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Abstract
Although internal devices (e.g., memory, timers) and external devices (e.g., transceivers, sensors)
significantly contribute to the energy consumption of an embedded real-time system, their impact
on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken
into account. Most WCRE analysis techniques, for example, only focus on the processor and
therefore do not consider the energy consumption of other hardware units. Apart from that,
the typical approach for dealing with devices is to assume that all of them are always activated,
which leads to high WCRE overestimations in the general case where a system switches off the
devices that are currently not needed in order to minimize energy consumption.

In this paper, we present SysWCEC, an approach that addresses these problems by enabling
static WCRE analysis for entire real-time systems, including internal as well as external devices.
For this purpose, SysWCEC introduces a novel abstraction, the power-state–transition graph,
which contains information about the worst-case energy consumption of all possible execution
paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks
during which the set of active devices in the system does not change and is consequently able to
precisely handle devices being dynamically activated or deactivated.
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1 Introduction

Energy-constrained real-time systems must not only ensure that tasks meet their timing
deadlines, but also that there is enough energy to execute the tasks to completion [70, 72, 73].
Therefore, it is essential for energy-aware schedulers to consider both an upper bound for
the execution time of a task as well as its worst-case response energy consumption (WCRE),
that is, the maximum amount of energy required by the system to fully execute the task once
it has been started [26, 70]. For systems where a task can be interrupted or preempted by
other tasks with higher priorities, this means that a task’s WCRE covers both the worst-case
energy consumption (WCEC) of the task itself as well as the WCECs of all interrupt service
routines and tasks that might be executed while the task is running1.

Obtaining worst-case execution times can be regarded a solved problem for embedded,
single-threaded real-time systems [5, 74] with multiple timing-analysis tools being com-
mercially available [2, 53, 66]. Determining upper bounds for energy consumption, on the
other hand, is still an open issue for systems in which devices and peripherals contribute
to power consumption. Although energy profilers exist that are able to measure the energy
consumption of systems including devices [62], so far there is no analyzer that provides
reliable upper bounds for an entire system. Existing approaches to determine worst-case
energy consumptions so far are usually limited to an analysis of the influence of a system’s
processor [35, 71]. Unfortunately, this strategy provides only a partial view of the problem,
because in many embedded systems the processor is just one of several energy consumers
besides internal devices (e.g., memory, timers) and external devices (e.g., peripherals such
as WiFi transceivers, analog-to-digital converters, accelerometers, or LEDs). As illustrated
in Table 1 by example of the NXP KL46z platform [23, 24] (ARM Cortex-M0+), a typical
hardware for a small battery-operated real-time system, these devices in general significantly
contribute to the system’s overall power consumption. In some cases, for example, transceivers
or LEDs, the power consumption of the device even exceeds the power consumption of the
processor. Consequently, in order to obtain reliable results, it is crucial to take the impact of
devices into account when analyzing a system’s energy consumption.

The common approach to prevent WCRE underestimations for systems with devices is
to assume that all the devices are active the entire time [43] and to include their combined
power consumption into the analysis. Although this technique has the benefit of being sound,
it also comes with the major drawback of usually leading to significant overestimations.
These overestimations are caused by the fact that in many systems in practice devices and
peripherals are disabled most of the time in order to save energy, and only temporarily
switched on while their services are actually required, for example, to broadcast a message
via a transceiver. As a consequence, WCRE analyses that assume all the devices to be
always on often provide energy-consumption estimates that are much higher than the actual
WCECs, which possibly leads to systems stopping execution unnecessarily early or to the
system’s lifetime being greatly underestimated by the pessimism of the analysis.

1 We use the terms WCEC and WCRE analogous to timing analysis where the worst-case execution
time (WCET) refers to a task in isolation and the worst-case response time (WCRT) to the timespan
from the start of a task until its completion, including all possible interferences (e.g., preemptions).
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Table 1 Power consumers in energy-constrained systems [23, 25, 67].

Hardware Unit Power Consumption [@3.3V]

MCU (run mode) 5.6mA
MCU (low-power run mode) 0.7mA
MCU (stop mode) 0.3mA
Accelerometer 1.7mA
Analog–to-digital converter 0.4mA
External memory (FRAM) 0.2mA
LED 4.6mA
WiFi transceiver 87.6mA

The main reason why existing approaches deal with the impact of devices at a coarse-
grained level is that WCRE analysis is inherently difficult in the context of devices that
are dynamically switched on and off. Precisely determining the WCRE of a task requires
knowledge about the entire system, including the WCECs of interrupt service routines
and tasks with higher priorities. Additionally, the (de-)activation of devices, especially the
activation of timers for running the CPU at a higher frequency, causes significant latencies
that lead to energy-consumption penalties [8, 9]. In the absence of devices, obtaining the
necessary WCECs is straightforward as the individual WCECs of all relevant routines and
tasks can be analyzed in isolation from each other. However, in systems with devices this is
not possible because, as we will show in detail, the WCEC of a task not only depends on the
work performed by the task itself but also on the actions (i.e., device activations/deactivations)
taken by other tasks, in some cases even tasks with lower priorities.

This paper presents SysWCEC, a static analysis approach that addresses the problem
of determining WCREs in real-time systems with devices by taking the entire system into
account. For this analysis purpose, SysWCEC first constructs and then leverages a novel
data structure called the power-state–transition graph, which contains knowledge about the
worst-case energy consumption of the analyzed system for all possible execution paths.

To construct the power-state–transition graph, SysWCEC in a first step searches for
locations in the system code at which the power state of a device is changed and then logically
decomposes the code into blocks of instructions during which the power states of devices
remain constant. Next, SysWCEC identifies all possible interactions between the discovered
blocks and combines this knowledge with additional information about the blocks’ power
consumptions and worst-case execution times. In the last step, this enables SysWCEC to
determine all possible states the system might be in while it is running; in addition, for each
of these states, this allows SysWCEC to compute the maximum amount of energy the system
will consume while executing the instruction block associated with the state.

Decomposing the overall system into smaller blocks with constant device power states
offers the key benefit of allowing us to perform large parts of the WCRE analysis without
having to deal with varying power consumption while still being able to account for dynamic
device (de-)activations. Apart from that, the context-sensitive analysis of both synchronous
task interactions as well as asynchronous interrupts enables us to individually determine
the WCEC of each task even for systems in which a task’s WCEC cannot be analyzed in
isolation as it might depend on the behavior of other tasks.

The SysWCEC approach presented in this paper borrows ideas from previous work
on whole-system response-time analysis of fixed-priority real-time systems [19]. However,
although lessons learned from timing analysis are helpful for energy-consumption analysis, in
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general, it is not possible to directly reuse existing techniques due to substantial differences
between both domains. As we will show in this paper, energy-consumption analysis requires
a more extensive system analysis that considers tasks of all priorities, addresses device
(de-)activation penalties, and tracks power states of devices across all possible system states.
Solving these problems forced us to develop a new approach to structuring real-time systems
and their devices’ power consumption to determine safe and accurate WCREs.

