able to
do PIT for depth ∆ circuits. We point this difference out in the proof of Theorem 5, but do
not dwell further on this.
I Remark. The running time of the PIT algorithm gets better as the lower bound gets
stronger. Also, the constraint on the degree of the hard polynomial family can be further
relaxed a bit, at the cost of strengthening the hardness assumption, and increasing the
running time of the resulting PIT algorithm5. We leave it to the interested reader to work
out these details.
I Remark. In general, explicit polynomial families do not have to be multilinear. But,
if we have a hard polynomial which is not multilinear, and has a polynomial degree in
each variable, we can derive from it an explicit hard multilinear polynomial with only a
polynomial deterioration in the hardness parameters. More precisely, replacing xr

i , for r > 1
with yr0

i0
· . . . · yrs

is
. where (r0 . . . rs) is the binary representation of r, gives a new multilinear

polynomial in a slightly larger number of variables. This polynomial is at least as hard as
the original polynomial which can be recovered from it by the substitution yij = x2j

i .
As discussed earlier, Theorem 3 is closely related to the main result in [5]. We now discuss

their similarities and differences.

Comparison with [5]

Degree constraint on the hard polynomial. While Theorem 3 requires that the
hard polynomial on m variables has degree at most O(log2m/ log2 logm), Dvir et al. [5]
did not have a similar constraint.
Individual degree constraint for PIT. In [5], the authors get PIT for low depth
circuits with bounded individual degree, whereas our Theorem 3 does not make any
assumptions on individual degrees in this context.

As we alluded to earlier, the key technical challenge for extending the known hardness-
randomness tradeoffs for general circuits [10] to restricted circuit classes like formulas or
bounded depth circuits comes from the absence of an analog of Kaltofen’s result [12] about
closure under factoring for these restricted classes. More specifically, understanding the
following questions seems necessary for adapting the proof strategy in [10] to other restricted
classes of circuits.

I Question 4. Let P (~x, y) ∈ F[~x, y] be a polynomial of degree r and let f ∈ F[~x] be a
polynomial of degree d such that P (~x, f) ≡ 0. Assuming P can be computed by a low depth
circuit (or arithmetic formula) of size at most s, can f be computed by a low depth circuit
(or arithmetic formula) of size at most poly(s, n, d, r)?

In [5], the authors partially answer this question by showing that under the hypothesis
of Question 4, the polynomial f can be computed by a low depth circuit of size at most

5 If we assume a sub-exponential lower bound, then we can get a quasi-polynomial time PIT. Note that
this is the parameter region used in [5]
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poly(s, r, ddegy(P )). Thus, for the case of polynomials P which have small individual degree
with respect to y, they answer the question in affirmative.

Our main technical observation is the following result, which gives an upper bound on
the low depth circuit complexity of roots of low degree of a multivariate polynomial which
has a small low depth circuit.

I Theorem 5. Let P ∈ F[~x, y] be a polynomial of degree at most r in n+ 1 variables that
can be computed by an arithmetic circuit of size s of depth at most ∆. Let f ∈ F[~x] be a
polynomial of degree at most d such that

P (~x, f) = 0 .

Then, f can be computed by a circuit of depth at most ∆+3 and size at most O((srn)10dO(
√

d)).

1.3 Proof Overview
The proof of Theorem 3 is very much along the lines of the proofs of similar results in [10]
and [5]. In particular, all our technical contributions are confined to the proof of Theorem 5,
which when combined with the standard machinery of Nisan-Wigderson designs yields
Theorem 3. Our proof of Theorem 5 also mirrors the proof of the analogous theorem about
the structure of roots in [5]. We now outline the main steps, and point out the differences
between the proofs.

The first step in the proof is to show that one can use the standard Hensel Lifting to
iteratively obtain better approximations of the root f given a circuit for P (~x, y). More
formally, in the kth step, we start with a polynomial hk which agrees with f on all monomials
of degree at most k, and use it to obtain a polynomial hk+1 which agrees with f on all
monomials of degree at most k + 1. Moreover, the proof shows that if hk has a small circuit,
then hk+1 has a circuit which is only slightly larger than that of hk. This iterative process
starts with the constant term of f , which trivially has a small circuit. Thus, after d iterations,
we have a polynomial hd such that the root f is the sum of the homogeneous components of
hd of degree at most d. This lifting step is exactly the same as that in [5] or in some of the
earlier works on polynomial factorization [3], and is formally stated in Lemma 16.

The key insight of Dvir et al. [5] was that if degy(P ) = t, and C0(~x), C1(~x), . . . , Ct(~x) are
polynomials such that P (~x, y) =

∑t
i=1 Ci(~x)yt, then for every k ∈ {0, 1, . . . , d}, we have a

polynomial Bk of degree at most k such that

hk(~x) = Bk(C0(~x), C1(~x), . . . , Ct(~x)) .

