Proof Techniques for Program Equivalence in Probabilistic Higher-Order Languages

Valeria Vignudelli
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP
Lyon, France

Abstract

While the theory of functional higher-order languages, starting from lambda-calculi, is a well-established research field, it is only in recent years that the operational semantics of higher-order languages with probabilistic operators has started to be extensively studied. A fundamental notion in the semantics of programming languages is that of program equivalence. In higher-order languages, program equivalence is generally formalized as a contextual equivalence [6], which can be hard to prove directly. This has motivated the study of proof techniques for contextual equivalence, from inductive ones, such as logical relations [7], to coinductive ones, mainly in the form of bisimulations [1]. In this talk I will discuss proof techniques for program equivalence in languages combining higher-order and probabilistic features. Several operational methods, traditionally developed in a deterministic setting, have been adapted to probabilistic higher-order languages [2, 5, 3]. I will discuss these proof methods and focus on bisimulation-based techniques, showing how probabilities, combined with different language features, force a number of modifications to the definition of bisimulation [4, 8].

2012 ACM Subject Classification Theory of computation → Lambda calculus, Theory of computation → Operational semantics, Theory of computation → Probabilistic computation

Keywords and phrases Lambda Calculus, Contextual Equivalence, Bisimulation, Probabilistic Programming Languages

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.4

Category Invited Talk

Funding The author has been funded by the European Research Council (ERC) under the European Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157).

References

Proof Techniques for Program Equivalence in Probabilistic Higher-Order Languages