In summary, this paper makes the following contributions: (1) It presents our whole-
system approach to WCRE analysis for real-time systems with internal and external devices
and provides details on SysWCEC ’s central data structure: the power-state–transition
graph. (2) It gives insights into the open-source SysWCEC prototype, which supports the
fully-automatic processing of OSEK-compliant (i.e., ECC1 [49]) real-time systems. (3) It
discusses our evaluation of two different hardware platforms, which shows that SysWCEC is
able to significantly reduce WCRE overestimations compared with the approach of assuming
all devices to be always active.

2 Problem Statement

In this section, we first provide details on SysWCEC ’s underlying system model and then
discuss two open challenges that so far remain with regard to WCRE analysis: (1) precisely
accounting for the fact that devices and peripherals in practical systems are dynamically
switched on and off, and (2) determining task WCECs that depend on overall system state.

2.1 Hard- & Software System Model
SysWCEC targets embedded real-time platforms for which energy is a scarce resource. In such
systems, the processor usually has a single processing core, a small predictable instruction
cache, no data cache, and few pipeline stages [3, 4]. Due to the limited complexity, determining
worst-case execution times based on the cycle costs of instructions in isolation is a feasible
approach and achieves low overestimations [61]. Typically, the software running on such
platforms consists of less than a dozen tasks that have fixed priorities and possibly depend
on each other. A task is either synchronously activated by another task or a periodic alarm,
or asynchronously activated as the result of a hardware interrupt. Interrupts always preempt
the task currently running and can be released with a minimum inter-arrival time pi, that is,
there is an upper bound for the frequency with which interrupts are triggered.

Apart from the processor, systems in the targeted domain typically have numerous internal
and external devices that significantly contribute to overall power consumption. While simple
devices can only assume two different power states (i.e., on and off), more complex devices
may comprise additional power modes, for example, to offer different tradeoffs between
performance and power consumption. In each power mode, a device has a (mode-specific)
maximum power consumption. Consequently, an upper energy bound E for an interference-
free code sequence can be determined based on the worst-case execution time WCET of the
code using E = WCET · Pmax, with Pmax being the total maximum power consumption of
all hardware components in their current power modes. How to create a sound worst-case
energy model to compute Pmax is outside the scope of this paper. In general, the necessary
information can be obtained from hardware analyses [50] and/or documentation [24].

In the targeted systems, transitions between power modes are initiated by the operating
system as the result of a system call invoked by a task or an interrupt service routine; in
this paper, we refer to such calls as device system calls, or device syscalls for short. Once
invoked, a device syscall only returns after the requested power-mode switch is complete. All
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Figure 1 Effect of a temporarily activated device on power consumption.

dynamic power management is explicitly controlled by the application via device system calls
and passes the operating-system kernel. That is, as it is common for embedded platforms,
the hardware does not initiate power-mode changes itself. To determine upper bounds for
energy consumption for the whole system, the analysis cannot be limited to the user level but
requires a whole-system view that includes both user application and the operating system.

2.2 Challenge #1: Modeling Temporarily Activated Devices

With devices being a decisive factor in an embedded system’s power consumption, energy-
constrained systems are usually designed to only keep a device active as long as its services
are actually required. While on the one hand, this approach enables such systems to greatly
extend their lifetimes, on the other hand, it also complicates static energy-consumption
analysis because the power consumption of the system no longer only depends on the
instructions executed but instead is also affected by the set of devices currently active.
Figure 1 illustrates this problem for a task consisting of three parts: a first part in which the
task performs some processing without using any devices (Part A ), a second portion in which
the task temporarily activates and accesses a device (Part B ), and a third part that continues
processing (Part C ). In the absence of devices, the worst-case energy consumption of a task
can be statically determined based on the energy costs of individual instructions [35, 71].
However, for the example task this is not possible because the system calls to activate
and deactivate the device, despite consuming only a small amount of energy themselves,
significantly change overall power consumption due to modifying system state. Consequently,
the energy consumption of the system for Part B to a large extent is not a result of the
processor executing certain instructions but of the fact that the device is active during this
period of time. Our example therefore shows that for systems with devices it is insufficient
to limit the energy-consumption analysis to the instructions executed and it explains why
techniques that focus on the processor [35, 71] usually underestimate the worst-case energy
consumption. Furthermore, many real-time scheduling approaches using DVFS disregard the
latencies to switch on the timer devices for running on a higher frequency [8], which can be
in the range of one millisecond [9].

In the context of worst-case energy-consumption analysis, the common approach to
deal with devices is to prevent underestimations by modeling all devices in a system to be
always on [43]. As our example in Figure 1 illustrates, this generally leads to significant
overestimations due to assuming an increased power consumption that most of the time (e.g.,
during Parts A and C ) is much higher than the consumption actually possible in practice.

Our Approach: To properly account for the energy consumption of internal and external
devices, we identify parts of the system code during which the set of active devices does not
change, starting a new part whenever a device is activated or deactivated. Performing our
analysis at this granularity level allows us to minimize analysis complexity without losing
the ability to model the impact of temporarily activated devices.
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Figure 2 A task’s WCEC may depend on another lower-priority task.

2.3 Challenge #2: System-State – dependent Task WCECs

While worst-case energy consumption (WCEC) analysis for systems with devices and periph-
erals is already challenging for a single task, the problem becomes even more difficult when
entire task sets are involved. To illustrate this, we extend the example of Section 2.2: As
depicted in Figure 2, we now assume that the task can be interrupted and that, as reaction
to an interrupt, the interrupt service routine (ISR) activates a task with a higher priority,
which executes a Part H . In the following, we focus on discussing the difficulties associated
with determining the WCEC of this higher-priority task.

As illustrated by the graphs in Figure 2, the power consumption of the high-priority task
depends on the point in time at which the interrupt is triggered. That is, if the interrupt
arrives while the system executes Part B of the low-priority task, the high-priority task
consumes much more power compared to the case in which the interrupt arrives during
Part A when the device is still inactive. However, in both cases the high-priority task
executes exactly the same instructions (i.e., Part H ), which shows that the WCEC of the
task does not only depend on the actions taken by the task itself but also on the state the
system is in when the task starts executing, which is a result of previous actions taken by
other tasks (i.e., device activations and deactivations). As shown by the example, this may
even include actions taken by other tasks with lower priorities.

The fact that in systems with devices the worst-case costs of a task may depend on other
tasks constitutes a major difference between timing analysis and energy-consumption analysis:
To determine the worst-case execution time of the high-priority task, it is sufficient to analyze
the task in isolation. Consequently, to compute an upper bound for the response time of a
task (i.e., WCET plus potential interferences), an analysis only needs to consider the task
itself as well as all interrupt handlers and tasks that might be executed while the task is
running [5, 68]. In contrast, an analysis of worst-case (response) energy consumptions requires
a comprehensive analysis of the entire task set, which means that existing timing-analysis
approaches cannot be directly applied to analyze energy consumption in systems with devices.

