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Abstract
We document the program and the immediate outcomes of Dagstuhl Seminar 18052 “Genetic
Improvement of Software”. The seminar brought together researchers in Genetic Improvement
(GI) and related areas of software engineering to investigate what is achievable with current tech-
nology and the current impediments to progress and how GI can affect the software development
process. Several talks covered the state-of-the-art and work in progress. Seven emergent topics
have been identified ranging from the nature of the GI search space through benchmarking and
practical applications. The seminar has already resulted in multiple research paper publications.
Four by participants of the seminar will be presented at the GI workshop co-located with the
top conference in software engineering - ICSE. Several researchers started new collaborations,
results of which we hope to see in the near future.
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Genetic improvement (GI) uses automated search to find improved versions of existing
software. It can be used for improvement of both functional and non-functional properties
of software. Much of the early success came from the field of automated program repair.
However, GI has also been successfully used to optimise for efficiency, energy and memory
consumption as well as automated transplantation of a piece of functionality from one
program to another. These results are impressive especially given that genetic improvement
only arose as a separate research area in the last few years. Thus the time was ripe to
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organise a seminar that would gather researchers from GI and related areas together to
summarise the current achievements and identify avenues for further research.

The seminar attracted researchers from various GI-related software engineering areas,
ranging from automated software repair through genetic programming and software testing
to biological and evolutionary computation. The talks covered the latest research and
speculations on future research both in the practical applications of genetic improvement,
such as energy consumption optimisation and automated parallelisation, to initial results
on much lacking GI theory. In particular, GI theory and indeed software in general were
discussed in terms of search landscape analysis. Other talks covered software testing and bug
repair. The participants also identified a set of benchmarks and tools for GI. These have
been published at the geneticimprovementofsofware.com website to allow other researchers
to compare their new technologies against the state-of-the-art.

The seven breakout groups’ topics ranged from re-evaluating the basic components of the
GI framework, such as fitness functions and traversing the GI search space, to identifying
issues related to adoption of GI in industry. One of the issues has been explanation of
the automatically generated changes, which might be a roadblock in applying them in the
real-world, especially safety-critical, software.

The seminar has already led to a few publications. For example, four papers accepted
to the 4th International Genetic Improvement Workshop (GI-2018)1, co-located with the
International Conference on Software Engineering (ICSE), were written by one or more
workshop participants. Indeed most were started in Dagstuhl. Several other collaborations
have been established, with plans for visits and further research on topics identified at the
seminar. We look forward to results of this work initiated at Dagstuhl.

Introduction

Genetic improvement (GI) uses automated search to find improved versions of existing
software [6, 8]. It uses optimisation, machine learning techniques, particularly search based
software engineering techniques such as genetic programming [2, 1, 9]. to improve existing
software. The improved program need not behave identically to the original. For example,
automatic bug fixing improves program code by reducing or eliminating buggy behaviour,
whilst automatic transplantation adds new functionality derived from elsewhere. In other
cases the improved software should behave identically to the old version but is better because,
for example: it runs faster, it uses less memory, it uses less energy or it runs on a different
type of computer.

GI differs from, for example, formal program translation, in that it primarily verifies the
behaviour of the new mutant version by running both the new and the old software on test
inputs and comparing their output and performance in order to see if the new software can
still do what is wanted of the original program and is now better. Using less constrained
search allows not only functional improvements but also each search step is typically far
cheaper, allowing GI to scale to substantial programs. Genetic improvement can be used
to create large numbers of versions of programs, each tailored to be better for a particular
use or for a particular computer, or indeed (e.g. to defeat the authors of computer viruses)
simply to be different. Other cases where software need to be changed include porting to new
environments (e.g. parallel computing [3] mobile devices) or for code obfuscation to prevent
reverse engineering [7].

1 http://geneticimprovementofsoftware.com/
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Genetic improvement can by used with multi-objective optimisation to consider improving
software along multiple dimensions or to consider trade-offs between several objectives, such
as asking GI to evolve programs which trade speed against the quality of answers they
give. Of course, it may be possible to find programs which are both faster and give better
answers. Mostly Genetic Improvement makes typically small changes or edits (also known as
mutations) to the program’s source code, but sometimes the mutations are made to assembly
code, byte code or binary machine code.

GI arose as a separate field of research only in the last few years. Even though it’s
origins could be traced back to the work by Ryan & Walsh [18] in 1995, it is the work by
Arcuri [10] and White [20] that led to the development and wider uptake of the GI techniques.
The novelty lay in applying heuristics to search for code mutations that improved existing
software. Both Arcuri and White applied genetic programming (GP), with Arcuri using
also hill-climbing and random search on a small set of problems. Rather than trying to
evolve a program from scratch, as in traditional GP, Arcuri and White took the approach
of seeding [5] the initial population with copies of the original program. Next, instead of
focusing on evolving a program fulfilling a particular task, as has been done before, Arcuri
and White used GP to improve their programs either to fix existing bugs or to improve the
non-functional properties of software, in particular, its efficiency and energy consumption.
Both Arcuri and White, however, applied their, now known as, GI techniques, to relatively
small benchmarks having little resemblance to large scale real-world problems.