Now, consider the case when t � n (for instance t = O(1)). It follows from standard
interpolation results for low depth circuits (see Lemma 12) that each of the polynomials
Ci(~x) has a circuit of size O(sr) and depth ∆ since P has a polynomial of size s and depth
∆. Thus, hd(~x) can be written as a sum of at most

(
d+t

t

)
= O(dt) monomials if we treat

each Ci as a formal variable. Plugging in the small depth ∆ circuits for each Ci, and
standard interpolation (Lemma 12), it follows that f has a circuit of size poly(s, n, dt) of
depth ∆ +O(1).

Observe that this size bound of poly(s, n, dt) is small only when t is small. For instance,
when t > n, this bound becomes trivial. Our key observation is that independently of t, there
is a set of d + 1 polynomials g0(~x), g1(~x), . . . , gd(~x) of degree at most d, and polynomials
A0, A1, . . . , Ak on d+ 1 variables such that for every k ∈ {0, 1, . . . , d},

hk(~x) = Ak(g0(~x), g1(~x), . . . , gd(~x)) .

CCC 2018
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Moreover, for every k, Ak has degree at most k and is computable by a circuit of size at most
O(d3). This observation essentially decouples the number of generators from the individual
degree of P in y, and is formally stated as Lemma 18. Also, each of these generators gi can be
computed by a circuit of size poly(s, r) and depth ∆. Thus, expressing Ad(z0, z1, . . . , zd) as a
sum of monomials, and then composing this representation with the circuits for g0, g1, . . . , gd

would give us a circuit of size poly(s, n, r, d, 4d) of depth ∆ +O(1). To get a sub-exponential
dependence on d in the size, we do not write Ad(z0, z1, . . . , zd) as

∑∏
circuit of size O(4d),

but instead express it as a
∑∏∑

circuit of size at most dO(
√

d), using the depth reduction
result of [8]6.

One point to note is that just from Kaltofen’s result [12], it follows that f has an arithmetic
circuit7 of size poly(n). Thus, from Theorem 9, it follows that f has a circuit of depth-3 of
size at most nO(

√
d). The key advantage of Theorem 5 over this bound is that the exponential

term is dO(
√

d) and not of the form ndε . For d ≤ log2 n/ log2 logn, dO(
√

d) is bounded by a
polynomial in n and so the final bound is meaningful.

We end this section with a short discussion on the low degree condition in the hypothesis
of Theorem 3.

1.4 The Low Degree Condition
An intriguing question is to understand how restrictive the “low degree” condition in the
hardness assumption of Theorem 3 is. More formally, is the question of proving super-
polynomial lower bounds for constant depth circuits for an explicit polynomial family of low
degree much harder than the question of proving super-polynomial lower bound for constant
depth circuits for an explicit polynomial family of potentially larger degree 8? Currently, we
do not even know quadratic lower bounds for arithmetic circuits of constant depth, and so,
perhaps we are quite far from understanding this question.

It is, however, easy to see that some of the known lower bounds for low depth circuits
carries over to the low degree regime. For instance, the proofs of super-polynomial lower
bounds for homogeneous depth-3 circuits by Nisan and Wigderson [19], super-polynomial
lower bounds for homogeneous depth-4 circuits based on the idea of shifted partial derivatives
(see for example, [9, 13, 7, 17]) and super-linear lower bound due to Raz [22] do not require
the degree of the hard function to be large.

There are some known exceptions to this. For instance, lower bounds for homogeneous
depth-5 circuits over finite fields due to Kumar and Saptharishi [16] are of the form 2Ω(

√
d)

and become trivial if d < log2 n. Another result which distinguishes the low degree and
high degree regime is a separation between homogeneous depth-5 and homogeneous depth-4
circuit [16] which is only known to be true in the low degree regime (degree less than log2 n).

Another result of relevance is a result of Raz [23], which shows that constructing an
explicit family of tensors Tn : [n]d → F, of rank at least nd(1−o(1)) implies super-polynomial
lower bound for arithmetic formulas, provided d ≤ O(logn/ log logn). As far as we know,
we do not know of such connections in the regime of high degree.

One prominent family of lower bound results which do not seem to generalize to this
low degree regime are the super-polynomial lower bounds for multilinear formulas [21], and
multilinear constant depth circuits [25]. In fact, the results in [23] show that super-polynomial

6 See Theorem 9 for a formal statement of this result.
7 Of potentially very large depth.
8 In general, the degree only has to be upper bounded by a polynomial function in the number of variables.
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lower bounds for set multilinear formulas for polynomials of degree at most O(logn/ log logn)
implies super-polynomial lower bounds for general arithmetic formulas.