Our Approach: Using a context-sensitive analysis that covers both synchronous task
activations and asynchronous interrupts, we identify all possible states the analyzed system
might reach during execution. By also analyzing the transitions between these states, we are
able to determine the set of active devices for each of the states, which consequently allows
us to precisely compute the WCECs of individual tasks.

3 The SysWCEC Approach

In the following, we present SysWCEC, a whole-system analysis approach to worst-case
response energy consumption (WCRE). We tackle the challenges mentioned in Section 2 and
tighten WCRE estimates by eliminating infeasible combinations of system-wide execution
paths and energy states and thus abandon the all-always-on approach for external devices.
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Overview
In a nutshell, SysWCEC leverages knowledge about device usage and operating-system seman-
tics for a context-sensitive system-wide control-flow analysis that, in particular, incorporates
state-dependent power consumptions. Conceptually, SysWCEC is based on the inference of
the system’s possible dynamic behavior and consequently all states the system might take
during execution. By that, we mean the system state consisting of (a) active tasks and their
priorities, (b) interrupt masks, (c) resource occupancy and ceiling priorities, and (d) power
states of external devices. This knowledge allows for fine-grained modeling of extrinsic energy
costs that can neither be attributed to individual instructions nor tasks but must be assessed
in a system context, which is a fundamental advance of traditional techniques.

To infer the system states and thus disclose all energy-relevant interactions, our whole-
system static analysis requires the following three steps, which we briefly outline next before
immersing in further details in Sections 3.1 to 3.3.
1. Abstraction and Decomposition: In a first step, SysWCEC derives control-flow

graphs of the entire system from the source code. To keep this step feasible, we take
advantage of the fact that only system calls, or syscalls for short, can alter the system
state and thus the power state and set of active devices. Consequently, our approach is
to decompose the code into coarse-grained blocks that span between syscalls and thus
are atomic from a system-state perspective: this coarsening facilitates the subsequent
state enumeration and allows SysWCEC to perform large parts of the WCRE analysis
efficiently without losing precision of dynamic device activations and deactivations.

2. Power-Aware System-State Enumeration: In the second step, SysWCEC explicitly
enumerates all possible block-to-block transitions considering the priorities of tasks,
synchronous task activations, and asynchronous interrupts. The result of this symbolic
state enumeration is a state graph that incorporates the operating-system semantics and
thus the possible dynamic behavior of the system. This, in particular, links the code
blocks from the previous step with state-dependent power states and device activities.

3. ILP Formulation & WCRE Determination: In the last step, SysWCEC determines
the worst-case energy consumption of each state-graph node based on the worst-case
execution time of the associated code block and the respective power states of active
devices. Furthermore, it constructs an integer-linear program (ILP) to eventually derive
the WCRE.

3.1 Abstraction and Decomposition
Recalling our goal of a fine-grained, state-dependent modeling of energy consumption, we first
need a global control-flow graph that, in particular, incorporates inter-task dependencies as
well as the operating system. The canonical approach to this would be a full path analysis on
a basic-block level. This granularity is, however, too fine and infeasible for the vast number
of possible program paths through an entire system [10, 38].

Nevertheless, to determine the WCRE, besides scheduling events, we are only interested
in energy-relevant events, that is, spots in the control flow that have the potential to change
the power consumption. In other words, we can abstract from sequences of instructions that
share a particular power and system state if executed uninterrupted.

We consequently based SysWCEC ’s analysis on previous work on the concept of atomic
basic blocks (ABBs) [22, 55] to abstract from the code’s microstructure and decompose the
system. An ABB is a control-flow superstructure that subsumes one or more basic blocks
and conceptually spans between syscalls. Each ABB has exactly one entry and one exit
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Figure 3 Illustration of SysWCEC ’s first two analysis steps (decomposition & state enumeration).

block, which typically is the delimiting syscalls, forming a single-entry single-exit region. As
long as the result complies with this rule, ABBs may be split arbitrarily for optimization
reasons. These construction rules imply that an ABB executes atomically from a scheduling
perspective. Still, there is no correlation between ABBs and power states.

Building on this foundation, for WCRE analysis we therefore developed the concept
of power atomic basic blocks (PABBs) with the additional property that the set of active
devices and their power states does not change within a block. With the operating system
being the governor of power states and devices, this boils down to an extended analysis and
decomposition of the implementation: any device reconfiguration is considered as a dedicated
syscall, a device syscall (see Section 2.1). Consequently, a PABB is atomically executed from
both the scheduling and power perspective. In the resulting PABB graph (i.e., coarse-grained
global control-flow graph), changes in the system state (i.e., operating-system and power
states) are possible only at the edges between PABBs. Note that the PABB graph covers the
entire system implementation and all machine instructions. By that, SysWCEC inherently
considers overheads (e.g., context switch, syscall, and scheduling costs), which are often
neglected in real-time scheduling approaches [15].

Figure 3 illustrates the decomposition into PABBs using the example system from
Section 2.3. Following the construction rules, the low-priority task is split by the device
syscalls (on/off) into three PABBs, which account for the actual power states and the
utilization of the external device. Consequently, only PABBb is modeled with active power
state, while the computation in PABBa and PABBc is assigned the correct inactive power state.
Here, the state modification is associated with the edges between the three PABBs. Similarly,
the effect of scheduling-related syscalls is handled as inter-task constraints between PABBs.
For example, the activation of the high-priority task from the ISR (PABBd to PABBe). We
further discuss the handling of asynchronous interrupts in Section 3.2.

Overall the decomposition into PABBs on its own is already a significant improvement
over the all-always-on assumption. Our approach allows for an independent analysis of
implementation artifacts and states, which has three main advantages that highly benefit the
subsequent steps: First, it substantially reduces analysis complexity and allows SysWCEC to
examine an entire system by identifying all possible states, without the need of enumerating
all possible program paths. Second, the fact that the power consumption does not change
within a PABB greatly facilitates the problem of determining upper bounds for the block’s
energy consumption. Third, the single-entry single-exit property allows the reuse of previously
developed whole-system and timing analysis techniques [17, 18, 19].
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3.2 Power-Aware System-State Enumeration
So far, the PABB graph only captures a static view of the system structure as well as
the interactions between application, operating system, and external devices. Therefore,
SysWCEC leverages the PABB graph in a second analysis step to deduce the dynamic system
behavior by an explicit enumeration of all feasible system states and all transitions between
them. A key aspect of this step is to further enrich the analysis by a model of operating system
behavior (i.e., fixed-priority scheduling and resource protocols), the system configuration
(e.g., task priorities, minimal inter-arrival times, and deadlines), and an energy cost model of
the external devices. The resulting power-state–transition graph (PSTG) ultimately exposes
the aspired context-aware global execution paths, including synchronous and asynchronous
preemptions (i.e., task switches and interrupts). Thereby, we are subsequently able to identify
and eliminate infeasible combinations of system-wide execution paths and power states and
thus further refine the input for the final step in Section 3.3. Overall, the PSTG holds all
relevant information to safely formulate an ILP, whose solution yields the WCRE. In the
following, we detail the elements of the PSTG as well as its construction and show how to
incorporate the operating-system semantics and the energy costs of devices.

