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Abstract
Mobility of people with disabilities is one of the most important challenges for their social in-
tegration. There have been significant effort to develop assistive technologies to guide the PWD
during their mobility in recent years. However, these technologies have limitations when it comes
to the navigation and guidance of these people through accessible routes. This is specifically
problematic in indoor environments where detection, location and tracking of people, and other
dynamic objects that may limit the mobility of these people, are very challenging. Thus, many
researches have leveraged the use of sensors to track users and dynamic objects in indoor envir-
onments. However, in most of the described methods, the sensors are manually deployed. Due to
the complexity of indoor environments, the diversity of sensors and their sensing models, as well
as the diversity of the profiles of people with disabilities and their needs during their mobility, the
optimal deployment of a sensor network is a challenging task. There exist several optimization
methods to maximize coverage and minimize the number of sensors while maintaining the min-
imum connectivity between the sensor nodes in a network. Most of the current sensor network
optimization methods oversimplify the environment and do not consider the complexity of 3D
indoor environments. In this paper, we propose a novel 3D local optimization algorithm based
on a geometric spatial data structure that takes into account some of these complexities for the
purpose of helping PWD in their mobility in 3D indoor environments such as shopping centers,
museums and other public buildings.
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1 Introduction

Social participation of people with disabilities (PWD) is one of the challenging problems in
our society. According the United Nation’s convention for PWD “persons with disabilities
may include those who have long-term physical, mental, intellectual or sensory impairments
which in interaction with various barriers may hinder their full and effective participation in
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society on an equal basis with others” [6]. According to a recent publication by Statistics
Canada (2013), 13.7% of the population aged over 15 years live with a type of disability.

Based on the International Classification of Functioning (ICF) and the Disability Creation
Process (DCP) model [5], social participation of PWD results from the interactions between
their personal characteristics and the physical and social environmental factors. Most of the
urban infrastructures and services are designed for people without any disability and do not
consider the specific needs of PWD. This significantly limits the mobility of PWD and their
social participation (e.g., going to work, the market, the museum, etc.). Mobility is a life
habit that significantly influences other human life habits [5], and depending on the context,
mobility may include movements such as postural transfers (e.g., from a chair to a bed) or
moving from a point to another during diverse daily activities (walking, working or playing,
driving a car, and using public transportation).

With the expansion of urban development and the construction of complex city infrastruc-
tures such as road networks, public buildings, shopping malls, airports, and museums, there
is an increasing need for assistive navigation technologies to help PWD in their mobility.
Efficient navigation in such environments require accurate and up-to-date information on the
accessibility of those environments including information on possible obstacles and facilitators
for the mobility of PWD. For this purpose, sensor networks provide interesting potentials to
locate and track the dynamics of indoor environments and provide timely information to
PWD during their navigation.

In recent years, a variety of sensor types has been developed and used for monitoring
and measuring dynamic environments. For instance, in a mobility context, the majority of
sensors have been used for positioning and tracking of people and moving objects. Tracking
sensors are generally embedded in the environment and constitute a sensor network. These
sensors must be deployed in the environment and have the best configuration to maximize
the coverage and guarantee their connectivity and minimize the cost (optimal number of
sensors and their types). There exist several optimization methods to maximize coverage and
minimize the number of sensors while maintain the minimum connectivity between the sensor
nodes in a network. Most of the current sensor network optimization methods oversimplify
the environment and do not consider the complexity of 3D indoor environments. In this
paper, we propose a novel 3D local optimization algorithm based on a geometric spatial data
structure that takes into account some of these complexities for the purpose of helping PWD
in their mobility in 3D indoor environments such as shopping centers, museums and other
public buildings.

The remainder of this paper is organized as follows: Section 2 presents a brief literature
review on sensor network deployment in indoor environments for mobility purposes and
highlights their strengths and limitations. In section 3, the methodology of the proposed local
deployment approach will be elaborated with consideration of indoor complex environment
models and mobility applications. Then in section 4, an experiment will be conducted in an
indoor environment. Finally, the results will be discussed in the last section.

