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Abstract
A categorical model of the multiplicative and exponential fragments of intuitionistic linear logic
(IMELL), known as a linear category, is a symmetric monoidal closed category with a monoidal
coalgebra modality (also known as a linear exponential comonad). Inspired by R. Blute and
P. Scott’s work on categories of modules of Hopf algebras as models of linear logic, we study
Eilenberg-Moore categories of monads as models of IMELL. We define an IMELL lifting monad
on a linear category as a Hopf monad – in the Bruguieres, Lack, and Virelizier sense – with a
mixed distributive law over the monoidal coalgebra modality. As our main result, we show that
the linear category structure lifts to Eilenberg-Moore categories of IMELL lifting monads. We
explain how monoids in the Eilenberg-Moore category of the monoidal coalgebra modality can
induce IMELL lifting monads and provide sources for such monoids. Along the way, we also define
mixed distributive laws of bimonads over coalgebra modalities and lifting differential category
structure to Eilenberg-Moore categories of exponential lifting monads.
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1 Introduction

Linear logic, as introduced by Girard [11], is a resource sensitive logic which due to its
flexibility admits multiple different fragments and a wide range of applications. A categorical
model of the multiplicative fragment of intuitionistic linear logic (IMILL) [2, 12] is a symmetric
monoidal closed category, while a categorical model of IMILL with negation is a ∗-autonomous
category [23]. Categories of modules of (cocommutative) Hopf algebras (over a commutative
ring) are important and of interest, especially in representation theory, due in part as they
are (symmetric) monoidal closed categories [7, 15]. Blute [5] and Scott [4] studied the idea of
interpreting categories of modules of Hopf algebras as models of IMILL with negation and its
non-commutative variant. If one were instead to look in a more general setting, categories of
modules of cocommutative Hopf monoids in arbitrary symmetric monoidal closed categories
are again symmetric monoidal closed categories and therefore models of IMILL. But for what
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kind of monoids in categorical models of the multiplicative and exponential fragments of
intuitionistic linear logic (IMELL), is their categories of modules again a categorical model of
IMELL?

The exponential fragment of IMELL adds in the exponential modality which is a unary
connective ! — read as either “of course” or “bang” — admitting four structural rules [2, 19]:
promotion, dereliction, contraction, and weakening. In terms of the categorical semantics:
the exponential modality ! is interpreted as a monoidal coalgebra modality [3] (see Definition
14 below) – also known as a linear exponential comonad [22] – which in particular is a
symmetric monoidal comonad (capturing the promotion and dereliction rules) such that for
each object A, the exponential !A comes equipped with a natural cocommutative comonoid
structure (capturing the contraction and weakening rules). Categorical models of IMELL are
known as linear categories [2, 17, 19], which are symmetric monoidal closed categories with
monoidal coalgebra modalities.

We can now restate the question we aim to answer in this paper:
Question 1: “For what kind of monoid A in a linear category, is the category of modules
of A also a linear category?”

We have already discussed part of the answer regarding the symmetric monoidal closed
structure of a linear category: the monoid A needs to be a cocommutative Hopf monoid. What
remains to be answered is how to ‘extend’, or better yet ‘lift’, the monoidal coalgebra modality
to the category of modules of A. Observing that if A is a monoid, then the endofunctor
A⊗− is a monad (see Section 9) and so the category of modules of A corresponds precisely
to the category of Eilenberg-Moore algebras of the monad A⊗−. Therefore, we can further
generalize the question we want answered:

Question 2: “For what kind of monad on a linear category, is the Eilenberg-Moore
category of algebras of that monad also a linear category?”

This now becomes a question of how to lift a comonad to the Eilenberg-Moore category of a
monad. And the answer to this question brings us into the realm of distributive laws [1, 26].

Main Definitions and Results

The two main definitions of this paper are exponential lifting monads (Definition 17) and
IMELL lifting monads (Definition 20). Briefly, an exponential lifting monad is a symmetric
bimonad with a mixed distributive law over a monoidal coalgebra modality, while an IMELL
lifting monad is an exponential lifting monad on a linear category which is also a Hopf monad.
Proposition 16 provides a partial answer to the Question 2, while Theorem 21 provides the
full answer. We summarize these two main results as follows:

The Eilenberg-Moore category of an exponential lifting monad admits a monoidal coal-
gebra modality (Proposition 16).
The Eilenberg-Moore category of an IMELL lifting monad is a linear category (Theorem
21).

Section 9 and Theorem 24 are dedicated to answering Question 1. Summarizing, where recall
that for a monoid A, the category of modules over A can be seen as the Eilenberg-Moore
category of the monad A⊗−, we have the following two results:

Monoids in the Eilenberg-Moore category of monoidal coalgebra modalities induce expo-
nential lifting monads (Theorem 23).
Monoids with antipodes in the Eilenberg-Moore category of monoidal coalgebra modalities
of a linear category induce IMELL lifting monads (Theorem 24).

In the process of constructing and defining mixed distributive laws involving monoidal
coalgebra modalities, we also discuss mixed distributive laws over the strictly weaker notion
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of coalgebra modalities and define coalgebra modality lifting monads (see Definition 12 below)
in order to also discuss lifting differential category structure (see Section 11).

Conventions: In these notes, we will use diagrammatic order for composition: this means
that the composite map f ; g is the map which first does f then g. Also, to simplify working in
a symmetric monoidal category, we will instead work in a strict symmetric monoidal category,
that is, we will suppress the unit and associativity isomorphisms. For a symmetric monoidal
category we use ⊗ for the tensor product, K for the monoidal unit, and σ : A⊗B → B ⊗A
for the symmetry isomorphism.

2 Mixed Distributive Laws Between Monads and Comonads

Distributive laws between monads, which are natural transformations satisfying certain
coherences with the monad structures, were introduced by Beck [1] in order to both compose
monads and lift one monad to the other’s Eilenberg-Moore category. By lifting we mean
that the forgetful functor from the Eilenberg-Moore category to base category preserves the
monad strictly. In fact, there is a bijective correspondence between distributive laws between
monads and lifting of monads. From a higher category theory perspective, a distributive
law is a monad on the 2-category of monads of a 2-category [24]. There are also several
other notions of distributive laws involving monads and bijective correspondence with certain
liftings [26]. Of particular interest for this paper are mixed distributive laws of monads over
comonads [1] (see Definition 3 below). For a more detailed introduction on distributive laws
and liftings see [26].

If only to introduce notation, we first quickly review the notions of monads and their
algebras, and the dual notions of comonads and their coalgebras [14, Chapter VI].