Basic Principle and Operating-System Semantics
We begin our elaboration of the PSTG with its underlying principles and the operating-
system–aware identification of possible execution paths. The basic construction rule is, as
mentioned, to enumerate all possible system states and all transitions between them. A system
state node is defined to hold the following information: (a) operating-system parameters,
including the set of tasks with their current status (i.e., ready, running, suspended), priority,
acquired resources, and resumption point as well as the ceiling priority. (b) Interrupt-related
information including their status (i.e., enabled, pending, acknowledged). Finally, each state
comprises (c) exactly one PABB and thread of execution, accordingly.

The construction algorithm starts with a dedicated entry state that is set up by the boot
code. From this initial state, the application logic, which is obtained from the PABB graph,
is simulated on a model of the operating system. At this point, the system configuration
comes into play, which is used to instantiate the model to fit the concrete implementation.
Subsequently, all reachable states are enumerated while the operating-system scheduling
semantics are employed to discover inter-thread transitions. For example, when multiple tasks
are runnable, the algorithm selects the task with the highest priority, and the follow-up state
node references the task’s entry PABB. Reconsidering the example system and its PSTG (see
right part of Figure 3), the only successor of the interrupt is the runnable high-priority
task. A transition to the low priority task is not possible in the fixed-priority scheduling
model within this context-sensitive PSTG node. Moreover, tasks do not necessarily have
their configured static priority due to shared resources and the employed priority-ceiling
protocol [7] with its priority inheritance. Thus, tasks can have a dynamic priority, which is
context-sensitively recorded in the task parameters of each PSTG node. Consequently, a
PABB can occur multiple times in the PSTG with varying system states.

Handling Interrupts
Although the scheduler treats PABBs as atomic units, asynchronous interrupts can be released
within a PABB’s execution. At runtime, the interrupt could occur after every instruction and
thus multiple times during the PABB execution. To handle such asynchronous preemptions,
the PSTG construction algorithm inserts transitions from interruptible PSTG nodes to the
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entry functions of the ISRs (see the transition from lower-priority task to ISR in Figure 3).
On the PSTG level, a single interrupt transition facilitates the state enumeration and is
sufficient to enable compliance with the construction rules. We show in Section 3.3.2 how to
bound the actual number of occurring interrupts in the final ILP formulation with help of
the interrupt’s minimum inter-arrival time and its response time from entry to return [19].

Power States and Energy-Consumption Costs

Finally, the PSTG’s most distinctive feature comes into play: the inference of the current
power state and the set of active devices. The associated power consumptions are taken from
the given energy cost model. This combined information is crucial for modeling the WCEC
of the individual system states during the ILP construction (see Section 3.3).

The power states are determined as part of the state enumeration: the construction
algorithms memorizes the last power state when following transitions and updates the
state (i.e., set of active devices) whenever it encounters a device syscall. Consequently, all
possible succeeding nodes obtain the updated power state. In the same way, energy penalties
(e.g., caused by mode changes) are incorporated at node transitions. Figure 3 illustrates
the resulting power states as state-dependent consumption data. In this example, the ISR
and the high-priority task are penalized with the additional power consumption caused by
the device activation in the low-priority task only if the interrupt occurs within the device’s
operation period (i.e., within PABBb). Note that, as with scheduling, the PSTG construction
only eliminates infeasible states. Still, it contains all feasible combinations of execution and
power state. Thus, WCEC estimation is the responsibility of the following ILP step.

Overall, the final PSTG incorporates by construction all possible execution paths of the
concrete system under consideration of operating-system locks, scheduling, and interrupts as
well as device usage and energy penalties. This modeling approach, like the PABB graph,
represents a genuine simplification since it allows for independent handling of the system
state and thus does not bloat the following ILP formulation unnecessarily. In Section 3.4, we
provide details on our analysis framework and on how the executable system is generated,
which behaves identically to the PSTG’s analysis model [16].

3.3 ILP Formulation & Determining the WCRE

In the following, we describe how SysWCEC formulates an ILP to determine the WCRE
of the overall system based on the entire PSTG. Analyzing the WCRE of a particular task
would require the same steps, but only consider a subgraph of the PSTG that spans from
the task’s release until its completion. Our approach is based on a sound extension [19] of
the well-known and proven implicit path-enumeration technique [42, 52], which we adapt
for whole-system worst-case energy-consumption analysis. Once formulated, the ILP can be
solved with a mathematical optimizer to eventually compute the WCRE.

3.3.1 Integer Linear Program

The main idea behind the ILP produced by SysWCEC is to determine for each PSTG node v
how often the system executes the node in the worst case and to connect this execution
frequency f(v) to the worst-case energy consumption E(v) of the machine code corresponding
to the node. For this purpose, we rely on the following objective function to maximize the
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Figure 4 The ILP formulation derived from the PSTG accounts for the interrupts and potential
switches to higher-priority tasks.

flow through the graph:

WCRE = max
(
(∑

v∈V

E(v) · f(v))︸ ︷︷ ︸
nodes

+ (∑
ε∈E

E(ε) · f(ε))︸ ︷︷ ︸
edges

)

Apart from nodes, the objective function also considers worst-case energy costs E(ε) for
edges ε ∈ E in the PSTG. This allows us to take energy costs into account that are caused
by transitions between different power modes of a device and are a result of the fact that
power-mode changes for some devices do not complete instantaneously.

To provide sound results, SysWCEC requires E(v) and E(ε) to be upper bounds of the
energy consumptions of the PABB associated to node v and of the power-mode transition
represented by edge ε, respectively. However, the SysWCEC approach does not make any
assumptions on how these worst-case values are obtained which enables the reuse of existing
WCEC analysis techniques [35, 50, 71]. One possibility to determine the WCEC for the PABB
of a PSTG node v, for example, is to multiply the block’s worst-case execution timeWCET (v)
by Pmax(v), the maximum amount of power the system and its devices consume while the
system is in the state represented by the PSTG node v; that is, E(v) = WCET (v) ·Pmax(v).
As explained in Section 3.2, such knowledge about the power state of the system is part of
the information maintained by SysWCEC in the PSTG and updated on each system-state
transition. We discuss further refinements of this model in Section 6.