In the context of polynomial factorization, low degree factors of polynomials with small
circuits have been considered before. For instance, Forbes [6] gave a quasi-polynomial time
deterministic algorithm to test if a given polynomial of constant degree divides a given sparse
polynomial. Extending this result to even testing if a given sparse polynomial divides another
given sparse polynomial remains an open problem.

2 Preliminaries

We start by setting up some notation and stating some basic definitions and results from
prior work which will be used in our proofs.

2.1 Notations

We use boldface letters ~x, ~y, ~z to denote tuples of variables.
For a polynomial P , deg(P ) denotes the total degree of P and degy(P ) denotes the total
degree of P with respect to the variable y.
Throughout this paper, we state and prove our results when the underlying field F is the
field of rational numbers Q, even though all our results hold as long as the field is of
sufficiently large or zero characteristic.
Let P ∈ F[~x] be a polynomial of degree equal to d. For every k ∈ N, Hk [P ] denotes
the homogeneous component of P of degree k. Similarly, H≤k [P ] is defined to be equal∑k

i=0Hi[P ].
For an arithmetic circuit C, we use size(C) to denote the number of wires in C. The
depth of C is the length of the longest path from any output gate to any input gate.
Throughout this paper, we assume that all our circuits are layered with alternating layers
of addition and multiplication gates. Moreover, we always assume that the top layer is
of addition gates. For instance, a depth-3 circuit is of the form

∑∏∑
and a depth-4

circuit is of the form
∑∏∑∏

.

2.2 Derivatives

We start by defining derivatives of a polynomial. For the ease of presentation, we work with
the notion of the slightly non-standard notion of Hasse derivatives even though we work
with fields of characteristic zero.

I Definition 6 (Derivatives). Let F be any field and let P (y) ∈ F[y] be a polynomial. Then
for every k ∈ N, the partial derivative of P of order k with respect to y denoted by ∂kP (y)

∂yk or
P (k)(y) is defined as the coefficient of zk in the polynomial P (y + z).

We also use P ′(y) and P ′′(y) to denote the first and second order derivatives of P respectively.
An immediate consequence of this definition is the following lemma.

I Lemma 7 (Taylor’s expansion). Let P (y) ∈ F[y] be a polynomial of degree d. Then,

P (y + z) = P (y) + z · P ′(y) + z2 · P (2)(y) + · · ·+ zd · P (d)(y) .

CCC 2018
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2.3 Depth Reductions
We will use the following depth reduction theorems as a blackbox for our proofs.

I Theorem 8 (Depth reduction to depth-2k [1, 14, 28]). Let k be a positive integer and F
be any field. If P (~x) ∈ F[~x] is an n-variate polynomial of degree d that be computed by an
arithmetic circuit Ψ of size at most s, then P can be computed by a depth 2k circuit of size
at most (snd)O(d1/k).

Invoked with k = 2 the above theorem gives a circuit of depth 4 for the polynomial P of size
sO(
√

d). The next depth reduction result gives a further reduction to depth-3, as long as the
field is of characteristic zero, and will be useful for our proof.

I Theorem 9 (Depth reduction to depth-3 [8]). Let P (~x) ∈ Q[~x] be an n-variate polynomial
of degree d that can be computed by an arithmetic circuit Ψ of size at most s. Then, P can
be computed by a

∑∏∑
circuit of size at most (snd)O(

√
d).

2.4 Explicit Polynomials
I Definition 10 ([5]). Let {fm} be a family of multilinear polynomials such that fm ∈
F[x1, x2, . . . , xm] for every m. Then, the family {fm} is said to be explicit if the following
two conditions hold.

All the coefficients of fm have bit complexity polynomial in m.
There is an algorithm which on input m outputs the list of all 2m coeffcients of fm in
time 2O(m).

2.5 Extracting Homogeneous Components
For our proofs, we will also rely on the following classical result of Strassen, which shows
that if a polynomial P has a small circuit, then all its low degree homogeneous components
also have small circuits.

I Theorem 11 (Homogenization). Let F be any field, and let Ψ ∈ F[~x] be an arithmetic
circuit of size at most s. Then, for every k ∈ N, there is a homogeneous circuit Ψk of formal
degree at most k and size at most O(k2s), such that

Ψk = Hk [Ψ] .

Theorem 11 gives us a way of extracting homogeneous components of the polynomial
computed by a given circuit. One drawback of Theorem 11 is that the depth of Ψk could be
much larger than the depth of Ψ. Thus, given a low depth circuit (and hence, unbounded
in-degree circuit) for a polynomial P , it is not clear if the homogeneous components of P
also have small low depth circuits. The following standard trick implies this observation, and
would be useful for our proof.