I Definition 1. A monad on a category X is a triple (T, µ, η) consisting of a functor
T : X→ X and two natural transformations µ : TTA→ TA and η : A→ TA such that:

µ;µ = T(µ);µ η;µ = 1 = T(η);µ (1)

A T-algebra for a monad (T, µ, η) is a pair (A, ν) consisting of an object A and a map
ν : TA→ A such that:

µ; ν = T(µ); ν η; ν = 1 (2)

A T-algebra morphism f : (A, ν)→ (B,ω) is a map f : A→ B such that ν; f = T(f);ω.
The category of T-algebras and T-algebra morphisms is called the Eilenberg-Moore

category of the monad (T, µ, η) and is denoted XT. There is a forgetful functor UT :
XT → X, which is defined on objects as UT(A, ν) = A and on maps as UT(f) = f .

I Definition 2. Dually, a comonad on a category X is a triple (!, δ, ε) consisting of a functor
! : X→ X and two natural transformations δ : !A → !!A and ε : !A → A such that the
dual equations of a monad (1) hold. A !-coalgebra for a comonad (!, δ, ε) is a pair (A,ω),
consisting of an object A and a map ω : A→ !A such that the dual equalities of (2) hold,
while !-coalgebra morphisms are the dual analogue of T-algebra morphisms.

The category of !-coalgebras and !-coalgebra morphisms is called the Eilenberg-Moore
category of the comonad (!, δ, ε) and is denoted X!. There is also a forgetful functor
U! : X! → X.

FSCD 2018
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I Definition 3. Let (T, µ, η) be a monad and (!, δ, ε) a comonad on the same category. A
mixed distributive law of (T, µ, η) over (!, δ, ε) [26] is a natural transformation λ : T!A→
!TA such that the following diagrams commute:

TT!A
T(λ) //

µ

��

T!TA λ // !TTA
!(µ)
��

!A η //

!(η) &&

T!A

λ

��
T!A

λ
// !TA !TA

(3)

T!A
T(δ) //

λ

��

T!!A λ // !T!A
!(λ)
��

T!A

T(ε) ((

λ // !TA
ε

��
!TA

δ
// !!TA TA

(4)

As with distributive laws between monads, mixed distributive laws allow one to lift
comonads to Eilenberg-Moore categories of monads and also to lift monads to Eilenberg-
Moore categories of comonads, such that the respective forgetful functors preserve the monads
or comonads strictly. In fact, mixed distributive laws are in bijective correspondence with
these liftings:

I Theorem 4. [25, Theorem IV.1] Let (T, µ, η) be a monad and (!, δ, ε) be a comonad on
the same category X. Then the following are in bijective correspondence:
1. Mixed distributive laws of (T, µ, η) over (!, δ, ε);
2. Liftings of the comonad (!, δ, ε) to XT, that is, a comonad (̃!, δ̃, ε̃) on XT such that the

forgetful functor UT preserves the comonad strictly, that is, the following equalities hold:

!; UT = UT; !̃ UT(δ̃) = δ UT(ε̃) = ε

3. Liftings of the monad (T, µ, η) to XT, that is, a monad (T̃, µ̃, η̃) on X! such that the
forgetful functor U! preserves the comonad strictly, that is, the following equalities hold:

T; U! = U!; T U!(µ̃) = µ U!(η̃) = η

We quickly recall part of how to construct liftings from mixed distributive laws (for more
details see [26]). Let λ be a mixed distributive law of (T, µ, η) over (!, δ, ε). For a T-algebra
(A, ν), the pair (!A, ν]) is a T-algebra where the map ν] : T!A→ !A is defined as follows:

ν] := T!A λ // !TA
!(ν) // !A (5)

Dually, if (A,ω) is a !-coalgebra, then the pair (TA,ω[) is a !-coalgebra where the map
ω[ : TA→ !TA is defined as follows:

ω[ := TA
T(ω) // T!A λ // !TA (6)

To see how to construct mixed distributive laws from liftings, see Appendix A.

3 Coalgebra Modalities

Coalgebra modalities were defined by Blute, Cockett, and Seely when they introduced
differential categories [6] and are a strictly weaker notion of monoidal coalgebra modalities.
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While monoidal coalgebra modalities are much more popular as they give categorical models of
IMELL, coalgebra modalities have sufficient structure to axiomatize differentiation. Therefore,
we believe it of interest to discuss liftings and mixed distributive laws over coalgebra modalities
in order to also discuss lifting differential category structure (see Section 11). Interesting
examples of coalgebra modalities which are not monoidal can be found in [9].

I Definition 5. In a symmetric monoidal category, a cocommutative comonoid is a triple
(C,∆, e) consisting of an object C, a map ∆ : C → C ⊗C called the comultiplication, and
a map e : C → K called the counit such that the following diagrams commute:

C
∆ //

∆
��

C ⊗ C

∆⊗1
��

C

∆
��

C
∆ //

∆ ""

C ⊗ C

σ

��
C ⊗ C

1⊗∆
// C ⊗ C ⊗ C C C ⊗ C

e⊗1
oo

1⊗e
// C C ⊗ C

(7)

Coalgebra modalities are comonads with the added property that for each object A, the
object !A is naturally a cocommutative comonoid.

I Definition 6. A coalgebra modality [6] on a symmetric monoidal category is a quintuple
(!, δ, ε,∆, e) consisting of a comonad (!, δ, ε), a natural transformation ∆ : !A→ !A⊗ !A, and
a natural transformation e : !A → K such that for each object A, the triple (!A,∆, e) is
a cocommutative comonoid and δ is a comonoid morphism, that is, δ; ∆ = ∆; (δ ⊗ δ) and
δ; e = e.

Requiring that ∆ and e be natural transformations is equivalent to asking that for each
map f : A→ B, the map !(f) : !A→ !B is a comonoid morphism. Every !-coalgebra (A,ω) of
a coalgebra modality (!, δ, ε,∆, e) comes equipped with a cocommutative comonoid structure
[19, 22] with comultiplication ∆ω : A→ A⊗A and counit eω : A→ K defined as follows:

∆ω := A
ω // !A ∆ // !A⊗ !A ε⊗ε // A⊗A eω := A

ω // !A e // K (8)

Notice that since δ is a comonoid morphism, when applying this construction to a cofree
!-coalgebra (!A, δ) we re-obtain ∆ and e, that is, ∆δ = ∆ and eδ = e. Furthermore, by
naturality of ∆ and e, every !-coalgebra morphisms becomes a comonoid morphism on the
induced comonoid structures.