In addition to the objective function presented above, the ILP formulated by SysWCEC
includes a set of constraints to specify dependencies between the execution frequencies f(v)
and f(ε) of nodes and edges: (1) The entry and exit edge of the PSTG are each assigned
a frequency of 1. (2) For each node v in the PSTG, the sum fin(v) of the execution
frequencies of all incoming edges must be equal to the node’s execution frequency f(v)
and must match the sum fout(v) of the execution frequencies of all outgoing edges; that is,
∀v ∈ V : f(v) = fin(v) = fout(v). This constraint preserves the flow through the graph.

3.3.2 Handling Interrupts in the ILP
If an interrupt can occur within the execution of a PSTG node’s PABB, the graph contains
a single corresponding interrupt-transition edge. However, as the interrupt may be triggered
more than once, in the ILP SysWCEC needs to consider the interrupt multiple times. Figure 4
illustrates this scenario for an example PSTG with three nodes: a node a depicting a low-
priority task, a node b representing the asynchronous interrupt, and a node c referring to
a high-priority task. With interrupts at most being released with a minimum inter-arrival
time pi (see Section 2.1), there is an upper bound N ∈ N0 for the number of interrupts that
can occur during the execution of a system. In our example N = 4, which also represents the
number of times the PABB of node a can be preempted and resumed. To bound N we use
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the following inequation based on T , the runtime of the system for the execution scenario in
which the system achieves its worst-case response energy consumption:

pi · (N − 1) ≤ T

In a nutshell, this constraint expresses the fact that the longer the system runs (i.e., the
larger T ), the more interrupts N may be triggered. In the worst case, the first interrupt is
released right at the start of system execution, with another interrupt following every pi. To
determine T , we combine the worst-case execution times WCET (v) and WCET (ε) of all
PSTG nodes and edges and combine them with the execution frequencies f(v) and f(ε) of
the ILP’s objective function presented in Section 3.3.1:

T = (∑
v∈V

WCET (v) · f(v)) + (∑
ε∈E

WCET (ε) · f(ε))

Relying on the same execution frequencies that are used to compute the WCRE ensures
that T actually represents the runtime of the scenario consuming the most energy.

Using the constraint presented above to bound the maximum number of interrupts,
a solver is able to determine the WCRE of a system with interrupts, but may provide
unnecessarily pessimistic results, as the following example based on Figure 4 shows: With
the execution frequency of the graph’s entry edge being f(ϑ) = 1, the PABB of node a
under any circumstance is only executed once; that is, f(a) = 1. However, applying the
flow-preserving constraint, without further action, a solver would compute an execution
frequency of f(a) = fin(a) = f(ϑ) + f(γ) = 1 + N = 5, accounting for the fact that the
interrupt may resume up to N times. To prevent such overestimations, we differentiate
between synchronous and asynchronous activations, which is knowledge that is already an
attribute of the PSTG’s transition edges (see Section 3.2). This approach allows us to
consider and subtract the number of completed suspend-resume cycles when determining the
execution frequency of a node v as follows: f(v) = fin,sync(v) + fin,async(v)− fout,IRQ(v),
with fin,sync(v) and fin,async(v) being the execution frequencies of all incoming synchronous
and asynchronous edges, respectively, and fout,IRQ(v) representing the execution frequency
of all outgoing interrupt edges of the node. For the example system, this optimization reduces
the execution frequency of node a to f(a) = f(ϑ) + f(γ)− f(α) = 1 +N −N = 1, and as
a consequence correctly reflects the actual execution frequency of this node. In a similar
way, SysWCEC is able to address interrupt preemptions that are not resumed, which can
happen if the start and end point of the WCRE analysis are in different tasks. Note that in
the example the described optimization only affects the execution frequency of node a. The
execution frequencies of both other nodes still take the effects of multiple interrupts into
account, resulting in frequencies of f(b) = 0 + f(α)− 0 = N and f(c) = f(β) + 0− 0 = N .

3.4 Implementation
As shown in Figure 5, the SysWCEC toolchain relies on two main components: a modified
version of the dOSEK framework [30] to construct the power-state–transition graph, and
the Platin analysis toolkit [29, 51] to formulate the integer linear program necessary to
determine the WCRE. Both the dOSEK system-analysis/-generation framework and the Platin
timing-analysis toolkit are fundamentally based on the LLVM compiler infrastructure [40].

Provided with the specification of a real-time system and the implementation of tasks and
interrupts, dOSEK is able to identify all possible system states and to automatically generate
an executable and OSEK-compliant (i.e., ECC1 [49]) operating-system implementation.
The conformance class ECC1 allows using prioritized, preemptible, self-suspending, and



P. Wägemann, C. Dietrich, T. Distler, P. Ulbrich, and W. Schröder-Preikschat 24:13

Task implementations

System configuration

Device configuration

System semantics

dOSEK
framework PSTG

Executable system

Platin

WCEC

Figure 5 Workflow of the SysWCEC analyzer.

work-preserving tasks. Tasks can wait for specific events and can acquire resources, whereas
a stack-based priority-ceiling protocol (PCP) avoids unbounded priority inversion [6]. dOSEK
is able to perform the entire system-state enumeration considering also the dynamic priorities
due to the PCP. For SysWCEC, we made extensive enhancements to implement the concepts
of analysis, decomposition, and state enumeration described earlier. In particular, we
introduced the notion of device syscalls, added means to supply dOSEK with information
about the maximum power consumption of devices in different modes, and enabled the
framework to track the modes of devices across different system-state transitions. As a result
of our modifications, dOSEK now performs a whole-system state analysis that takes devices
into account and puts out the results in the form of the power-state–transition graph.

Providing Platin with the PSTG and the system implementation generated by dOSEK,
we can use the toolkit to determine the WCET of PABBs. This allows us to compute the
WCEC for each system state by multiplying the WCET of the associated block by the
power-mode–specific maximum power consumption of all the devices that are active in the
state. Based on this knowledge, Platin formulates the ILP for the WCRE bound that is
then solved by the mathematical optimizer Gurobi [28].

4 Evaluation

In this section, we experimentally evaluate the SysWCEC approach and its prototype. Our
focus in this context does not lie on proving that the WCRE values determined by SysWCEC
are actually upper bounds for response energy consumption. As discussed in Section 3.3.1,
due to relying on proven analysis techniques SysWCEC delivers sound results by construction,
provided that the worst-case energy model used for the analysis is accurate. Creating energy
models with such properties is feasible [50] but outside the scope of this paper, which is why
in our evaluation we concentrate on assessing the effectiveness of SysWCEC in comparison
to existing analysis techniques. To obtain meaningful results, for this purpose we require an
energy model that comprises realistic values for the power consumption of different hardware
units, including devices and peripherals, which we can then use as input for SysWCEC. In
Section 4.1 we describe how we compiled the energy model for our experiments. We do not
claim this model to contain guaranteed upper power-consumption limits. Nevertheless, due
to offering information on the characteristics of real-world hardware components, the model
allows us to evaluate SysWCEC’s ability to deal with temporarily active devices (Section 4.2),
its context-sensitive analysis (Section 4.3), as well as its scalability (Section 4.4).