The bug fixing approach was taken up by Forrest, Le Goues and Weimer et al. [12, 15, 19]
and adapted for large software systems. One of the insights that allowed for this adoption
was an observation that full program variants need not be evolved, yet only a sequence of
edits, which are then applied to the original program. Validity of the resultant modified
software was then evaluated on a set of test cases, assumed to capture desired program
behaviour, as in previous work. This strand of research led to the development of first
GP-based automated software repair tool called GenProg [15]. Success of this automated
bug fixing work led to several best paper awards and two ‘Humie’ awards (international
prizes for human-competitive results produced by genetic and evolutionary computation
http://www.human-competitive.org/) and inspired work on other automated software repair
tools, including Angelix [16], which uses a form of constraint solving to synthesise bug fixes.

Research on improvement of non-functional software properties has yet to garner the
attention and software development effort as the work on automated bug fixing. Langdon et
al. [3, 13, 14] published several articles on efficiency improvement and parallelisation using
GI. They were able to improve efficiency of large pieces of state-of-the-art software Moreover,
the genetically improved version of a bioinformatics software called BarraCUDA is the first
instance of a genetically improved piece of software adapted into development [14, 4].

Petke et al. [17] set themselves a challenge of improving efficiency of a highly-optimised
piece of software that has been improved by expert human developers over a period of
several years. In particular, a famous Boolean satisfiability (SAT) solver was chosen, called
MiniSAT. It implements the core technologies of SAT solving and inspired a MiniSAT-hack
track at the annual international SAT solver competitions, where anyone can submit their
own version of MiniSAT. Petke et al. showed that further efficiency improvements can be
made by using this source of genetic material for the GP process and specializing the solver
for a particular downstream application. This work showed the initial potential of what is
now called automated software transplantation and was awarded a Silver ‘Humie’. Further
work on automated software transplantation won an ACM SIGSOFT distinguished paper
award and a Gold ‘Humie’ at this year’s Genetic and Evolutionary Computation Conference
(GECCO-2017) [11].

http://www.human-competitive.org/
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Aims of the Seminar

The seminar brought together researchers in this new field of software engineering to invest-
igate what is achievable with current technology and the current impediments to progress (if
indeed there are any) of what can be achieved within the field in the future and how GI can
affect the software development process.

With the growing popularity of the field, multiple awards and fast progress GI research
in the field, it is the right time to gather top the academics in GI and related fields to push
the boundaries of what genetic improvement can achieve even further.

This seminar brought researchers working in genetic improvement and related areas,
such as automated program repair, software testing and genetic programming, together. It
summarized achievements in automated software optimisation. We will use this summary
as a basis to investigate how optimisation approaches from the different fields represented
at the seminar can be combined to produce a robust industry-ready set of techniques for
software improvement.
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3 Overview of Talks

3.1 Progress in Structural Evolution for Bug Repair in JAVA
Wolfgang Banzhaf (Michigan State University, US)

License Creative Commons BY 3.0 Unported license
© Wolfgang Banzhaf

Joint work of Wolfgang Banzhaf, Yuan Yuan (MSU CSE)
Main reference Yuan Yuan, Wolfgang Banzhaf: “ARJA: Automated Repair of Java Programs via Multi-Objective

Genetic Programming”, CoRR, Vol. abs/1712.07804, 2017.
URL http://arxiv.org/abs/1712.07804

Here we argue that (virtually) any structure can be made evolvable if one chooses the
right elements of the structure and the proper rules of their combination, and provides
sufficient guidance for the randomness of the mutation and crossover operators. We exemplify
that argument by proposing a JAVA bug repair system that was inspired by GenProg, but
further developed and adapted to JAVA. Results show the efficacy of evolutionary search
over random search, multi-objective optimisation over single objective optimisation and
“knowledge-enhanced” (smart) operators over others. A new set of bugs from the Defects4J
benchmark suit can be successfully repaired, including multi-location bugs.

3.2 Automatic Parallelisation of Software Using Genetic Improvement
Bobby R. Bruce (University College London, GB)

License Creative Commons BY 3.0 Unported license
© Bobby R. Bruce

Joint work of Bobby R. Bruce, Justyna Petke

While the use of hardware accelerators, like GPUs, can significantly improve software
performance, developers often lack the expertise or time to properly translate source code to
do so. We highlight two approaches to automatically offload computationally intensive tasks
to a system’s GPU by generating and inserting OpenACC directives; one using grammar-
based genetic programming, and another using a bespoke four stage process. We find that
the grammar-based genetic programming approach is capable of reducing execution time by
2.60% on average, across the applications studied, while the bespoke four-stage approach
reduces execution time by 2.44%.

However, our investigation shows a handwritten OpenACC implementation is capable
of reducing execution time by 65.68%, suggesting our techniques could be improved upon.
Comparing the differences, we find our techniques do not handle data to and from the GPU in
a sensible manner and that, if they did, considerably execution time savings are possible. We
therefore advise future researchers to focus on the automation of transferring data between
main and GPU memory; a problem search-based software engineering is capable of solving.

18052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1712.07804
http://arxiv.org/abs/1712.07804
http://arxiv.org/abs/1712.07804
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


166 18052 – Genetic Improvement of Software

3.3 Assuring Organic Programs
Myra B. Cohen (University of Nebraska, Lincoln, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Myra, B. Cohen, Justin Firestone, Massimiliano Pierobon
Main reference Myra B. Cohen, Justin Firestone, Massimiliano Pierobon: “The Assurance Timeline: Building

Assurance Cases for Synthetic Biology”, in Proc. of the Computer Safety, Reliability, and Security -
SAFECOMP 2016 Workshops, ASSURE, DECSoS, SASSUR, and TIPS, Trondheim, Norway,
September 20, 2016, Proceedings, Lecture Notes in Computer Science, Vol. 9923, pp. 75–86,
Springer, 2016.