4 Symmetric Bimonads and Lifting Symmetric Monoidal Structure

In order to lift coalgebra modalities to an Eilenberg-Moore category of algebras over a monad,
we must at least have that said Eilenberg-Moore category be a symmetric monoidal category
such that the forgetful functor be a strict monoidal functor. To achieve this, the monad
must also be a symmetric comonoidal monad, which we will here call a symmetric bimonad
following Bruguieres, Lack, and Virelizier’s terminology [7] (orginially introduced under the
name Hopf monad by Moerdijk [21]). In short, a symmetric bimonad monad (see Defintion 8
below) is a monad whose underlying endofunctor is symmetric comonoidal such that certain
extra compatibilities with the monad structure hold. For a higher category theory approach
to the subject, we invite the curious reader to see [27].

I Definition 7. A symmetric comonoidal endofunctor – also known as a symmetric
opmonoidal endofunctor [16] – on a symmetric monoidal category X is a triple (T, n2, n1)

FSCD 2018
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consisting of an endofunctor T : X→ X, a natural transformation n2 : T(A⊗B)→ TA⊗TB,
and a map n1 : TK → K such that the following diagrams commute:

T(A ⊗ B ⊗ C)
n2 //

n2

��

T(A ⊗ B) ⊗ TC

n2⊗1

��

TA

n2

��

n2 // TA ⊗ TK

1⊗n1

��

T(A ⊗ B)
T(σ)//

n2

��

T(B ⊗ A)

n2

��
TA ⊗ T(B ⊗ C)

1⊗n2
// TA ⊗ TB ⊗ TC TK ⊗ TA

n1⊗1
// !A TA ⊗ TB

σ
// TB ⊗ TA

(9)

Of particular importance to us is that symmetric comonoidal endofunctors preserves
cocommutative comonoids. Indeed, if (C,∆, e) is a cocommutative comonoid, then the triple
(TC,T(∆); n2,T(e); n1) is a cocommutative comonoid.

I Definition 8. A symmetric bimonad [7] on a symmetric monoidal category is a symmet-
ric comonoidal monad, that is, a quintuple (T, µ, η, n2, n1) consisting of a monad (T, µ, η) and
a symmetric comonoidal endofunctor (T, n2, n1) such that the following diagrams commute:

TT(A ⊗ B)

T(n2)

��

µ // T(A ⊗ B)

n2

��

A ⊗ B

η⊗η
##

η // T(A ⊗ B)

n2

��

TTK
µ //

T(n1)

��

TK

n1

��

K
η // TK

n1

��
T(TA ⊗ TB)

n2

��

TA ⊗ TB TK n1
// K K

TTA ⊗ TTB
µ⊗µ
// TA ⊗ TB

(10)

One reason for the name bimonad is that bimonoids (the generalization of bialgebras
for arbitrary symmetric monoidal categories) give rise to bimonads [7] as we will explain in
Section 9.

As previously advertised, the Eilenberg-Moore category of a symmetric bimonad is a
symmetric monoidal category. Define a symmetric monoidal structure on XT as follows: the
monoidal unit is the pair (K, n1), while for a pair of T-algebras (A, ν) and (B, ν′), their
tensor product is defined as the pair (A⊗B, ν ⊗T ν′) where ν ⊗T ν′ is defined as follows:

ν ⊗T ν′ := T(A⊗B) n2 // TA⊗ TB ν⊗ν′
// A⊗B (11)

Therefore, the two left most diagrams of (10) are the statement that n2 is a T-algebra
morphism, while the right most diagrams state that (K, n1) is a T-algebra. In fact, for a
monad on a symmetric monoidal category, symmetric bimonad structures on the monad
are in bijective correspondence with symmetric monoidal structures on the Eilenberg-Moore
category which are strictly preserved by the forgetful functor [26].

5 Lifting Coalgebra Modalities

We now define the notion of mixed distributive laws between symmetric comonoidal endofunc-
tors and coalgebra modalities, in order to lift coalgebra modalities to the Eilenberg-Moore
category of symmetric bimonads.

I Definition 9. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e) be a coal-
gebra modality on the same symmetric monoidal category. A mixed distributive law of
(T, µ, η, n2, n1) over (!, δ, ε,∆, e) is a mixed distributive law λ of (T, µ, η) over (!, δ, ε) such
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that λ is a comonoid morphism, that is, the following diagrams commute:

T!A

T(∆)
��

λ // !TA

∆

��

T!A

T(e)
��

λ // !TA

e
��

T(!A⊗ !A)

n2

��

TK n1
// K

T!A⊗ T!A
λ⊗λ

// !TA⊗ !TA

(12)

We first observe that these mixed distributive laws preserve the induced comonoid
structure on !-coalgebras in the following sense:

I Lemma 10. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e) be a coalgebra
modality on the same symmetric monoidal category, and let λ be a mixed distributive law
of (T, µ, η, n2, n1) over (!, δ, ε,∆, e). If (A,ω) is a !-coalgebra, then the following diagrams
commute:

TA

∆ω[

((

T(∆ω) // T(A⊗A)

n2

��

TA
T(eω) //

eω[

''

TK
n1

��
TA⊗ TA K

where ω[ is defined as in (6), and both ∆ω[ and eω[ are defined as in (8).

Proof. See Appendix B. J

Now we give the equivalence between liftings and mixed distributive laws of symmetric
bimonads over coalgebra modalities.

I Proposition 11. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e) be a coalgebra
modality on the same symmetric monoidal category X. Then the following are in bijective
correspondence:
1. Mixed distributive laws (T, µ, η, n2, n1) over (!, δ, ε,∆, e);
2. Liftings of (!, δ, ε,∆, e) to XT, that is, a coalgebra modality (̃!, δ̃, ε̃, ∆̃, ẽ) on XT which is

a lifting of the underlying comonad (!, δ, ε) to XT (in the sense of Theorem 4) such that
UT(∆̃) = ∆ and UT(ẽ) = e.

Proof. See Appendix B. J

We give a name to symmetric bimonads with these mixed distributive laws.

I Definition 12. Let (!, δ, ε,∆, e) be a coalgebra modality. A coalgebra modality lifting
monad is a sextuple (T, µ, η, n2, n1, λ) consisting of a symmetric bimonad (T, µ, η, n2, n1)
and a mixed distributive law λ of (T, µ, η, n2, n1) over (!, δ, ε,∆, e).

Proposition 11 implies that the Eilenberg-Moore category a coalgebra modality lifting
monad admits a coalgebra modality which is strictly preserved by the forgetful functor.

FSCD 2018
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6 Monoidal Coalgebra Modalities

Monoidal coalgebra modalities can be described as coalgebra modalities whose underlying
comonad is a symmetric monoidal comonad such that ∆ and e are compatible with the
symmetric monoidal comonad structure. Symmetric monoidal comonads are simply the
dual notion of symmetric bimonads (Definition 8) and could therefore be called symmetric
bicomonads. However the name symmetric monoidal comonad is used within the linear logic
community and therefore we have elected to keep it here. Though it should be noted that
the term bicomonad was used by Bruguieres, Lack, and Virelizier [7].