I Lemma 12 (Interpolation). Let F be any field with at least d+ 1 elements. Let P (~x, y) ∈
F[~x, y] be a polynomial of degree at most d. Let C0(~x), C1(~x), . . . , Cd(~x) ∈ F[~x] be polynomials
such that P (~x, y) =

∑d
j=0 y

j · Cj(~x). Then, if P (~x, y) has a circuit of size at most s and
depth at most ∆, then for every j ∈ {0, 1, . . . , d}, Cj(~x) has a circuit of size at most O(sd)
and depth ∆.

We refer the reader to excellent surveys of Shpilka and Yehudayoff [27] and Saptharishi [26]
for a proof of these results.
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2.6 Hitting Sets
I Definition 13. A set of points P is said to be a hitting set for a class C of circuits, if for
every C ∈ C which is not identically zero, there is an ~a ∈ P such that C(~a) 6= 0.

Clearly, deterministic and efficient construction of a hitting set of small size for a class C
of circuits immediately implies a deterministic PIT algorithm for C. PIT algorithms designed
in this way are also blackbox, in the sense that they do not have to look inside into the
wiring of the circuit to decide if it computes a polynomial which is identically zero. The PIT
algorithms in this paper are all blackbox in this sense.

2.7 Nisan-Wigderson Designs
We state the following well known result of Nisan and Wigderson [18] on the explicit
construction of combinatorial designs.

I Theorem 14 ([18]). Let n,m be positive integers such that n < 2m. Then, there is a
family of subsets S1, S2, . . . , Sn ⊆ [`] with the following properties.

For each i ∈ [n], |Si| = m.
For each i, j ∈ [n], such that i 6= j, |Si ∩ Sj | ≤ logn.
` = O( m2

log n ).
Moreover, such a family of sets can be constructed via a deterministic algorithm in time
poly(n, 2`).

2.8 Schwartz-Zippel Lemma
We now state the well known Schwartz-Zippel lemma.

I Lemma 15 (Schwartz-Zippel). Let F be a field, and let P ∈ F[~x] be a non-zero polynomial
of degree (at most) d in n variables. Then, for any finite set S ⊂ F we have

|{~a ∈ Sn : P (~a) = 0}| ≤ d|S|n−1
.

In particular, if |S| ≥ d+ 1, then there exists some ~a ∈ Sn satisfying P (~a) 6= 0. This gives
us a brute force deterministic algorithm, running in time (d+ 1)n, to test if an arithmetic
circuit computing a polynomial of degree at most d in n variables is identically zero.

3 Low Degree Roots of Polynomials with Shallow Circuits

In this section, we prove Theorem 5, which is also our main technical result. We start with
the following lemma, which gives us a way of approximating the root of a polynomial to
higher and higher accuracy, in an iterative manner. The lemma is a standard example of
Hensel Lifting (in fact, sloppy Hensel Lifting), which appears in many of prior works in this
area including [5]. The statement and the proof below, are from the work of Dvir et al [5].

I Lemma 16 (Hensel Lifting [5]). Let P ∈ F[~x, y] and f ∈ F[~x] be polynomials such that
P (~x, f) = 0 and H0

[
∂P
∂y (~x, f(~x))

]
= δ 6= 0. Let i ∈ {1, 2, . . . ,deg(f)} be any number. If

h ∈ F[~x] is a polynomial such that H≤i−1[f ] = H≤i−1[h], then

H≤i [f ] = H≤i

[
h− P (~x, h)

δ

]
.

CCC 2018
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Proof. For the rest of the proof, we think of P (~x, y) as an element of F[~x][y]. Henceforth, we
drop the variables ~x everywhere, and think of P as a univariate in y. Thus, P (y) = P (~x, y).
For brevity, we denote Hj [f ] by fj for every j ∈ N.

From the hypothesis, we know that P (f) = 0. Therefore, H≤i(P (f)) = H≤i−1 [P (f)] = 0.
Moreover, since H≤i−1[h] = H≤i−1[f ], we get that H≤i−1 [P (f)] = H≤i−1 [P (h)] = 0. So,
we have

0 = H≤i [P (f)]
= H≤i [P (h+ (fi − hi))]

Now, by using Lemma 7, we get the following equality.

0 = H≤i

[
P (h) + P ′(h) · (fi − hi) + P ′′(h) · (fi − h1)2 + . . .+ P (r)(h) · (fi − h1)r

]
= H≤i [P (h)] +H≤i [P ′(h) · (fi − hi)] + . . .+H≤i

[
P (r)(h) · (fi − hi)r

]

Here, r denotes the degree of P . Since every monomial in fi − hi has degree equal to i,
any term in the above summand which is divisible by (fi − hi)2 does not contribute any
monomial of degree at most i. Thus, we have the following.

0 = H≤i [P (h)] +H≤i [P ′(h) · (fi − hi)]
= H≤i [P (h)] +H0 [P ′(h)] · (fi − hi) .