URL https://doi.org/10.1007/978-3-319-45480-1_7

Recent research in genetic improvement and self-adaptation have created a class of programs
that we call organic, since they follow an evolution cycle similar to that of living organisms.
Traditional testing techniques assume that program modifications are planned, systematic
and well understood. However, this may not be true for organic programs. I discuss the
use of an assurance case to argue about the dependability and safety of an organic program
using an exemplar from synthetic biology (which are living organic programs). I present an
orthogonal dimension to an assurance case, the assurance timeline, which aims to reason
about the dynamic, evolving aspects of these systems.

3.4 Genetic-Improvement of Test suite
Benjamin Danglot (INRIA Lille, FR)

License Creative Commons BY 3.0 Unported license
© Benjamin Danglot

In the literature there is a rather clear segregation between tests manually written by
developers and automatically generated ones. DSpot explores a third solution: automatically
improving existing test cases written by developers. DSpot takes as input developer-written
tests and synthesizes an improved version. Those improvements are given to the developer
as a pull-request than can be directly integrated into their code-base. DSpot uses mutation
operators on the code of each test, it produces assertions and selects them according to a
given test criterion such as coverage. In 26/40 cases, DSpot has been able to create a better
version of a test class. We proposed pull requests to real developers and 7 of them have been
added permanently to their test suite.

3.5 Software Plasticity
Nicolas Harrand (KTH Royal Institute of Technology, Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Nicolas Harrand

Joint work of Benoit Baudry, Nicolas Harrand

Approximate computing, automatic diversification and genetic improvement are techniques
that all rely on speculative transformations: transformations that aim at producing variants
of a program that are functionally similar to the original, yet execute slightly differently.
The intuition of all the techniques cited above potential enhancements lie in these acceptable
behavioural differences (enhanced performance, security, reliability, etc.).
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The design of the speculative transformations that can yield these improvements remains
a critical challenge. These transformations must target regions of programs that can tolerate
changes in the execution flow, while maintaining the correctness of the program. We call
them plastic code regions. We contribute with fundamental new knowledge about these
regions in object-oriented programs, as well as with new kinds of speculative transformations
that directly exploit this new knowledge.

Our empirical inquiry of plastic code regions starts from a random exploration of three
classical speculative transformations: add, replace and delete statements. We synthesize
24 583 variants from 6 real-world Java programs, and focus our analysis on the 5305 that
are similar, modulo test suite, to the original. Our key insights about plastic regions are
as follows: developers naturally write code that supports fine-grain behavioural changes;
statement deletion is a surprisingly effective; high-level design decisions, such as the choice
of a data structure, are natural points that can evolve while keeping functionality. Based on
these new findings, we design targeted speculative transformations and show that they are
very effective at producing variants that are both similar (modulo tests) and different from
the original.

3.6 DeepBugs: Learning to Find Bugs
Michael Pradel (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Michael Pradel

Joint work of Michael Pradel, Koushik Sen

Automated bug detection, e.g., through pattern-based static analysis, is an increasingly
popular technique to find programming errors and other code quality issues. Traditionally,
bug detectors are program analyses that are manually written and carefully tuned by an
analysis expert. Unfortunately, the huge amount of possible bug patterns makes it difficult
to cover more than a small fraction of all bugs. I present a new approach toward creating
bug detectors. The basic idea is to replace manually writing a program analysis with training
a machine learning model that distinguishes buggy from non-buggy code. To address the
challenge that effective learning requires both positive and negative training examples, we
use simple code transformations that create likely incorrect code from existing code examples.
We present a general framework, called DeepBugs, that extracts positive training examples
from a code corpus, leverages simple program transformations to create negative training
examples, trains a model to distinguish these two, and then uses the trained model for
identifying programming mistakes in previously unseen code. As a proof of concept, we
create four bug detectors for JavaScript that find a diverse set of programming mistakes,
e.g., accidentally swapped function arguments, incorrect assignments, and incorrect binary
operations. To find bugs, the trained models use information that is usually discarded by
program analyses, such as identifier names of variables and functions. Applying the approach
to a corpus of 150,000 JavaScript files shows that learned bug detectors have a high accuracy,
are very efficient, and reveal 132 programming mistakes in real-world code.

18052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


168 18052 – Genetic Improvement of Software

3.7 Analyzing Neutrality in Program Space
Joseph Renzullo (Arizona State University, Tempe, US)

License Creative Commons BY 3.0 Unported license
© Joseph Renzullo

URL https://docs.google.com/presentation/d/18-
0b4Mdnvum28IRCCLUb966Gb2VDHUf0D88DhlmakGI/edit?usp=sharing

I present evidence of interaction between multiple edits (both positive and negative epistasis)
in the region near the original program. There are a few cases where repairs were found
which were attributed to multiple independent patches working in combination (previous
results have shown that these often minimise to one patch) here we show evidence that this
is not always the case.

Additionally, I raise questions about how methods in biology (particularly borrowing
from theoretical biology) may be used to characterise (and hopefully exploit) the topology of
neutral space.