I Definition 13. A symmetric monoidal comonad is a quintuple (!, δ, ε,m2,m1) con-
sisting of a comonad (!, δ, ε), a natural transformation m2 : !A ⊗ !B → !(A ⊗ B), and a
map m1 : K → !K such that (!,m2,m1) is a symmetric monoidal functor, that is, the dual
diagrams of (9) commute, and such that δ and ε are monoidal transformations, that is, the
dual diagrams of (10) commute.

As this is the dual notion of symmetric bimonads, the Eilenberg-Moore category of a
symmetric monoidal comonad is a symmetric monoidal category.

I Definition 14. A monoidal coalgebra modality [3] (also called a linear exponential
modality [22]) on a symmetric monoidal category is a septuple (!, δ, ε,∆, e,m2,m1) such that
(!, δ, ε,m2,m1) is a symmetric monoidal comonad and (!, δ, ε,∆, e) is a coalgebra modality, and
such that ∆ and e are monoidal transformations, that is, the following diagrams commute:

!A ⊗ !B

∆⊗∆

��

m2 // !(A ⊗ B)

∆

��

!A ⊗ !B

e⊗e
""

m2 // !(A ⊗ B)

e

��

K
m1 //

m1⊗m1
��

!K

∆

��

K
m1 // !K

e

��
!A ⊗ !A ⊗ !B ⊗ !B

1⊗σ⊗1

��

K K !K

!A ⊗ !B ⊗ !A ⊗ !B
m2⊗m2
// !(A ⊗ B) ⊗ !(A ⊗ B)

(13)

and also that ∆ and e are !-coalgebra morphisms, that is, the following diagrams commute:

!A

∆
��

δ // !!A
!(∆)
��

!A

e

��

δ // !!A
!(e)
��

!A⊗ !A
δ⊗δ
// !!A⊗ !!A m2

// !(!A⊗ !A) K m1
// !(K)

(14)

Notice that the monoidal coalgebra modality requirement that ∆ and e both be monoidal
transformations is equivalent to asking that m2 and m1 are both comonoid morphisms.
Furthermore, if (A,ω) is a !-coalgebra then ∆ω and eω (as defined in (8)) are both !-coalgebra
morphisms. This implies that the tensor product of the Eilenberg-Moore category of a
monoidal coalgebra modality is in fact a product [22].

The most well known and common examples of monoidal coalgebra modalities are known
as free exponential modalities [20]. Free exponential modalities can be described as
monoidal coalgebra modalities with the added property that !A is the cofree cocommtuative
comonoid over A. In this case, !-coalgebras correspond precisely to the cocommutative
comonoids of the symmetric monoidal category. Therefore, the Eilenberg-Moore category of
a free exponential modality is equivalent to the category of cocommutative comonoids of the
base symmetric monoidal category.
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7 Lifting Monoidal Coalgebra Modalities

I Definition 15. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e,m2,m1) be
a monoidal coalgebra modality on the same symmetric monoidal category. A mixed
distributive law (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1) is a mixed distributive law λ of
(T, µ, η, n2, n1) over (!, δ, ε,∆, e) such that the following diagrams commute:

T(!A⊗ !B)

T(m2)
��

n2 // T!A⊗ T!B λ⊗λ // !TA⊗ !TB

m2

��

TK

T(m1)
��

n1 // K

m1

��
T!(A⊗B)

λ
// !T(A⊗B)

!(n2)
// !(TA⊗ TB) T!K

λ
// !TK

!(n1)
// !K

(15)

I Proposition 16. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e,m2,m1) be a
monoidal coalgebra modality on the same symmetric monoidal category X. Then the following
are in bijective correspondence:
1. Mixed distributive laws of (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1) ;
2. Liftings of the monoidal coalgebra modality (!, δ, ε,∆, e,m2,m1) to XT, that is, a monoidal

coalgebra modality (̃!, δ̃, ε̃, ∆̃, ẽ, m̃2, m̃1) on XT which is a lifting of the underlying coalgebra
modality (!, δ, ε,∆, e) to XT (in the sense of Proposition 11) such that UT(m̃2) = m2 and
UT(m̃1) = m1.

Proof. See Appendix C. J

As before, we give a name to symmetric bimonads with these mixed distributive laws.

I Definition 17. Let (!, δ, ε,∆, e,m2,m1) be a monoidal coalgebra modality. An expo-
nential lifting monad is a sextuple (T, µ, η, n2, n1, λ) consisting of a symmetric bimonad
(T, µ, η, n2, n1) and a mixed distributive law λ of (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1).

Proposition 16 implies that the Eilenberg-Moore category of an exponential lifting monad
admits a monoidal coalgebra modality which is strictly preserved by the forgetful functor.

8 Lifting Linear Category Structure

Categorical models of IMELL are known as linear categories:

I Definition 18. A linear category [2] is a symmetric monoidal closed category with a
monoidal coalgebra modality.

As linear categories are categorical models of IMELL [2, 17, 19], there is no shortage of
examples of linear categories throughout the literature. Hyland and Schalk provide a very
nice list of various kinds examples in [13, Section 2.4]. Linear categories whose monoidal
coalgebra modality is in fact a free exponential modality are known as Lafont categories
[19] – we discuss a particular example of a Lafont category at the end of Section 9.

The last piece of the puzzle is being able to lift the monoidal closed structure of a linear
category to the Eilenberg-Moore category of our symmetric bimonad in such a way that
the forgetful functor preserves the monoidal closed structure strictly. For this we turn to
Bruguieres, Lack, and Virelizier’s notion of a Hopf monad. Hopf monads were originally
introduced by Bruguieres and Virelizier for monoidal categories with duals [8], but the
definition of Hopf monads was later extended to arbitrary monoidal categories by the two
previous authors and Lack [7]. We choose the later of the two as the definition is somewhat
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simpler. The left and right fusion operators of a symmetric bimonad (T, µ, η, n2, n1) are the
natural transformations hl and hr defined respectively as follows:

hl := T(TA⊗B) n2 // TTA⊗ TB µ⊗1 // TA⊗ TB

hr := T(A⊗ TB) n2 // TA⊗ TTB 1⊗µ // TA⊗ TB

Notice that the fusion operators are T-algebra morphisms.

I Definition 19. A symmetric Hopf monad [7] on a symmetric monoidal category is a
symmetric bimonad whose fusion operators are natural isomorphisms.