4.1 Energy Model
In order to be able to evaluate SysWCEC with realistic power and energy consumption values
of devices, peripherals, and processors, our energy model combines knowledge from different
sources (e.g., manuals, measurements) and different hardware platforms.
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CPU, 28MHz 3.86mA 0.06mA 14.61 µA / 0.38%
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Memory, 1MHz 0.51mA 2.71 µA 1.04 µA / 0.20%

Figure 6 ARM Cortex-M4: Traces for CPU-bound (left) and memory-bound benchmarks (right).

Devices and Peripherals

Our first platform is an NXP FRDM KL46z evaluation board [23, 24] that features an ARM
Cortex-M0+ core [4] with 256 KB of flash memory, 32 KB of SRAM, and a small cache (i.e.,
4-way, 4-set program flash memory cache with a size of 64B). We set up the evaluation board
to run the execution pipeline at 48 MHz, the bus speed is 24 MHz. Apart from the processor,
the board comprises a rich set of different devices including two LEDs, an accelerometer,
a magnetometer, and an analog-to-digital converter. In addition, we attached an ESP8266
Wi-Fi module [67] as transceiver and an external ferroelectric RAM (FRAM) chip [25] as non-
volatile storage. For most devices and peripherals, detailed documentation on the maximum
power consumption is available (e.g., LEDs [46], accelerometer [48], magnetometer [47],
analog-to-digital converter [24]). In all other cases, we obtain realistic power-consumption
values by measurement relying on the source-measure unit Keithley 2612 [36], which is
able to measure minimum currents of 100 fA and minimum voltages down to 100 nV at a
temporal resolution of up to 20 µs. Using this source-measure unit circumvents the problem
of potentially noisy power supplies and the problem of influencing the system under test with
shunt-based measurement setups; both are known problems in the context of benchmarking
low-power applications [21]. The results for our first platform are presented in Table 1.

Processor Power Modes

With our first platform’s processor only offering a few power modes, we use a second platform
with a more complex processor (i.e., an EFM32 Giant Gecko evaluation board [63, 65]
with an ARM Cortex-M4) to examine the effects of different processor power modes. For
measurements, in this case we rely on the board’s integrated current-measurement circuitry,
which is able to quantify currents from 0.1 µA to 50 mA and allows us to measure the power
consumption of the microcontroller and correlate it to the code executed. As programs, we
select a CPU-bound benchmark performing a prime-number calculation and a memory-bound
benchmark repeatedly copying data, because these two categories represent the two ends
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Figure 7 Measurement results for phases with different sets of active devices.

of the spectrum with regard to power consumption [12, 75]. Figure 6 shows the results
and illustrates the impact of different processor power modes on execution time and power
consumption. SysWCEC addresses this issue by differentiating processor power modes when
analyzing a system, thereby modeling the processor in a conceptually similar way to devices.

Mode-Change Latencies
Hardware units not only consume energy while running in a certain power mode but also
during the switch from one power mode to another. SysWCEC takes this fact into account
by considering mode-change latencies and consequently attributing additional energy costs
to power-mode switches. For most devices and peripherals of our two evaluation platforms,
we found the associated mode-change overhead to be negligible, which is why in the following
we focus on measurement results for the processor of our second platform. On the ARM
Cortex-M4, switching from 28MHz to 48MHz, for example, takes 396 µs and comes with
an energy overhead of 8.71 µJ. For comparison, the CPU-bound benchmark computing
a 4-digit prime number on the same platform at 28MHz requires 2 ms and 25.5 µJ. This
shows that power-mode changes can have a significant impact on response time and energy
consumption, although many energy-aware real-time scheduling approaches do not consider
such overheads [8]. SysWCEC, on the other hand, includes time and energy costs for
power-mode switches when analyzing worst-case (response) energy consumption.

4.2 WCRE Analysis for Temporarily Activated Devices
Using the energy model obtained in Section 4.1, in our first experiment we evaluate SysWCEC
in the context of a system in which the set of active devices and peripherals constantly
changes, as it is the case in a practical system that only activates devices temporarily in order
to minimize energy consumption (see Section 2.2). The experiment runs on the Cortex-M0+
platform and, as shown in Figure 7, consists of phases with different sets of active devices,
which results in varying overall power consumption. In each phase, we first execute a specific
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Table 2 WCRE-estimate comparison between the all-always-on approach and SysWCEC.

Benchmark WCRE All-Always-On WCRE SysWCEC Improvement

#1 Transceiver (w/o resource) 4,389.10 µJ 3,786.32 µJ 13.73%
#2 Transceiver (w/ resource) 4,473.91 µJ 818.66 µJ 81.70%
#3 Synchronous activation 2,266.28 µJ 1,236.15 µJ 45.45%
#4 Asynchronous IRQ 399.88 µJ 335.41 µJ 16.12%

event (e.g., a device activation) or a specific job (e.g., a computation) and subsequently delay
execution for 2 ms. When the system activates the transceiver at the beginning of Phase 3 ,
our results show power-consumption spikes that last for a short period of time. The spikes
are an artifact of our current prototype hardware and in a practical system can be prevented
by additional hardware circuitry [32]. In general, the power consumption within each phase
behaves almost linear, as also confirmed by the small standard deviations (see Figure 7).

The measurements on the hardware platform for the Phases 2 to 5 illustrate that
activating and deactivating devices has a considerable impact on the power consumption of
the whole system, especially in comparison to Phase 1 when all devices are still switched off.
This observation confirms that for an analysis of a system’s (worst-case) energy consumption
it is not sufficient to only take the processor into account, but crucial to consider all power
consumers in the system. Although the power consumption of the processor varies depending
on whether it executes a CPU-bound job (e.g., a prime-number calculation in Phase 8 ) or
a memory-bound job (e.g., copy operations in Phase 9 ), the overall impact of the work
performed by the processor is comparatively small.

Using the common approach to determine the WCRE for a system with devices, that
is, to assume that all devices are always on (see Section 2.2), for the evaluated scenario
results in a significant overestimation, as indicated by the red area in Figure 7. In contrast,
by decomposing the system into parts during which devices do not change power modes,
SysWCEC is able to provide much lower bounds, for example, due to being aware that the
transceiver is only operating in Phase 3 and definitely remains inactive the rest of the
time. For this experiment, the SysWCEC approach leads to a WCRE of 398.53mJ, which
is 79.25% lower than the value determined by the all-always-on approach, representing the
difference between the area under the green curve and the red area in Figure 7.