3.8 Approximate computing
Lukas Sekanina (Brno University of Technology, CZ)

License Creative Commons BY 3.0 Unported license
© Lukas Sekanina

Joint work of Lukas Sekanina, Zdenek Vasicek, Vojtech Mrazek
Main reference Vojtech Mrazek, Syed Shakib Sarwar, Lukás Sekanina, Zdenek Vasícek, Kaushik Roy: “Design of

power-efficient approximate multipliers for approximate artificial neural networks”, in Proc. of the
35th International Conference on Computer-Aided Design, ICCAD 2016, Austin, TX, USA,
November 7-10, 2016, p. 81, ACM, 2016.

URL http://dx.doi.org/10.1145/2966986.2967021

A new design paradigm–approximate computing–was established to investigate how computer
systems can be made better (e.g. more energy efficient, faster, and less complex) by relaxing
the requirement that they are exactly correct. We provide a brief introduction to approximate
computing and indicates how evolutionary computation, in general, and genetic improvement,
in particular, can be employed to provide requested approximations. An important case
study is presented in the area of evolutionary approximation of multipliers (which are key to
performance) for deep neural networks.

3.9 An Actionable Performance Profiling for JavaScript
Marija Selakovic (TU Darmstadt, DE)
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Many programs suffer from performance problems, but unfortunately, finding and fixing such
problems is a cumbersome and time-consuming process. My work focuses on JavaScript, for
which little is known about performance issues and how developers address them. To address
these questions, I present the main findings from the empirical study of ≈ 100 reproduced
performance-related issues from popular JavaScript projects. To help developers find and fix
recurrent performance issues I present two profiling approaches. The first approach focuses
on detecting finding the optimal order of checks in logical expressions and switch statements
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and proposing beneficial changes to the developers. Optimizing the order of evaluations
reduces the execution time of individual functions by between 2.5% and 59%, and leads to
statistically significant application-level performance improvements that range between 2.5%
and 6.5%. The second approach helps developers find and fix performance problems related to
API usages. The technique focuses on finding conditionally-equivalent but performance-wise
different APIs. Our evaluation with 939 APIs from 8 popular JavaScript libraries shows
the prevalence of conditionally equivalent APIs. In particular, out of 217 API pairs that
are equivalent for a subset of all inputs, our technique derives an equivalence condition for
149 pairs. Furthermore, it finds that 147 API pairs have different performance, enabling
developers to exploit conditional equivalences to speed up their code.

3.10 Repairing crashes in Android apps
Shin Hwei Tan (National University of Singapore, SG)
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Joint work of Shin Hwei Tan, Zhen Dong, Xiang Gao, Abhik Roychoudhury
Main reference Shin Hwei Tan, Zhen Dong, Xiang Gao, Abhik Roychoudhury: “Repairing Crashes in Android

Apps”, in Proc. of the ACM/IEEE Int’l Conf. on Software Engineering (ICSE).,To Appear, 2018.

Android apps are omnipresent, and frequently suffer from crashes. This leads to poor user
experience and loss of revenue. Past work has focused on automated test generation to detect
crashes in Android apps. However automated repair of crashes has not been studied. We
propose the first approach to automatically repair Android apps, specifically we propose a
technique for fixing crashes in Android apps. Unlike most test-based repair approaches, we do
not need a test-suite; instead a single failing test is meticulously analyzed for crash locations
and reasons behind these crashes.Unlike most test-based repair approaches, we do not need
a test-suite; instead a single failing test is meticulously analyzed for crash locations and
reasons behind these crashes. Our approach hinges on a careful empirical study which seeks
to establish common root-causes for crashes in Android apps, and then distils the remedy
of these root-causes in the form of eight generic transformation operators. These operators
are applied using a search-based repair framework embodied in our repair tool Droix. We
also prepare a benchmark DroixBench capturing reproducible crashes in Android apps. Our
evaluation of Droix on DroixBench reveals that the automatically produced patches are often
syntactically identical to the human patch, and on some rare occasion even better than the
human patch (in terms of avoiding regressions). These results confirm our intuition that our
proposed transformations form a sufficient set of operators to patch crashes in Android.

3.11 BugZoo: A platform for studying historical bugs
Christopher Timperley (Carnegie Mellon University, Pittsburgh, US)
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URL https://github.com/squaresLab/BugZoo

I introduce BugZoo to the genetic improvement community: BugZoo is an open-source
platform for studying historical software bugs that helps researchers to conduct high-quality
reproducible experiments. BugZoo can be used to conduct experiments in a diversity of
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fields including but not limited to software testing, program repair, genetic improvement,
fault localisation, and program analysis. By providing a rich API, a decentralised means
of distribution bugs, and a controlled execution environment, BugZoo makes it faster and
easier to perform research.

3.12 Major Transitions in Information Technology
Sergi Valverde (UPF, Barcelona, ES)
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When looking at the history of technology, we can see that all inventions are not of equal
importance. Only a few technologies have the potential to start a new branching series
(specifically, by increasing diversity), have a lasting impact in human life and ultimately
became turning points. Technological transitions correspond to times and places in the
past when a large number of novel artefact forms or behaviours appeared together or in
rapid succession. Why does that happen? Is technological change continuous and gradual
or does it occur in sudden leaps and bounds? The evolution of information technology (IT)
allows for a quantitative and theoretical approach to technological transitions. The value of
information systems experiences sudden changes (i) when we learn how to use this technology,
(ii) when we accumulate a large amount of information, and (iii) when communities of practice
create and exchange free information. The coexistence between gradual improvements and
discontinuous technological change is a consequence of the asymmetric relationship between
complexity and hardware and software. Using a cultural evolution approach, we suggest
that sudden changes in the organization of ITs depend on the high costs of maintaining and
transmitting reliable information.