Extending on [7, Theorem 3.6], the Eilenberg-Moore category of a Hopf monad of a
symmetric monoidal closed category, is again a symmetric monoidal closed category such
that the forgetful functor preserve the symmetric monoidal closed structure strictly.

I Definition 20. A IMELL lifting monad on a linear category with monoidal coalgebra mod-
ality (!, δ, ε,∆, e,m2,m1) is an exponential lifting monad (T, µ, η, n2, n1, λ) whose underlying
symmetric bimonad is also a symmetric Hopf monad.

I Remark. It is worth mentioning that in the definitions of a monoidal coalgebra modality
monad and of an IMELL lifting monad, we do not require that the underlying endofunctors
of these monads be linearly distributive functors between linear categories in the sense of
Hyland and Schalk [13, Definition 4] or that of Melliés [18, Definition 9].

IMELL lifting monads provide us with following main result of this paper:

I Theorem 21. The Eilenberg-Moore category of an IMELL lifting monad is a linear category
such that the forgetful functor preserves the linear category structure strictly.

9 What Monoids Give IMELL Lifting Monads?

As explained in the introduction, a particular example of Eilenberg-Moore categories we are
interested are those arising as categories of modules over monoids. Indeed, endofunctors of
the form A⊗− for some object A, admit a monad structure precisely when the object A is
a monoid. Recall that a monoid of a monoidal category is a triple (A,∇, u) consisting of an
object A, a map ∇ : A⊗A→ A called the multiplication, and a map u : K → A called the
unit such that the dual of the left and center diagrams of (7) commute (in particular we do
not require the multiplication to be commutative). For a monoid (A,∇, u), the algebras of
the monad (A⊗−,∇⊗ 1, u⊗ 1) are more commonly known as (left) A-modules, and in this
case, we denote the Eilenberg-Moore category instead by MOD(A).

I Definition 22. In a symmetric monoidal category, a bimonoid is a quintuple (A,∇, u,∆, e)
such that (A,∇, u) is a monoid, (A,∆, e) is a comonoid, and the following diagrams commute:

A⊗A

e⊗e ��

∇ // A

e
��

K

u⊗u ��

u // A

∆
��

K
u // A

e
��

A⊗A

∇

��

∆⊗∆ // A⊗A⊗A⊗A

1⊗σ⊗1
��

K A⊗A K A⊗A⊗A⊗A

∇⊗∇
��

A
∆

// A⊗A

(16)
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A Hopf monoid in a symmetric monoidal category is a sextuple (H,∇, u,∆, e, S) consisting
of a bimonoid (H,∇, u,∆, e) and a map S : H → H called the antipode such that the
following diagram commutes:

H ⊗H 1⊗S // H ⊗H
∇

""H

∆
;;

∆ ##

e // K
u //

H ⊗H
S⊗1

// H ⊗H
∇

<< (17)

As previously hinted at, endofunctors of the form A ⊗ − admit a symmetric bimonad
(resp. symmetric Hopf monad) structure precisely when the object A admits a bimonoid
(resp. Hopf monoid) structure whose comultiplication is cocommutative. For details on these
constructions see [7, Example 2.10].

Our goal is now to find bimonoids and Hopf monoids which induce exponential lifting
monads and IMELL lifting monads. For this we turn to monoids in the Eilenberg-Moore
categories of monoidal coalgebra modalities. A monoid in the Eilenberg-Moore category of a
monoidal coalgebra modality (!, δ, ε,∆, e,m2,m1) can be seen as a quadruple (A,ω,∇ω, uω)
consisting of a !-coalgebra (A,ω) and a monoid (A,∇ω, uω) such that ∇ω and uω are !-
coalgebra morphisms, that is, the following diagrams commute:

A⊗A

ω⊗ω
��

∇ω
// A

ω

��

K

m1

��

uω
// A

ω

��
!A⊗ !A m2

// !(A⊗A)
!(∇ω)

// !A !K
!(uω)

// !(A)

(18)

However we just mentioned that A⊗− admit a symmetric bimonad structure if and only if
A admits a bimonoid structure with cocommutative comultiplication. Therefore we could
instead ask for bimonoids. But it turns out that we only need to ask for monoids instead! To
see this, consider monoids in a cartesian monoidal category – which is a category with finite
products regarded as a symmetric monoidal category. Every object in a cartesian monoidal
category is a cocommutative comonoid and every map is a comonoid morphism. Therefore,
since the bimonoid identities are equivalent to requiring that the multiplication and unit
be comonoid morphisms, every monoid in a cartesian monoidal category is automatically
a cocommutative bimonoid. Since the Eilenberg-Moore category of a monoidal coalgebra
modality is a cartesian monoidal category [19, 22], every monoid will be a bimonoid with
cocommutative comultiplication.

Following this observation, we obtain the main result of this section:

I Theorem 23. Let (!, δ, ε,∆, e,m2,m1) be a monoidal coalgebra modality on a symmetric
monoidal category X. Then the following are in bijective correspondence:

1. Monoids in X!;

2. Objects A such that the endofunctor A⊗− admits an exponential monad lifting structure
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whose mixed distributive law λ satisfies the following:

A⊗ !X ⊗ !Y λ⊗1 //

1⊗m2

��

!(A⊗X)⊗ !Y

m2

��
A⊗ !(X ⊗ Y )

λ
// !(A⊗X ⊗ Y )

(19)

Therefore, each monoid in the Eilenberg-Moore category of a monoidal coalgebra modality
induces an exponential lifting monad.

Proof. We only show how to construct one from the other as the proof is somewhat lengthy.
Let (A,ω,∇ω, uω) be a monoid in X!. Define the natural transformation (natural by con-
struction) ω\ : A⊗ !X → !(A⊗X) as follows:

ω\ := A⊗ !X ω⊗1 // !A⊗ !X m2 // !(A⊗X) (20)

Then ω\ is a mixed distributive law of the symmetric bimonad structure of A⊗− over the
monoidal coalgebra modality. Conversly, let λ be a mixed distributive law of the exponential
lifting monad structure of A⊗−. By applying (6) to the !-coalgebra (K,m1), we obtain the
!-coalgebra (A,m[

1) where recall:

m[
1 := A

1⊗m1 // A⊗ !K λ // !A (21)

Furthermore, the comonoid structure on A induced by the symmetric bimonad structure
on A⊗− is precisely the same as the comonoid structure on A induced by the coalgebra
modality from (8). It then follows that the multiplication and unit of A induced by the
symmetric bimonad structure on A⊗− are !-coalgebra morphisms and therefore A admits a
monoid structure in X!. J

I Remark. It is worth pointing out that commutivity of diagram (19) is only necessary for
the bijective correspondence.