4.3 Exploiting Context-Sensitive Knowledge

In our next experiments, we focus on systems with multiple tasks and compare the WCRE
values provided by SysWCEC with the WCRE values determined with the all-always-on
approach. To obtain representative energy-consumption values, we combine the target
platform, in this case the PATMOS research processor [58, 59], with our energy model. We
configure the processor to run at 1MHz and a static power consumption (i.e., all devices
deactivated) of 10mA. As workload, we select a total of four benchmarks with different
characteristics to be able to evaluate a wide spectrum of scenarios. Table 2 presents and
compares the WCRE values determined by both methods evaluated. To compute the WCRE
estimate for the all-always-on approach, we multiply the exact worst-case response time of
the system by the amount of power the system consumes when all devices are switched on.
In the following, we discuss the results of each benchmark in detail.
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Benchmark#1 –Transceiver Benchmark
The structure of the first benchmark resembles the example in Figure 2: A low-priority task
activates a device, in this case a WiFi transceiver, for example, to log the system status.
During the execution of the task, an interrupt preempts the task and activates another higher-
priority task, which is then dispatched after the interrupt service routine has terminated.
For the worst-case scenario of the interrupt occurring while the transceiver is active, the low-
priority task spends about 8% of its overall response time before activating the device (i.e.,
Part A in Figure 2), about 83% of the time while the device is active (Part B ), and the
remaining about 9% of the time after having switched off the device (Part C ). Our results in
Table 2 show that for this benchmark, the WCRE value determined by SysWCEC is 13.73%
lower than the WCRE value obtained with the all-always-on approach. This improvement is
possible because due to its context-sensitive analysis of the system SysWCEC knows that it
is impossible for the transceiver to be active during Part A and Part C of the low-priority
task, which in combination represent about 17% of the task’s worst-case response time.

Benchmark#2 –Transceiver Benchmark with Resource
For our second benchmark, we modify the first benchmark and introduce a shared resource
between the low-priority task and the high-priority task. In OSEK, shared resources are
typically used to coordinate different tasks and can only be acquired by at most one task at
a time. In our benchmark, the low-priority task acquires the resource right before activating
the transceiver and releases it immediately after deactivating the transceiver. Applying the
stack-based priority ceiling protocol [6], which is mandated by the OSEK standard to solve
the problem of unbounded priority inversion, when the interrupt occurs while the low-priority
task holds the resource, the execution of the high-priority task is deferred until the resource
has been released. As a consequence, the high-priority task no longer has an influence on the
transceiver’s active time, independent of when the interrupt is actually triggered. In contrast
to the all-always-on approach, SysWCEC is able to exploit this knowledge and consequently
determines a 81.70% lower WCRE value, accounting for the fact that even in the worst case
the transceiver is only active during a small part of the low-priority task’s response time.

Benchmark#3 – Synchronous Task Activation
In the next benchmark, a low-priority task synchronously activates two tasks with higher
priorities, one prior to switching on a transceiver and the other one afterwards. As both
high-priority tasks take the same time to run and due to their execution times dominating
the response time of the low-priority task, the transceiver is activated about half way into
the experiment. This leads to SysWCEC being able to provide a WCRE estimate that is
45.45% lower than the all-always-on value.

Benchmark#4 –Asynchronous Events
The fourth benchmark consists of a task activating a transceiver and an interrupt service
routine deactivating it again. Such a setting represents a textbook example of why context-
sensitive WCRE analysis is conceptually different from worst-case response time analysis: To
determine the worst-case response time, an analysis must consider the scenario in which the
interrupt occurs as often as its minimum inter-arrival time allows; in this case, this results in
a response time of 1,377 cycles. In contrast, WCRE analysis must focus on the scenario with
the highest energy consumption, which for this benchmark is the interrupt being triggered
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Table 3 Analysis runtimes and statistics for different benchmarks.

Benchmark State Enumeration States Transitions ILP Solving

Transceiver (w/o resource) 54.05ms 63 71 534ms
Transceiver (w/ resource) 69.23ms 84 96 869ms
Synchronous activation 40.44ms 19 19 308ms
Asynchronous IRQ 42.88ms 35 40 136ms
Multiple devices (2 tasks) 73.63ms 119 135 0.91 s
Multiple devices (3 tasks) 535.22ms 1,356 1,580 10.41 s
Multiple devices (4 tasks) 1.4 s 6,231 7,359 54.17 s
Multiple devices (5 tasks) 2.62 s 39,711 47,215 33.17min

only once: at the very end of the task’s computation; for this scenario, the response time
is only 1,155 cycles. SysWCEC correctly identifies this scenario and determines a 16.12%
lower WCRE value than the all-always-on approach.

4.4 Scalability

In our last experiment, we evaluate the performance and scalability of the SysWCEC approach,
thereby focusing on the two steps that contribute to the overall analysis runtime: the symbolic
state enumeration performed by dOSEK and the solving of the ILP (see Section 3.3). All
analyses run on a server (Intel Xeon E5, 80 cores, 132GB RAM) and use Gurobi 7.5 for ILP
solving. To reduce durations for ILP solving, we explored parameter-tuning strategies [28]
and carried out optimizations in Gurobi, which eventually determines optimal bounds.

Apart from the results of the four benchmarks introduced in Section 4.3, we also present
measurements gained from four additional benchmarks that use multiple devices and all
share the following general structure: All of these benchmarks consist of a low-priority task
whose WCRE is to be determined. Apart from this task, the benchmarks comprise a set
of additional tasks that each possess a unique higher priority and are activated through
dedicated asynchronous interrupt service routines; the minimum inter-arrival time between
interrupts is 100 ms. All tasks in the system are assigned different devices. During execution,
a task first switches on its device, then performs a computation, deactivates the device again,
and finally terminates. To evaluate the impact of system complexity on analysis runtime,
we rely on four different benchmarks whose task-set sizes range between 2 and 5. Note that
due to the interfering interrupts and number of tasks, from a system-level perspective our
multi-device benchmark comprising 5 tasks plus 4 task-activating interrupts has a comparable
complexity as the real-world real-time benchmark DEBIE [31].

Table 3 compares the execution times for the two evaluated analysis steps and also
presents the number of system states and transitions identified by SysWCEC for each
benchmark. The results show that in general solving the integer linear program takes
significantly more time than enumerating all system states and that the runtime of both
analysis steps increases with the number of possible system states. In Section 6.2, we discuss
how to further improve the performance and scalability of SysWCEC and its exponential
state growth with increasingly complex systems. Nevertheless, even for systems with high
complexity such as the multi-device benchmark with 5 tasks, preemptions through interrupts,
and dependencies between tasks and interrupts, leading to 39,711 different system states and
47,215 transitions, SysWCEC can complete the entire analysis in around half an hour.
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5 Related Work

The development of SysWCEC benefited from lessons learned in our previous work on system-
wide timing analysis for fixed-priority real-time systems [19]. However, due to the substantial
differences in objectives and requirements between timing analysis and energy-consumption
analysis, we were not able to directly apply our existing analysis techniques to the problem
of determining WCREs. Instead, it became necessary to develop a new approach, SysWCEC,
that solves the specific problems associated with energy-consumption analysis. To the best
of our knowledge, SysWCEC is the first work that enables determining WCEC bounds in
peripheral-driven real-time systems that execute on various low-power modes.