Now, we know that H0 [P ′(h))] = H0 [P ′(f)] = δ 6= 0. Thus,

fi = hi −
Hi [P (h)]

δ
.

Since H≤i−1[P (h)] is identically zero, we get,

H≤i [f ] = H≤i

[
h− P (h)

δ

]
. J

For our proof, we shall look at the structure of the outcome of the lifting operation in
Lemma 16 more closely. Before proceeding further, we need the following crucial lemma.

I Lemma 17. Let P (~x, y) ∈ F[~x, y] be a polynomial of degree at most r, let α ∈ F be a field
element and d ∈ N be a positive integer. Let G′(P, α, d) be the set of polynomials defined as
follows.

G′(P, α, d) =
{
H≤d

[
∂jP

∂yj
(~x, α)

]
−H0

[
∂jP

∂yj
(~x, α)

]
: j ∈ {0, 1, 2, . . . , d}

}
.

Let G(P, α, d) be the subset of G′(P, α, d) consisting of all non-zero polynomials. Then, the
following statements are true.

For every g ∈ G(P, α, d), the degree of every non-zero monomial in g is at least 1 and at
most d.
|G| ≤ d+ 1.
If P has a circuit of size at most s and depth ∆, then every g ∈ G(P, α, d) has a circuit
of size at most O(sr3d2) and depth ∆.
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I Remark. G′ contains the non-constant part of the partial derivatives of P at α up to order
d. Note that G′ may contain the zero polynomial, but G is the subset of G′ without the zero
polynomial.

Proof. The first two items follow immediately from the definition of G(P, α, d). We focus on
the proof of the third item. Let C0(~x), C1(~x), . . . , Cr(~x) be polynomials such that

P (~x, y) =
r∑

i=0
Ci(~x) · yi .

Now, for any j ∈ {0, 1, 2, . . . , d}, by Definition 6, ∂jP
∂yj (~x, y) is the coefficient of zj in P (~x, y+z).

Moreover,

P (~x, y + z) =
r∑

i=0
Ci(~x) · (y + z)i ,

=
r∑

i=0
Ci(~x) ·

 i∑
j=0

(
i

j

)
zjyi−j

 ,

=
r∑

j=0

 r∑
i=j

(
i

j

)
Ci(~x) · yi−j

 · zj .

Thus, for every j ∈ {0, 1, . . . , d}, the coefficient of zj in P (~x, y+z) is given by
∑r

i=j

(
i
j

)
Ci(~x) ·

yi−j . From Lemma 12, we know that each Ci(~x) has a circuit of depth ∆ and size at most
O(sr). Thus, we can obtain a circuit for

(
i
j

)
Ci(~x) · yi−j by adding an additional layer of

× gates on top of the circuit for Ci(~x). This increases the size by a multiplicative factor
of r, and the depth by 1. However, observe that this increase in depth is not necessary.
Since, an expression of the form yi · (

∑
a

∏
b Qa,b) can be simplified to

∑
a y

i · (
∏

b Qa,b).
Thus, the multiplication by yi can be absorbed in the product layer below the topmost
layer of the circuits for Ci(~x), and this does not incur any additional increase in size. Thus,
the polynomials ∂jP

∂yj (~x, y), and hence ∂jP
∂yj (~x, α) have a circuit of size at most O(sr3) and

depth at most ∆. To compute the homogeneous components of these polynomials, which are
essentially the elements of G(P, α, d), we just use Lemma 12. This increases the size by a
factor of at most O(d2) while keeping the depth the same. J

We now state our key technical observation.

I Lemma 18. Let P ∈ F[~x, y] and f ∈ F[~x] be polynomials of degree r and d respectively such
that P (~x, f) = 0 and H0

[
∂P
∂y (~x, f(~x))

]
= δ 6= 0. Let the polynomials in the set G(P,H0[f ], d)

be denoted by g0, g1, . . . , gd. Then, for every i ∈ {1, 2, . . . , d}, there is a polynomial Ai(~z) in
d+ 1 variables such that the following are true.
H≤i [f ] = H≤i [Ai (g0, g1, . . . , gd)], and
Ai(~z) is computable by a circuit of size at most 10d2i.

This is the analog of the main technical lemma in [5], which we state below.

I Lemma 19 ([5]). Let P ∈ F[~x, y] and f ∈ F[~x] be polynomials of degree r and d respectively
such that P (~x, f) = 0 and H0

[
∂P
∂y (~x, f(~x))

]
= δ 6= 0. Let P (~x, y) =

∑k
i=0 Ci(~x) · yi. Then,

for every i ∈ {1, 2, . . . ,deg(f)}, there is a polynomial Ai(~z) in k + 1 variables such that,

H≤i [f ] = H≤i [Ai (C0, C1, . . . , Ck)] .