As a source of such monoids, since monoidal endofunctors preserve monoids (dual to
what was discussed in Section 4), every monoid (A,∇, u) of the base symmetric monoidal
category X induces a monoid (!A, δ,∇δ, uδ) in X! where ∇δ := m2; !(∇) and uδ := m1; !(u).
In particular, since the monoidal unit K admits a canonical monoid structure, the quadruple
(!K, δ,m2,m1) is a monoid in X!. Another source of such monoids is discussed in the next
section.

Recall that in the special case of a free exponential modality, its Eilenberg-Moore category
is equivalent to the category of cocommutative comonoids of the base symmetric monoidal
category. Therefore, to give a monoid in this Eilenberg-Moore category is precisely to give a
bimonoid with cocommutative comultiplication of the base symmetric monoidal category. In
fact the category of monoids in the Eilenberg-Moore category of a free exponential modality
is equivalent to the category of bimonoids with cocommutative comultiplication of the base
category.

For a bimonoid, there is a unique antipode (if it exists) [15] which makes it into a Hopf
monoid. Therefore we can easily extended Theorem 23 for IMELL lifting monads.

I Theorem 24. Let (!, δ, ε,∆, e,m2,m1) be a monoidal coalgebra modality of a linear category
X. Then the following are in bijective correspondence:
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1. Monoids (A,ω,∇ω, uω) of X! such that there exists an antipode S for the bimonoid
(A,∇ω, uω,∆ω, eω);

2. Objects A such that the endofunctor A ⊗ − admits an IMELL lifting monad structure
whose mixed distributive law satisfies (19).

Therefore, if A is an object of a linear category which admits a monoid structure with antipode
in the Eilenberg-Moore category of the monoidal coalgebra modality, then MOD(A) is a linear
category.

A source of such monoids with antipodes can be found in the next section (Theorem 28).
For Lafont categories – which recall are linear categories whose monoidal coalgebra

modality is a free exponential modalitiy – to give a monoid as in Theorem 24 is precisely
to give a Hopf monoid with cocommutative comultiplication. As an example, consider the
category of vector spaces over a field K, which is a Lafont category where the construction
of !V , which in this case is known as the cofree cocommutative K-coalgebra over V , can be
found here [13, Section 2.4]. Particular examples of Hopf K-algebras [15] with cocommutative
comultiplication include the polynomial rings K[x1, . . . , xn], the tensor algebra T(V ) over a
K-vector spaces V , the group K-algebra K[G] over an arbitrary group G, and also the field
K itself.

10 IMELL Lifting Monads from Additive Structure

We’ve already seen that monoids in the base category provide a source of monoids in the
Eilenberg-Moore category of a monoidal coalgebra modality. In this section we turn to
monoidal coalgebra modalities over additive symmetric monoidal categories to provide us
with another source of monoids in the Eilenberg-Moore category of said monoidal coalgebra
modalities. Here we mean “additive” in the Blute, Cockett, and Seely sense of the term
[6], that is, to mean enriched over commutative monoids. In particular, we do not assume
negatives (at least not yet...see Theorem 27) nor do we assume biproducts — which differs
from other definitions of an additive category found in the literature [14].

I Definition 25. An additive category is a commutative monoid enriched category, that is,
a category in which each hom-set is a commutative monoid with an addition operation + and
a zero 0, and such that composition preserves the additive structure, that is k; (f + g);h =
k; f ;h + k; g;h and 0; f = 0 = f ; 0. An additive symmetric monoidal category is a
commutative monoid enriched symmetric monoidal category, that is, symmetric monoidal
category which is also an additive category in which the tensor product is compatible with
the additive structure in the sense that (f + g)⊗ h = f ⊗ h+ g ⊗ h and 0⊗ f = 0.

It is worth mentioning that every additive category can be completed to a category with
biproducts (which is itself an additive category), and similarly every additive symmetric
monoidal category can be completed to a additive symmetric monoidal category with
biproducts. For this reason, it is possible to argue [10] that one should always assume a
setting with biproducts. The problem is that arbitrary coalgebra modalities do not necessarily
extend to the biproduct completion. However, monoidal coalgebra modalities induce monoidal
coalgebra modalities on the biproduct completion (see [9] for more details).

If (!, δ, ε,∆, e,m2,m1) is a monoidal coalgebra modality on an additive symmetric monoidal
category, then !A comes equipped with a monoid structure [9, Theorem 19] where the
multiplication ∇ and unit u are both !-coalgebra morphisms [9, Lemma 20], [10, Theorem
3.1]. Therefore we obtain the following:
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I Lemma 26. Every cofree coalgebra of a monoidal coalgebra modality on an additive
symmetric monoidal category induces an exponential lifting monad. In particular, for each
object A, MOD(!A) is an additive symmetric monoidal category with a monoidal coalgebra
modality.

As promised, we will now add negatives to the story of additive symmetric monoidal
categories. In particular we will now show that cofree coalgebras of monoidal coalgebra
modalities on additive symmetric monoidal categories are Hopf monoids precisely when the
additive symmetric monoidal category also admits additive inverses, i.e. negatives. This
statement should not be too surprising for two reasons. The first reason is that for a Hopf
algebra, the antipode is the bialgebra convolution [15] inverse to the identity. The second
reason is that monoidal coalgebra modalities on additive symmetric monoidal categories are
strongly connected to the additive structure [9]. A category enriched over abelian groups
can be seen as an additive category such that each map f admits an additive inverse, that is,
a map −f such that f + (−f) = 0. Actually, for an additive category to be enriched over
abelian groups, one only requires that the identity maps 1 have additive inverses −1.

I Proposition 27. Let (!, δ, ε,∆, e,m2,m1) be a monoidal coalgebra modality on an additive
symmetric monoidal category. Then there exists a natural transformation S : !A→ !A such
that for each object A, the septuple (!A,∇, u,∆, e, S) is a cocommutative Hopf monoid (where
∇ and u are defined as in [9]) if and only if the additive symmetric monoidal category is
enriched over abelian groups.

Proof. We only give how to construct antipodes from negatives and conversly negatives
from antipodes. Suppose our additive symmetric monoidal category is enriched over abelian
groups. Define the antipode S : !A → !A as S := !(−1). Conversly, suppose there exists a
natural transformation S : !A→ !A such that for each object A, the septuple (!A,∇, u,∆, e, S)
is a cocommutative Hopf monoid. As previously mentioned, it suffices to give an additive
inverse for the identity morphisms. Then for each object A, define the map −1A : A→ A as
follows:

−1A := A
m1⊗1 // !K ⊗A S⊗1 // !K ⊗A ε⊗1 // A (22)

J

Therefore we obtain the following:

I Theorem 28. Every cofree coalgebra of a monoidal coalgebra modality of a linear category
which is also an additive symmetric monoidal category enriched over abelian groups, induces
an IMELL lifting monad. In particular, for each object A, MOD(!A) is a linear category which
is also an additive symmetric monoidal category enriched over abelian groups.