Existing WCEC-analysis techniques [27, 35, 71] only consider the analysis of a single
thread with a fixed set of active peripherals. In analogy to WCET tools, these analyzers follow
the common approach of carrying out a hardware-independent path analysis that is combined
with a hardware-dependent cost analysis. In contrast to these existing techniques, SysWCEC
is able to analyze a whole embedded system with all attached or integrated power consumers.
In addition to the awareness of all power-consuming devices and peripherals, the SysWCEC
approach precisely addresses all non-hierarchical program flows such as synchronous task
activations and asynchronous interrupts.

The integration of transceivers is common in the area of wireless sensor networks to
estimate the overall lifetime of nodes [20, 39, 43]. Such lifetime-estimation tools are already
featured by integrated development environments for battery-constrained devices [64]. Their
basic principle is to multiply the maximum drawn power by the fixed duty cycle of periodically
receiving/transmitting applications. In distinction to these approaches, SysWCEC is capable
of modeling fixed-priority sporadic task sets with real-time constraints. An interleaved timing
analysis determines the duration of activated devices and these costs are integrated into an
overarching ILP formulation, which yields WCRE bounds.

Schneider pointed out that it is impossible to analyze timing constraints of applications
without considering the semantics of the operating system and vice versa [56]. To solve this
problem, he proposed to integrate fixed-priority scheduling semantics into timing analysis [57].
Following the idea of whole-system analysis, SysWCEC provides means to integrate multiple
devices to determine WCRE bounds between two arbitrary program points in the system.
The integration of operating-system standards [1, 49] into commercial, static analysis tools,
such as Astrée, indicates the relevance of system semantics in analyzers [44].

In the context of real-time scheduling, a system’s power consumption is often determined
based on the frequency-aware power model [14, 33, 77, 78], which is then exploited by DVFS.
This power model assumes that the system’s dynamic power consumption only depends
on the processor’s frequency. However, when considering systems that use devices, such as
sensors, this model is no longer applicable. SysWCEC addresses the integration of devices
with knowledge of global system paths and their set of active devices.

Furthermore, many scheduling approaches using DVFS to minimize energy consumption
while still guaranteeing timeliness neglect the overheads to switch the processor frequency [8].
As we found out for an ARM Cortex-M4 (EFM32), the latency to switch the frequency
can be up to 396 µs. Rusu et al. and Zhang et al. discovered even greater latencies for
the PowerPC 405LP [54] and a digital signal processor [76]. Since SysWCEC’s central data
structure, the PSTG, contains all executed instructions and all possible paths in the whole
system, it is inherently aware of these transition overheads.

In addition to the DVFS power model, a huge body of related work exists on energy-
cost models for the processor’s microarchitecture [13, 37, 41, 45, 50, 60, 61, 69]. However,

ECRTS 2018



24:20 Whole-System WCEC Analysis

considering the relations of power consumers in energy-constrained systems, processing
cores only take a minor portion of the whole-system consumption. SysWCEC focuses on
precisely integrating these consumers and determines WCRE bounds, but can profit from
these advances on more fine-grained energy-consumption models.

6 Discussion & Future Work

In this section, we first discuss both improvements of our energy-consumption model and the
scalability of the approach, and then outline our future work in the context of SysWCEC.

6.1 Improving Energy-Consumption Hardware Model
SysWCEC is a sound formulation of the path-analysis problem of whole-system WCRE
analyses. In the current implementation, we use the maximum power consumption of a
PSTG node and multiply it by its WCET to obtain an upper bound for the node’s en-
ergy consumption. Our measurements in Section 4.2 show only small variations in power
consumption within a power mode (i.e., around 5%). This is especially true when these
minor variations are put into relation with the orders of magnitude the whole system’s
power consumption varies when switching between power states. Consequently, we expect
our method for determining a node’s WCEC to result in only small overestimations. How-
ever, if necessary this model could be further improved with knowledge of the platform’s
microarchitecture [13, 37, 41, 45, 50, 60, 61, 69].

6.2 Further Improving Scalability
Although already providing reasonable analysis durations of around half an hour for larger
systems (see Section 4.4), the scalability of the approach can be further enhanced. In
particular, there are three directions for optimizing SysWCEC and mitigating the problem of
exponential state growth: (1) constructing a smaller PSTG that also reduces the ILP size,
(2) speeding up PSTG construction itself, and (3) improving ILP-solving times. First, it is
possible to group several PSTG nodes together into a larger super structure [18]. Although
this approach might sacrifice precision and lead to higher overestimations, it potentially
enables smaller ILP formulations and thus shorter solving times. Second, dOSEK’s current
state enumeration is implemented using a single thread. Consequently, the framework would
greatly benefit from parallel symbolic state enumeration [11] and the usage of multi-core
platforms. Third, although we applied heuristics to speed up ILP solving [28], the process
can be further enhanced by providing upper bounds for variables by exploiting traditional
WCRT analyses [5]. Thereby, search spaces can be narrowed and thus solving times reduced.

6.3 Trading Timeliness for Energy Consumption
Trading worst-case energy consumption for worst-case execution time and vice versa is an
upcoming research area [26, 34]. In the evaluation, Benchmark#2 demonstrated that blocking
the execution of a higher-priority task can be beneficial if it prevents the preemption of a
lower-priority task that has previously activated a device. This blocking leads to a prolonged
WCRT of the higher-priority task, but – depending on the deadlines, duration of the critical
section, and power consumptions – the overall benefit can be optimized. With SysWCEC,
we provide a framework that is capable of analyzing both WCRE and WCRT bounds along
critical program paths of entire systems. This comprehensive framework is beneficial to find
optimal solutions for peripheral-driven real-time systems in the time-vs-energy trade-off.
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7 Conclusion

Power consumption in energy-constrained real-time systems depends not only on the process-
ing unit but also on peripherals. Although these devices are often dynamically (de-)activated,
current WCEC analyses do not take this fine-grained structure into account and there-
fore yield overestimations. Furthermore, with the (de-)activation of devices, the energy
consumption of a single task can influence any other task (also tasks of higher priority).

The SysWCEC analyzer processes OSEK-compliant (i.e., ECC1) real-time systems and
determines WCRE bounds. For this, we present the power-state–transition graph, a device and
operating-system–aware data structure. Using this representation, we are able to enumerate
all possible system states of fixed-priority real-time systems using multiple devices. This
knowledge allows formulating an ILP, whose solution eventually yields the WCRE.

Source code of SysWCEC: https://gitlab.cs.fau.de/syswcec
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