4 Working groups

4.1 Pseudo Neutrality
Benoit Baudry (KTH Royal Institute of Technology, Stockholm, SE)

License Creative Commons BY 3.0 Unported license
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The synthesis of pseudo-neutral program variants is a key challenge for genetic improvement.
Given an original program that one wishes to improve, pseudo-neutral variants are those
programs that are functionally similar to the original, yet exhibit some differences in their
behaviour. More precisely, given a program P that passes all the tests in TS, we wish to
generate variants of P that are synthesised by transformation τ and that are such that

τ(P ) passes all tests in TS, i.e., P and τ(P ) are equivalent modulo TS
{traces}P 6= {traces}τ(P ) i.e., P and τ(P ) are semantically different

This definition is summarised in Figure 1
Key insight: pseudo-neutral program variants exist!
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P
τ

τ(P)

TS TS
✔ ✔

{trace}P {trace}τ(P)≠
Figure 1 Pseudo-neutral program variants.

We have strong empirical evidence of their existence in large quantities and in many
languages (Java, C and assembly code) [1, 2]. Our results also demonstrate that the existence
of these variants is independent of the strength of the test suite TS that used to assess the
functional similarity between variants.

It is important to note that these program variants are not equivalent mutants in the sense
of mutation testing. Indeed, as illustrated in Figure 1, the execution traces vary between the
original and the transformed program. This means that the behaviour are not equivalent
and that the transformed program is not equivalent to the original.

4.1.1 Challenges

The variants and the original must have different traces for the same input. Yet, there are
many ways to capture the traces (function calls, system calls, states, etc.). The question
about what is the most appropriate or relevant level to capture traces is still open.

The synthesis of variants relies on transformations on the code (syntactic changes), yet
the goal is to produce semantic variations. One challenge here is to know how to predict the
semantic impact of a syntactic change. A similar questions is to know what makes software
prone to the existence of these pseudo mutational robust variants.

Can we design an experiment to explore whether the following biological phenomenon
holds in software: adding levels of complexity enhances robustness and evolvability in a
multilevel genotype-phenotype map.
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Figure 2 DevOps Software life cycle.

4.2 Genetic Improvement for DevOps
Nicolas Harrand (KTH Royal Institute of Technology, Stockholm, SE)
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We discussed the opportunities to deploy genetic improvement offered by DevOps [2]. DevOps
aims to close the loop between development and operation of software. To achieve this
goal, it relies heavily on automation of the software construction process. In this inclination
toward automation and the resulting problems, lie many opportunity to integrate Genetic
Improvement into the software construction pipeline. Among them, we identified the following:
1. Fixing merge conflicts
2. Genetically improve the test suite
3. Use GI to fix flaky tests
4. Integrate bug repair into Continuous Integration (CI) tools.
5. Automatic fixes in dependency conflicts
6. Container minimization
7. Deployment of a diverse population of software
8. Use of monitoring feedback for further improvements

The discussion resulted in the publication of a workshop paper listing and detailing these
different opportunities [1].
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4.3 Benchmarks and Corpora
Myra B. Cohen (University of Nebraska, Lincoln, US), William B. Langdon (University
College London, GB), and Claire Le Goues (Carnegie Mellon University, Pittsburgh, US)
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This working group discussed the need for benchmarks and a corpus of programs that have
been created through genetic improvement. The group came up with two dimensions of this
problem, (1) benchmarking and (2) building a corpus:

1. Benchmarking, i.e. providing programs and example bugs/functionality, etc. for others
to evaluate their GI techniques. Some benchmarks already exist.
Potential issue: There is a risk that people will overfit their techniques to these bench-
marks.
Types of Artefacts that we should collect:

Failing and passing test cases (or other witnesses of desired/undesired behaviour)
Program with bugs and set of properties of interest
Patches: This would include a patch and undo approach (always return to base model
to re-patch)

2. Corpus, i.e. providing the artefacts from GI throughout a program’s history which
includes the program, the patches, the new programs, etc.
Some people may not want to re-run the programs and build their own artefacts. This
provides programs and other GI artefacts for them to study.
Artefacts:

Base program
History of the evolved program and patches
This assumes each patch builds on another
Includes patches for bugs, optimisation and transplantation
Can be used to mine information, understand the artefacts

4.4 Energy Breakout Session
Markus Wagner (University of Adelaide, AU)
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The minimisation of energy consumption is an important challenge in many domains. We
focussed on two domains: electric circuits and mobile phones.

Researchers who develop new circuits can often rely on good models. Some are lightweight
and provide estimates based on switching activity and gate size analysis, and they are often
good enough to reliably drive tournament selection. For the final functional validation, either
an actual implementation is used, or SAT solvers. Vasicek and Sekanina [1] applied simple and
so cheap area and delay estimation techniques during the evolutionary approximation of digital
circuits. Parameters of best-evolved circuits were then verified by means of a professional
circuit design tool. The quality of estimated values was sufficient for their purposes. Mrazek et
al. [2] applied these estimation techniques in evolutionary design/improvement of specialised
multipliers for deep neural networks.
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When dealing with mobile phones, there are software engineering issues to solve before
getting to the optimisation problem. In addition, complex interactions on the actual phone
make it difficult to consistently see the benefit of a change. Possible optimisation approaches
range from working on the hardware (voltage schedules, frequency adjustments) to code
changes. The group discussed various targets: screen, communication, GPS, and code. It
was not clear to the group if hardware-in-the-loop is necessary for the evolution, although
the group identified cases were the creation of sufficiently precise models is out of question.
When it comes to in-vivo optimisation, then the processes need to deal with large amounts
of noise from various resources. This is immensely prevalent when attempting to optimise
communication. Also, the use of external power meters is becoming increasingly difficult
as the phone’s communication with the battery is hard to mimic. Bokhari et al. [3,4]
characterised noise and challenges, and performed multi-objective configuration optimisation
on Android 6 devices.