11 Lifting Differential Category Structure

In this final section, we briefly recall the notion of differential categories and discuss lifting
differential category structure. For more details on differential categories see [3, 6, 9].

I Definition 29. A differential category [6] is an additive symmetric monoidal category
with a coalgebra (!, δ, ε,∆, e) equipped with a deriving transformation, that is, a natural
transformation d : !A⊗A→ !A satisfying the identities found in [6, Definition 2.5].
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Similar to our discussion on lifting coalgebra modalities, in order to be able to lift differ-
ential category structure we will need that the Eilenberg-Moore category of our symmetric
bimonad be an additive symmetric monoidal category. In order to achieve this, we will need
the underlying endofunctor of our symmetric bimonad to be additive.

I Definition 30. An additive functor between additive categories is a functor which
preserves the additive structure strictly, that is, a functor T such that T(f + g) = T(f) + T(g)
and T(0) = 0.

One can easily check that for a monad on an additive category whose underlying endo-
functor is additive, that its Eilenberg-Moore category is also an additive category such that
the forgetful functor preserves the additive structure strictly. Similarly, for a symmetric
bimonad on an additive symmetric monoidal category whose underlying endofunctor is
additive, its Eilenberg-Moore category is also an additive category such that the forgetful
functor preserves the additive symmetric monoidal structure strictly. Luckily for us for any
additive symmetric monoidal category, our favourite endofunctor A⊗− is additive for any
object A.

I Definition 31. Let X be a differential category with coalgebra modality (!, δ, ε,∆, e)
equipped with deriving transformation d, and let (T, µ, η, n2, n1) be a symmetric bimonad on
X whose underlying endofunctor is additive. A mixed distributive law of (T, µ, η, n2, n1)
over (!, δ, ε,∆, e) with deriving transformation d is a mixed distributive law λ of
(T, µ, η, n2, n1) over (!, δ, ε,∆, e) such that the following diagram commutes:

T(!A⊗A)

T(d)
��

n2 // T!A⊗ TA λ⊗1 // !TA⊗ TA

d
��

T!A
λ

// !TA

(23)

I Proposition 32. Let X be a differential category with coalgebra modality (!, δ, ε,∆, e)
equipped with deriving transformation d, and let (T, µ, η, n2, n1) be a symmetric bimonad on X
whose underlying endofunctor is additive. Then the following are in bijective correspondence:
1. Mixed distributive laws (T, µ, η, n2, n1) over (!, δ, ε,∆, e) with deriving transformation d ;
2. Liftings of d to XT, that is, a deriving transformation d̃ for the lifted coalgebra modality

(̃!, δ̃, ε̃, ∆̃, ẽ) on XT from Proposition 11 such that UT(d̃) = d.

Proof. See Appendix D. J

In a differential category whose coalgebra modality is also a monoidal coalgebra modality,
the deriving transformation and the monoidal coalgebra modality are compatible in the sense
of [9, Theorem 25]. And therefore it follows that:

I Theorem 33. In a differential category with a monoidal coalgebra modality, the category
of modules over a monoid in the Eilenberg-Moore category of the monoidal coalgebra modality
is a differential category.
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A From Liftings to Mixed Distributive Laws

As we will need to know how to construct mixed distributive laws from liftings and vice-versa
for the proofs of Propositions 11, 16, and 23, we quickly recall part of these constructions here
(for more details see [26]). Constructing liftings from mixed distrubitve laws was discussed
at the end of Section 2.

Let (̃!, δ̃, ε̃) be a lifting of (!, δ, ε) to the Eilenberg-Moore category XT of a monad (T, µ, η).
This implies that for each free T-algebra (TA,µ) we have that !̃(TA,µ) = (!TA,µ]) for some
map µ] : T!TA→ !TA. Define the natural transformation λ : T!A→ !TA as follows:

λ := T!A
T!(η) // T!TA µ]

// !TA (24)

Then λ is a mixed distributive law of (T, µ, η) over (!, δ, ε).

B Proofs of Lemma 10 and Proposition 11

Proof of Lemma 10. The lemma follows from commutativity of the following diagrams:

TA
T(ω) // T!A

(12)

λ // !TA ∆ // !TA⊗ !TA ε⊗ε // TA⊗ TA

(4)

T!A⊗ T!A

λ⊗λ

OO

T(ε)⊗T(ε)

((
TA

T(ω)
// T!A

T(∆)
// T(!A⊗ !A)

n2

66

T(ε⊗ε)
// T(A⊗A)

Nat. of n2

n2
// TA⊗ TA

TA
T(ω) // T!A

(12)

λ // !TA e // K

TA
T(ω)

// T!A
T(e)

// TK n1
// K

J

Proof of Proposition 11. The bijective correspondence will follow from Theorem 4. It
remains to show that the induced lifting of the comonad from the mixed distributive law is
also a lifting of the colagebra modality, and similarly for the mixed distributive law from the
lifting of the coalgebra modality.
(1)⇒ (2): Let λ be a mixed distributive of (T, µ, η, n2, n1) over (!, δ, ε,∆, e). Consider the
induced lifting of (!, δ, ε) from Theorem 4. To prove that we have a lifting of the coalgebra
modality, it suffices to show that ∆ and e are T-algebra morphisms. Then if (A, ν) is
a T-algebra, commutativitiy of the following diagrams show that ∆ and e are T-algebra
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morphisms:

T(!A)

(12)T(∆)

��

λ // !T(A)

Nat. of ∆∆
��

!(ν) // !A

∆

��
T(!A ⊗ !A) n2

// T(!A) ⊗ T(!A)
λ⊗λ

// !T(A) ⊗ !T(A)
!(ν)⊗!(ν)

// !A ⊗ !A

T(!A)

(12)T(e)
��

λ // !T(A)
Nat. of e

e
��

!(ν) // !A

eooT(K) n1
// K

(2)⇒ (1): Let (̃!, δ̃, ε̃, ∆̃, ẽ) be a lifting of (!, δ, ε,∆, e) to XT. This implies that ∆ and e are
T-algebra morphisms, which in particular for free T-algebras (TA, δ), the following diagrams
commute:

T!TA
T(∆)

��

µ]

// !TA

∆
��

T!TA

T(e)
��

µ]

// !TA

e
��

T(!A⊗ !A) n2
// T!TA⊗ T!TA

µ]⊗µ]