CCC 2018



13:12 Hardness vs Randomness for Bounded Depth Arithmetic Circuits

The difference between these lemmas is that in [5], it is shown that there is a set of
polynomials of size at most degy(P ) + 1 which generate every homogeneous component of the
root f . Thus, in the regime of bounded individual degree, the size of this generating set is
very small. However, when degy(P ) ≥ n, Lemma 19 does not say anything non-trivial since
f can be trivially written as a polynomial in the n original variables. In contrast, Lemma 18
continues to say something non-trivial, as long as d << n, regardless of the value of degy(P ).
We now proceed with the proof.

Proof of Lemma 18. For the rest of the proof, we think of P (~x, y) as an element of F[~x][y].
So, we drop the variables ~x everywhere, and think of P as a univariate in y. Thus, P (y) =
P (~x, y). For brevity, we denote Hj [f ] by fj for every j ∈ N. We also use G for G(P, f0, d).
The proof will be by induction on i and crucially use Lemma 16.

Base case. We first prove the lemma for i = 1. We invoke Lemma 16 with i = 1 and
h = f0. We get that

H≤1[f ] = H≤1

[
f0 −

P (f0)
δ

]
.

The proof follows by observing that f0, δ are constants and H1 [P (f0)] = H1 [g0] where
g0 = H≤d [P (f0)]−H0 [P (f0)] ∈ G.
Induction step. We assume that the claim in the lemma holds up to homogeneous
components of degree at most i − 1, and argue that it holds for H≤i[f ]. We invoke
Lemma 16 with h = Ai−1(g0, g1, . . . , gd), which exists by the induction hypothesis.

H≤i [f ] = H≤i

[
h− P (h)

δ

]
.

Recall that H0(h) = H0(f). Thus, h = f0 + h̃, where every monomial in h̃ has degree at
least 1. By Lemma 7,

P (f0 + h̃) = P (f0) + P ′(f0) · h̃+ · · ·+ P (r)(f0) · h̃r .

Thus, as h̃ has degree at least 1, we have

H≤i [f ] = H≤i

[
h− 1

δ
·
(
P (f0) + P ′(f0) · h̃+ · · ·+ P (r)(f0) · h̃r

)]
,

= H≤i

[
h− 1

δ
·
(
P (f0) + P ′(f0) · h̃+ · · ·+ P (i)(f0) · h̃i

)]
.

Since we are only interested in i ≤ d, the following equality is also true.

H≤i [f ]

= H≤i

[
h− 1

δ
·
(
H≤d [P (f0)] +H≤d [P ′(f0)] · h̃+ · · ·+H≤d

[
P (i)(f0)

]
· h̃i
)]

.

Observe that for every j ∈ {0, 1, . . . , d}, H≤d

[
P (j)(f0)

]
is an affine form in the elements of

G9. For every j ∈ {0, 1, 2, . . . , i}, let `j(~z) be an affine form such that `j(g0, g1, . . . , gd) =

9 In fact, they are an affine form in one variable.
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H≤d

[
P (j)(f0)

]
. Now, we define Ai(~z) as

Ai(~z) ≡ Ai−1(~z)− 1
δ

(
`0(~z) + `1(~z) · (Ai−1(~z)− f0) + · · ·+ `i(~z) · (Ai−1(~z)− f0)i

)
.

The first item in the statement of the lemma is true, just by the definition of Ai(~z) above.
We now argue about the circuit size of Ai(~z). Each affine form `i(~z) can be computed by
a circuit of size at most O(d). Thus, given a circuit of Ai−1(~z), we can obtain a circuit
for Ai(~z) by adding at most 10d2 additional gates. Thus, Ai(~z) can be computed by a
circuit of size at most 10d2(i− 1) + 10d2 = 10d2i gates. J

We are now ready to complete the proof of Theorem 5.

Proof of Theorem 5. The first step is to massage the circuit for P so that the hypothesis of
Lemma 18 holds. We will have to keep track of the size and depth blow ups incurred in the
process. We begin by ensuring that f is a root of multiplicity 1 of some polynomial related
to P .

Reducing multiplicity of the root f

Let P (~x, y) =
∑r

i=0 y
iCi(~x). Let m ≥ 1 be the multiplicity of f as a root of P (~x, y). Thus,

∂jP
∂yj (~x, f) = 0 for j ∈ {0, 1, 2, . . . ,m− 1}, but ∂mP

∂ym (~x, f) 6= 0. The idea is to just work with
the polynomial P̃ = ∂m−1P

∂ym−1 (~x, y) for the rest of the proof. Clearly, f is a root of multiplicity
exactly 1 of P̃ . We only need to ensure that P̃ can also be computed by a small low depth
circuit. This follows from the proof of the third item in Lemma 17, where we argued that
∂jP
∂yj (~x, y) has a depth ∆ circuit of size O(sr3).