In-vivo optimisation is interesting when the target device’s exact configuration is now
known. Recently, Yoo et al. [5,6] demonstrated that this is possible for performance optim-
isation.
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4.5 Diversity
Wolfgang Banzhaf (Michigan State University, US)
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With the prevalence of neutrality in computer code, we agreed that the more important
issue is how to create diversity in a population. As we start evolution by a working program
that needs to be improved, this is an issues, since we come from a situation where there is a
solution, but one which we want to further improve on. So, how do we create diversity, since
we are not allowed to just randomly create programs?

There was discussion about the fact that the neutral networks are actually quite intricately
connected. So would diversity actually be so important?
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As far as neutrality is concerned, many mentioned the issue of really very flat fitness land-
scapes. Where would there be a signal for improvements? Two measures where emphasised
for avoiding getting stuck on the plain:
1. Random subset selection
2. Co-evolutionary approaches

4.6 Comprehensibility and Explanation
Colin Johnson (University of Kent, UK)
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An important issue in applying genetic improvement in practical software development is
convincing developers to take up the improvements suggested by GI systems. This can be
tackled in a number of different ways. For example, running the modified programs on test
data can be used both to check whether test cases are still satisfied post-improvement, and
to measure improvements to non-functional properties. Another approach is to apply static
analysis and verification techniques to GI-modified programs to examine properties. A third
approach, which we focus on here, is that of making modified code comprehensible to human
programmers, and for the GI system to provide human-comprehensible explanations and
annotations for developers.

4.6.1 Human Readability

One way to make improvements convincing is to make changes so that a human programmer
can easily read the results from the suggested improvement. This could in part be achieved
by keeping code changes small and focused (perhaps only altering code regions specified by
the developer), and avoiding side-effects of genetic operations such as code bloat. A related,
almost opposite, issue, is avoiding the GI system making excessively “clever” convoluted
improvements that might use unusual language or API features or use language in a non-
idiomatic way. One approach to this would use some notion of robustness, i.e. measuring
whether syntactically-similar programs have similar behaviour. Another might use an
approach inspired by economics or ecology, giving the GI system a fixed budget of changes
to use. A final approach might be capturing, measuring, and optimising for the notion of
idiomatic code, the kind of code that humans use.

4.6.2 Explainability

Another approach to making improvements convincing is for the GI system to generate
an explanation for the improvement alongside the improvement itself. At a simple level,
this explanation could consist of giving some examples that exemplify the improvement;
for example, in a fault-fixing system, examples of test cases that are now satisfied that
weren’t before the fix. A harder challenge is to provide a higher-level explanation of the
improvements made, particularly having the system explain the overall effect of many small
changes to the code. This might come from some analysis of the improvement process, or by
some post-improvement comparative analysis of the improved code against the original code.
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4.6.3 Comprehensibility as Improvement

Alternatively, human-comprehensibility might be the aim of a GI process. A GI process
might aim to refactor code to bring it into a common style, for example in the use of
consistent names, common code idioms, exception handling. Another related area, which
had already been explored somewhat in the literature, is optimising code against measures of
code complexity, for example cohesion and coupling in Object-Oriented systems. A related
idea would be to use GI to refactor code to use common design patterns. Another issue is
about changing the granularity of code: breaking a single expression into sub-components
to allow more fine grained change/tuning; or, abstracting away from detailed code into a
higher-level framework, replacing detailed code with a macro or API call.

4.6.4 Trade-offs

We can consider how we might trade off comprehensibility against other properties, particu-
larly non-functional properties. Perhaps, given a sufficiently reliable GI system, we could see
a system that allowed rapid automated refactoring of code: for example, a human-readable
piece of code being transformed into an energy-efficient one for deployment, then changed
back into a human-comprehensible one for a developer to make improvements, then into
a more evolvable structure for the computer to make different kinds of improvements, . . .
Finally, there is the difficult issue of the effect of GI and other code-transformation methods
on developer’s mental models of code. However readable the code is in isolation, there is still
the issue of how much a set of changes breaks a specific developer’s understanding of how
their specific piece of code works.
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4.7 Fitness Functions for Genetic Improvement
Brad Alexander (University of Adelaide, AU)
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4.7.1 Test suite selection

This topic examines the potential to make use of improved test suites and other data to
provide for faster and better-informed search. The motivations of this topic are observed
problems in terms flat fitness landscapes for some applications such as defect repair. More
generally, there is also the problem that full evaluation all tests for each fitness evaluation
impacts on the speed of search.

4.7.1.1 Reducing evaluation times

One approach (Langdon) to improving the speed of each evaluation is to select a representative
subset of tests for each fitness evaluation [1]. For the GI objective of reducing execution time
the representative subset might be three tests, one short-lived, one of intermediate length,
and one long-running. Run the short lived one first and, if that fails, don’t necessarily bother
with the others.