// !TA⊗ !TA TK n1
// K

(25)

where recall µ] is the T-algebra structure of !̃(TA,µ) = (!TA,µ]). Consider now the induced
mixed distributive law λ of (T, µ, η) over (!, δ, ε) as defined in (24). Then that λ is also a
mixed distributive law of (T, µ, η, n2, n1) over (!, δ, ε,∆, e) follows from commutativity of the
following diagrams:

T!A

Nat. of ∆T(∆)
��

T!(η) // T!TA

(25)

T(∆)
��

µ]

// !TA

∆

��

T!A
T!(η) //

T(e) --

T!A

(25)
Nat. of e T(e)

��

µ]

// !TA

e
��

T(!A⊗ !A)

Nat. of n2n2

��

T(!(η)⊗!(η))
// T(!TA⊗ !TA)

n2

��

TK n1
// K

T!A⊗ T!A
T!(η)⊗T!(η)

// T!TA⊗ T!TA
µ]⊗µ]

// !TA⊗ !TA

J

C Proof of Proposition 16

Proof of Proposition 16. We take the same approach as in the proof of Proposition 11.
Again, the bijective correspondence will follow from Theorem 4.
(1) ⇒ (2): Let λ be a mixed distributive law of (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1).
Consider the induced lifting of (!, δ, ε,∆, e) from Proposition 11. To prove that we have a
lifting of the monoidal coalgebra modality, it suffices to show that m2 and m1 are T-algebra
morphisms. The right diagram of (15) is precisely the statement that m1 is a T-algebra
morphism. Then if (A, ν) and (B, ν′) are T-algebras, commutativitiy of the following diagrams
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show that m2 is a T-algebra morphism:

T(!A⊗ !B)

(15)T(m2)
��

n2 // T!A⊗ T!B λ⊗λ // !TA⊗ !TB

Nat. of m2m2

��

!(ν)⊗!(ν′) // !A⊗ !B

m2

��
T!(A⊗B)

λ
// !T(A⊗B)

!(n2)
// !(TA⊗ TB)

!(ν⊗ν′)
// !(A⊗B)

(2) ⇒ (1): Let (̃!, δ̃, ε̃, ∆̃, ẽ, m̃2, m̃1) be a lifting of (!, δ, ε,∆, e,m2,m1) to XT. In particular,
this implies that m2 and m1 are T-algebra morphisms. In particular for free T-algebras
(TA,µ) and the T-algebra (K, n1), we have that the following diagrams commute:

T(!TA⊗ !TB)

T(m2)
��

n2 // T!TA⊗ !T !B µ]⊗µ]

// !TA⊗ !TB

m2

��

TK

T(m1)
��

n1 // K

m1

��
T!(TA⊗ TB)

(µ⊗Tµ)]

// !(TA⊗ TB) T!K
n]

1

// !K

(26)

where recall for a T-algebra (A, ν), the map ν] is the induced T-algebra on !̃(A, ν) = (!A, ν]),
and µ⊗T µ is defined as in (11). Notice that since both n2 and n1 are T-algebra morphisms,
the lifting implies that !(n2) and !(n1) are also, that is, the following diagrams commute:

T!T(A⊗B)

T!(n2)
��

µ]

// !T(A⊗B)

!(n2)
��

T!TK

T!(n1)
��

µ]

// !TK

!(n1)
��

T!(TA⊗ TB)
(µ⊗Tµ)]

// !(TA⊗ TB) T!K
n]

1

// !K

(27)

Consider the induced mixed distributive law λ of (T, µ, η, n2, n1) over (!, δ, ε,∆, e) from Pro-
position 11. Then that λ is a mixed distributive law of (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1)
follows from commutativity of the following diagrams:

T(!A ⊗ !B)
n2 //

T(!(η)⊗!(η)) ))

T(m2)

��

T!A ⊗ T!B

Nat. of n2

T!(η)⊗T!(η) // T!TA ⊗ !T !B

(26)

µ]⊗µ]

// !TA ⊗ !TB

m2

��

T(!TA ⊗ !TB)

T(m2)

��

n2

44

T!(TA ⊗ TB)

Nat. of m2

(µ⊗Tµ)]

**
T!(A ⊗ B)

T!(η⊗η)

99

T!(η)
// T!T(A ⊗ B)

(10)
(27)

T!(n2)

OO

µ]

// !T(A ⊗ B)
!(n2)

// !(TA ⊗ TB)

FSCD 2018
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TK

T(m1)

��

n1 // K

m1

��

T!K

(26)

n]
1

''
T!K

T!(η)
// T!TK

(10)
(27)T!(n1)

OO

µ]

// !TK
!(n1)

// !K

J

D Proof of Proposition 32

Proof Proposition 32. The bijective correspondence will follow immediately from Proposi-
tion 11. Therefore, it remains to show that we can obtain one from the other.
(1)⇒ (2): Let λ be a mixed distributive law of (T, µ, η, n2, n1) over (!, δ, ε,∆, e) with deriving
transformation d. Consider the induced lifting of (!, ε, ε,∆, e) from Proposition 11. To prove
that we have a lifting of the deriving transformation, it suffices to show that d is a T-algebra
morphism. Then if (A, ν) is a T-algebra, commutativitiy of the following diagram shows that
d is a T-algebra morphism:

T(!A⊗A)

(23)T(d)
��

n2 // T!A⊗ TA λ⊗1 // !TA⊗ TA

d
��

!(ν)⊗ν //

Nat. of. d

!A⊗A

d
��

T!A
λ

// !TA
!(ν)

// !A

(2)⇒ (1): Let d̃ be a lifting of d to XT. This implies that d is a T-algebra morphism, which
in particular for free T-algebras (TA,µ), the following diagram commutes:

T(!TA⊗ TA)

T(d)
��

n2 // T!TA⊗ TTA µ]⊗µ // !TA⊗ TA

d
��

T!TA
µ]

// !TA

(28)

Consider now the induced mixed distributive law λ of (T, µ, η, n2, n1) over (!, δ, ε,∆, e) from
Proposition 11. Then that λ satisfies the extra necessary condition follows from commutativity
of the following diagram:

T(!A ⊗ A)

d

��

T(!(η)⊗η) **

n2 // T!A ⊗ TA

Nat. of. n2

T!(η)⊗1 // T!TA ⊗ TA

(1)
1⊗T(η)

��

µ]⊗1 // !TA ⊗ TA

d

��

T(!TA ⊗ TA)

(28)T(d)

��

n2
// T!TA ⊗ TTA

µ]⊗µ

55

T(!A)

Nat. of. d

T!(η)
// T!TA

µ]

// !TA

J
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