Translating the origin

From the step above, we can assume without loss of generality that ∂P
∂y (~x, f) 6= 0. Thus,

there is a point ~a ∈ Fn such that ∂P
∂y (~a, f(~a)) 6= 0. By translating the origin, we will assume

that ∂P
∂y (0, f(0)) 6= 0. This increases the depth of the circuit by at most 1, as it could involve

replacing every variable xi by xi + ai, and the size by at most a factor n.

Degree of Ad

From Lemma 18, we know that the polynomial Ad(~z) has a circuit of size at most O(d3).
To obtain a circuit for f , we first prune away all the homogeneous components of Ad(~z) of
degree larger than d. Recall that by definition, every polynomial gi ∈ G has degree at least 1,
and that f = H≤d [Ad(g1, g2, . . . , gd)]. Thus, any monomial of degree strictly greater than d
in Ad(~z) contributes no monomial of degree at most d in the variables ~x in the composed
polynomial Ad(g1, g2, . . . , gd), and hence does not contribute anything to the computation of
f . So, we can confine ourselves to working with the homogeneous components of Ad(~z) of
degree at most d.

By Theorem 11, we know that given a circuit for Ad(~z), we can construct a circuit for
Hi [Ad(~z)] by increasing the size of the circuit by a multiplicative factor of at most O(i2).
Thus, H≤d[Ad(~z)] can be computed by a circuit of size at most O(d3)× size(Ad(~z)). Thus,
for the rest of this argument, we will assume that Ad(~z) has a circuit of size at most O(d6)
and degree at most d, and

f = H≤d [Ad(g1, g2, . . . , gd)] .

CCC 2018
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Circuit for Ad(~z) of small depth

Given that Ad(~z) has a circuit of size O(d6) and degree at most d, by Theorem 9, we know
that Ad(~z) can be computed by a

∑∏∑
circuit Ψ of size at most dO(

√
d)10. Similar results

follow from the application of Theorem 8.

Circuit for f of small depth

Composing the
∑∏∑

circuit Ψ for Ad(~z) with the circuits of g1, g2, . . . , gd ∈ G, we get a
circuit Ψ′ with the following properties.

The size of Ψ′ is at most (srn)10 · dO(
√

d)).
The depth of Ψ′ is at most ∆ + 3. This follows by combining the bottom

∑
layer of the∑∏∑

circuit for Ad(~z) with the top
∑

layer of the circuits for gi ∈ G.
The degree of Ψ′ is at most d2. This is true because the degree of Ad(~z) is at most d (as
argued earlier in this proof), and the degree of every polynomial in G is at most d (first
item in Lemma 17).
f = H≤d [Ψ′(~x)].

To obtain a circuit for f , we apply Lemma 12 to Ψ′. This increases the size of Ψ′ by a
multiplicative factor of at most O(d2), while the depth remains the same. This completes
the proof of the theorem. J

4 Deterministic Identity Testing using Hard Polynomials

In this section, we use Theorem 5 to show that given a family of polynomials which are
hard for depth ∆ circuits, we can do deterministic identity testing for ∆ − 5 circuits in
subexponential time. Since the content of this part are very similar to the proofs of similar
statements in [10] and [5], we only outline the differences in the proofs (if any), and refer the
reader to [5] for details. We start with the following lemma, which is the analog of Lemma
4.1 in [5].

I Lemma 20 (Analog of Lemma 4.1 in [5]). Let q(~x) ∈ F[~x] be a (non-zero) polynomial
of degree D in n variables, which can be computed by a circuit of size s and depth ∆.
Let m > logn be an integer and let S1, S2, . . . , Sn ⊆ [`] be given by Theorem 14, so that
` = O(m2/ logn), |Si| = m, and |Si ∩ Sj | ≤ logn. For a multilinear polynomial f ∈
F[z1, z2, . . . , zm] of degree d, put

Q(~y) = Q(y1, y2, . . . , y`) := q (f(~y|S1), f(~y|S2), . . . , f(~y|Sn
)) .

If Q(~y) ≡ 0, then f(~z) can be computed by an arithmetic circuit of size O((snD)12dO(
√

d))
and depth at most ∆ + 5.

Note that the bound on the size of f remains non-trivial as long as d << m, while the
individual degree of q is allowed to be unbounded, whereas the bound in [5] becomes trivial
once degy(q) is larger than m.