Questions arising from this approach include by how much this improves the speed of
search? Some of the trade-offs have already been studied in: [3]. This showed that, when
coupled with a more informed fitness landscape, being selective in the tests run can greatly
speed search in the domain of defect repair (more on this below). Other suggestions included
using a steady state GA to minimise the number of fitness evaluations [8].

More broadly, some proposals for choosing representative test samples included (Joseph)
Eigentest weighting for the most representative sample of tests. (Celso) The literature on
test selection in search-based software engineering (SBSE) is quite strong [6]. There is still
work to be done on productive strategies to use for particular GI objectives.

Another approach to minimizing test suite evaluations time is to only apply tests that
exercise the code that is changed by a patch. This approach is used in industry. Is it used in
GI?

4.7.1.2 Boosting approaches

For the objective of defect repair (Joseph) one approach is to favor subsets of tests that
are most likely to fail at the current stage of search. This helps shape the search toward
overcoming challenging cases first. This boosting approach has been long-used in Genetic
Programming [7]. This approach has also been applied in the improvement of search spaces
in automated program repair [9].

There was also some discussion of the potential benefits of applying subsets of tests to
individuals in terms of preserving useful genetic material. That is, individuals that might,
when applied to all tests, achieve low fitness could still have useful materials that contributes
to solutions through its progeny. It has been observed (Joseph) that such individuals, if
allowed to persist can act as repositories for useful material – if the sub-set of tests two
which they are exposed allow them to survive. This approach mirrors Lee Spector’s Lexicase
testing approach – randomly select a test case to select parents – only if there is a tie do we
select a second case and so on (see: [5] for recent study).
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4.7.1.3 Test feature selection

Questions arising from this approach include by how much this improves the speed of search?
Is this approach sensitive to the selection of test features. In this context, a test feature
is some intrinsic or manifest property of the test. Examples of test features might be: the
length of time that it takes to run a test; the current likelihood that a given test will fail
relative to the population of variants; and the coverage spectrum of a particular test.

4.7.1.4 Specialised domains

Improving tests involving GUI interactions, (e.g. for mobile devices) is a concern for GI
objectives such as energy optimisation. The Monkey test generator generates shallow
traversals of GUI interfaces due it its unguided nature. In contrast Sapienz does well in
traversing through interfaces of mobile devices but can sometimes aggressively generate states
that app programmers might consider infeasible. GUI ripping (e.g. [2]) can provide some
help in this regard.

4.7.2 Landscape Improvement

For some GI objectives such as defect repair the landscape can be very flat and uninformative.
Some work such as [3] automatically derived program invariants and was able to leverage
these to speed up search. More recent work in program invariants [2] has been used for fault
localisation – perhaps this can be leveraged both for better localisation of repair locations
but also for giving a more informed fitness response to programs. Evosuite [4] continues to
be developed as a way to reverse engineer assertions that serve as oracles from which to
generate tests (the approach is contingent on the assumption that the version of the program
used to generate tests is correct). The extent to which tests based on invariants can be
synthesised from programs with bugs is an interesting question.

Another approach is the use of smart operators that are more likely to preserve semantics.
Elements of this approach, combined with the use of genotypes that allow for separate
evolution of the source, destination, and operation in a defect repair setting have been
recently applied with some success in AJAR[10].
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http://dx.doi.org/10.1109/TEVC.2013.2281544
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6 Yuanyuan Zhang Mark Harman, Yue Jia. Achievements, open problems and challenges for
search based software testing.

7 Gregory Paris, Denis Robilliard, and Cyril Fonlupt. Applying boosting techniques to genetic
programming. In Pierre Collet, Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton, and Marc
Schoenauer, editors, Artificial Evolution, pages 267–278, 2002. Springer Berlin Heidelberg.

8 Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer.
Post-compiler software optimization for reducing energy. SIGARCH Comput. Archit. News,
42(1):639–652, February 2014.

9 Stephanie Forrest Westley Weimer, Zachary P. Fry. Leveraging program equivalence for
adaptive program repair: Models and first results. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 356–366, 2013. doi:10.1109/
ASE.2013.6693094.

10 Yuan Yuan and Wolfgang Banzhaf. ARJA: Automated repair of java programs via multi-
objective genetic programming. arXiv:1712.07804.

5 Resources for Genetic Improvement

The seminar was also the occasion for participants to share useful resources such as state-of-
the-art tools and frameworks etc. In particular, since the evaluation of new techniques in a
replicable and time efficient fashion may prove challenging, the exchange of benchmarks is a
valuable output of the seminar.