10 Instead of Theorem 9, one could use Theorem 8 to get a better size bound than dO(
√

d) at the cost of
increasing its depth appropriately. Also, see Remark 1.2. Also, this is one place where the underlying
field plays a role, since Theorem 9 is not known to be true over general fields.
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Proof Sketch. The proof is along the lines of the proof of Lemma 4.1 in [5]. We now give a
sketch of the details. We first define the hybrid polynomials Q0(~x, ~y), Q1(~x, ~y), . . . , Qn(~x, ~y)
as follows.

Qj(~x, ~y) = q
(
f(~y|S1), f(~y|S2), . . . , f(~y|Sj ), xj+1, xj+2, . . . , xn

)
.

We know that Q0(~x, ~y) is non-zero, whereas Qn(~x, ~y) is identically zero. Thus, there is
an i ∈ {0, 1, . . . , n} such that Qi(~x, ~y) 6≡ 0 and Qi+1(~x, ~y) ≡ 0. We now fix the variables
xi+2, xi+3, . . . , xn and the variables {yj : j /∈ Si+1} to field constants while maintaining the
non-zeroness of Qi. This can be done via Lemma 15. Thus, we have a polynomial q̃ by fixing
the aforementioned variables such that the following two conditions hold.

q̃
(
f(~y|S1∩Si+1), f(~y|S2∩Si+1), . . . , f(~y|Si∩Si+1), xi+1

)
6≡ 0 .

q̃
(
f(~y|S1∩Si+1), f(~y|S2∩Si+1), . . . , f(~y|Si∩Si+1), f(~y|Si+1)

)
≡ 0 .

Let A0(~y|Si+1 , xi+1) denote the polynomial

q̃
(
f(~y|S1∩Si+1), f(~y|S2∩Si+1), . . . , f(~y|Si∩Si+1), xi+1

)
.

The above two conditions imply that f(~y|Si+1) is a root of the polynomial A0(~y|Si+1 , xi+1) ∈
F[~y|Si+1 ][xi+1], viewed as a polynomial in xi+1. Moreover, A0(~y|Si+1 , xi+1) has a circuit of
size at most O(sn) and depth at most ∆ + 2. This follows from the fact that f(~y|S1∩Si+1) is a
multilinear polynomial in logn variables, and can thus be computed by a

∑∏
circuit of size

at most n. We simply replace the variables x1, x2, . . . , xi in the circuit for q by these
∑∏

circuits to obtain a circuit for A0. The degree of A0 is at most D logn. Finally, Theorem 5
implies that f(~y|Si+1) can be computed by a circuit of size at most O(poly(s, n,D)dO(

√
d))

and depth at most ∆ + 5, thus completing the proof. J

We now sketch the proof of Theorem 3.

Proof Sketch. Once again, the proof follows the proof of Theorems 1 and 2 in [5]. Let
{fm} be a family of explicit multilinear polynomials such that fm has m variables, degree

d ≤ O

((
log m

log log m

)2
)
, such that fm cannot be computed by a circuit of depth ∆ and size

poly(m). Let ε ∈ (0, 0.49) be an arbitrary constant, and set m := nε, and f = fm.
Given as input a circuit C ∈ F[~x] of size s, depth ∆ − 5 and degree D on n variables,

let q ∈ F[~x] be the polynomial computed by C. The goal here is to determine whether q
is nonzero. From the equivalence of black-box PIT and hitting set, it suffices to construct
hitting set for circuit class of the above properties.

We construct a design S1, S2, . . . , Sn ⊆ [`] using Theorem 14 where each set Si has size m,
` = O(m2/ logn) ≤ n2ε < n0.98 and |Si ∩ Sj | ≤ logn. This can be done in deterministic
time 2O(n2ε).
We pick a subset T of the field F of size Dd + 1 and evaluate the polynomial
q (f(~y|S1), f(~y|S2), . . . , f(~y|Sn

)) on all points of T `. H = {(f(~y|S1), f(~y|S2), . . . , f(~y|Sn
))

| ~y ∈ T `} is then our candidate hitting set of size (Dd+ 1)` = nO(n2ε) < nO(n0.98). Note
that the set can be constructed deterministically in time md · nO(n2ε) = nO(n2ε).

We now argue about the correctness, i.e., q does not vanish on the hitting set if and only if q
is not identically zero. Observe that if the polynomial q (f(~y|S1), f(~y|S2), . . . , f(~y|Sn)) is not
identically zero, then it has degree at most Dd and hence by Lemma 15, q does not vanish
on the set H. Else, q (f(~y|S1), f(~y|S2), . . . , f(~y|Sn)) ≡ 0. But then, by Lemma 20, we get
that f can be computed by a circuit of depth ∆ and size at most O

(
poly(s, n,D)dO(

√
d)
)
.

CCC 2018
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If s,D are poly(n), then this bound is poly(m) which contradicts the assumed hardness of
f = fm for circuits of depth ∆. This shows that H is a hitting set for the desired circuit
class and completes the proof. J
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