5.1 Tools, Libraries and Frameworks
1. DSpot: a tool for Genetic Improvement of test suites

https://github.com/STAMP-project/dspot
2. PyGGI: Python General Framework for GI

https://github.com/coinse/pyggi
https://coinse.github.io/pyggi/ (API documentation)

3. GIN: GI in no Time
https://github.com/gintool/gin

4. GenProg:
https://squareslab.github.io/genprog-code/ GitHub io page,
https://github.com/squaresLab/genprog-code GitHub source

5. Software Engineering Library (support for C/C++ source w/ CLANG, ASM, ELF, future:
Coq, Java):
https://github.com/GrammaTech/sel Github Source
https://grammatech.github.io/sel/Manual
https://grammatech.github.io/sel/Usage.html Installation and easy examples to start
https://github.com/GrammaTech/clang-mutate C/C++ manipulation tooling

6. ARJA:
https://github.com/yyxhdy/arja

7. Reproduce and repair failing builds:
https://github.com/Spirals-Team/librepair/tree/master/repairnator

8. MuScalpel: automated software transplantation.
http://crest.cs.ucl.ac.uk/autotransplantation/downloads/muScalpel.zip
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9. History of programming languages
https://github.com/svalver/Proglang

10. Agent-based model for the cultural diffusion of programming languages (code)
http://modelingcommons.org/browse/one_model/4611

11. JavaScript parser:
http://esprima.org/
https://github.com/estools/escodegen
https://github.com/estools/estraverse

12. Astor4Android: program repair for Android App
https://github.com/kayquesousa/astor4android

5.2 Benchmarks
1. BugZoo (Docker containers for ManyBugs): https://github.com/squaresLab/BugZoo
2. CodeFlaws

https://github.com/codeflaws/codeflaws
3. Parsec:

http://parsec.cs.princeton.edu/
4. SPEC INT:

https://www.spec.org/benchmarks.html
5. Microsoft Version Control repos with Bug Info related to commits:

http://msr.uwaterloo.ca/msr2009/challenge/msrchallengedata.html
6. DBGBENCH : evaluation of automated fault localization, diagnosis, and repair techniques

w.r.t. the judgement of human experts
https://github.com/rjust/defects4j a collection of reproducible bugs
https://droix2017.github.io a set of reproducible crashes in Android apps

7. ARJA Benchmark of seed bugs
https://github.com/yyxhdy/SeededBugs

6 Following the Seminar, New work and New Connections

6.1 New Work
References
1 Afsoon Afzal, Jeremy Lacomis, Claire Le Goues, and Christopher S. Timperley. A Turing

test for genetic improvement. In Justyna Petke, Kathryn Stolee, William B. Langdon, and
Westley Weimer, editors, GI-2018, ICSE workshops proceedings, pages 17–18, Gothenburg,
Sweden, 2 June 2018. ACM.

2 Gabin An, Jinhan Kim, and Shin Yoo. Comparing line and AST granularity level for
program repair using PyGGI. In Justyna Petke, Kathryn Stolee, William B. Langdon, and
Westley Weimer, editors, GI-2018, ICSE workshops proceedings, pages 19–26, Gothenburg,
Sweden, 2 June 2018. ACM.

3 Benoit Baudry, Nicolas Harrand, Eric Schulte, Marija Selakovic, Shin Hwei Tan, Chris-
topher Timperley, and Emamurho Ugherughe. A spoonful of DevOps helps the GI go
down. In Justyna Petke, Kathryn Stolee, William B. Langdon, and Westley Weimer, edit-
ors, GI-2018, ICSE workshops proceedings, pages 35–37 Gothenburg, Sweden, 2 June 2018.
ACM.

https://github.com/svalver/Proglang
http://modelingcommons.org/browse/one_model/4611
http://esprima.org/
https://github.com/estools/escodegen
https://github.com/estools/estraverse
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https://github.com/squaresLab/BugZoo
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4 Joseph Renzullo, Stephanie Forrest, Westley Weimer, and Melanie Moses. Neutrality and
epistasis in program space. In Justyna Petke, Kathryn Stolee, William B. Langdon, and
Westley Weimer, editors, GI-2018, ICSE workshops proceedings, pages 1–8, Gothenburg,
Sweden, 2 June 2018. ACM.

6.2 New Connections
The followings outcomes were reported by the participants:
1. Eric Schulte, Benoit Baudry, Stephanie Forrest and Nicolas Harrand plan to collaborate

on the following topics:
The “older but wiser” hypothesis
Mapping the “envelope” where executions of neutral variants diverge from one another
and identify quiescent points where they converge.
Investigating the hypothesis: Systems with more interpretive steps between the “source
code” and execution are more robust than those with fewer steps?

2. Eric Schulte, Claire Le Goues and Chris Timperley plan to work at CMU on experimental
framework merging (BugZoo)

3. Prof. Banzhaf and Prof. Langdon are planning an experimental evaluation of long term
evolution in continuous domains.

4. Dr. Markus Wagner plans to visit Prof. Krawiec Krzysztof during his sabbatical in 2019.
5. Based on a discussion between Prof. Sekanina, Dr. Vasicek and Prof. Krawiec, new

research directions have been identified in the area of genetic programming using formal
verification methods. Possible ways of collaboration on this topic are under discussion.

6. Dr. Leonardo Trujillo and Dr. John Woodward plan to work on the following question:
What are the similarities and differences of Decision Forest representations and algorithms
and Geometric Semantic Genetic Programming. Both of these approaches have attracted
considerable attention over the past few years.
These two approaches have significant similarities in the types of models they construct,
but also some differences.
They believe these similarities are more than superficial and ask what can these two areas
learn from one another.

7. Dr. Claire Le Goues and Prof. Stephanie Forrest will collaborate on round 2 of an idea
they tried out several years ago, but now have new ideas for. They will (sometime in the
indefinite future) write a paper about improving fitness functions for automated program
repair, to include information beyond test suite success.

8. Profs. Colin Johnson and Krzysztof Krawiec talked about the possibilities of using machine
learning to measure program quality in genetic improvement and program synthesis, and
about the role of program comprehension (and its measurement) in that process. And
hope to make progress together in this area.
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