2 Related works

Optimal deployment of a sensor network in a complex indoor environment is a challenging task.
This complexity becomes even more challenging if we consider the diversity of sensor types
and their sensing models as well as the specificity of the requirements for each application.
With network deployment optimization methods, we try to maximize the coverage of the
network and minimize the cost of the network and energy consumption for each node while
maintaining a minimum connectivity between nodes in a wireless sensor network (WSN) [2].
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The WSN coverage problem has been studied intensively in the last decade. A sensor
coverage can be either target-based or area-based. In some WSN applications, detecting
target points such as buildings, doors, flags and boxes are desired, while in area-based
coverage, the aim is to detect mobile targets such as intruders in a given area [7]. Covering
target points, instead of the whole area, is addressed in the target-based coverage problem,
whose purpose is to cover the maximum number of target points. In the area-based coverage
problem, which is used in this research, the objective is to obtain the maximum region
covered by sensors, which is usually evaluated as the ratio of the covered area to the whole
area [8].

Several methods have been proposed for optimal deployment of sensor networks based
on the maximum coverage criteria [3]. These methods are either global or local and can
be deterministic or stochastic. Particle Swarm Optimization (PSO) algorithms [9], and
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [2] are among global approaches
for sensor network deployment optimization. These methods apply a global objective function
that is optimized for the whole network. In local algorithms such as Virtual force-based
methods [11], and Voronoi algorithms [10], the optimization is done locally by changing the
position of sensors with respect to the local context and the configuration of the neighboring
algorithms. Both global and local algorithms can be considered as stochastic or deterministic
depending on the definition of the sensing model of the sensors.

Most of the sensor network optimization methods use 2D raster representations of the
environment [2] or voxel representation for 3D environments [4], which limit their precision
and efficiency. This is because raster and voxel representations need a regular partition of
the whole space even for homogeneous areas (i.e. the unoccupied pixels or voxels). Moreover,
the raster-based models cannot be used to represent precisely indoor environments as they
are constrained by their resolutions.

Voronoi based algorithms have attracted much attention in the research community
interested in optimal sensor networks deployment, specially for its interesting spatial and
topological properties for defining and manging sensor networks. For instance, [3] have
proposed a local context-aware sensor network deployment algorithm based on 2D Voronoi
diagrams for urban environments. In the latter work, Voronoi diagram is also used to define
a movement strategy for sensors to heal the coverage holes of a sensor network where the
environment was represented using a 2.5D digital surface model (DSM). In [1], a sensor
coverage estimation method has been proposed based on precise 3D vector representation of
the environment. Here in this paper, we propose to take advantage of 3D Voronoi diagrams
and the vector-based representation of the indoor environment to develop a local sensor
network optimization algorithm for indoor environments in order to support the navigation
of PWD.

2.1 Methodology
For the deployment of a sensor network in an indoor environment, we propose a local
context aware optimization algorithm based on 3D Voronoi diagrams. For this purpose,
we assume that sensors can be deployed mainly on the walls and ceilings. Building floors
are considered as target areas to be covered where navigation activities are expected. As
mentioned previously, the sensing model (binary or probabilistic), sensor orientation (omni-
directional or directional) and other sensor characteristics such as observation angle and
distance ranges, should also be defined. In this paper, we consider an omni-directional sensor
model for our sensor network.

In addition to sensor characteristics, the 3D indoor environment needs to be represented
in details for optimal sensor network deployment. We also need to consider the presence
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of other objects embedded in the indoor environment that may affect coverage information
(e.g., presence of a column or other permanent obstacles in the environment). Hence, we
need a data structure that supports precise representation of the indoor environment and
allows semantic specification of all its components. For modeling 3D indoor environments,
we consider to benefit from the potentials of 3D IndoorGML for the representation of such
environments.

3D IndoorGML is an extension of CityGML (Level of details (LoD) 4) that provides
semantical, topological, and spatial information of objects and services. Like CityGML
LoD4, IndoorGML is an open standardized data model of interior space of 3D buildings that
includes core modules, appearance modules, and thematic modules. The main structure
of IndoorGML divides the indoor space into multi-spaces called cells, and the intersected
area of two neighboring cells is called boundary surface. IndoorGML uses two related spaces
to model indoor environments: (1) primal space is the geometrical representation of cells
and boundary surfaces, (2) dual space is the Node Relationship Graph representation of
cells and boundary surfaces, which respectively corresponds to nodes and edges. Generally,
IndoorGML contains connection spaces (e.g., doors), anchor spaces (e.g., building exits),
general spaces (e.g., rooms) and transition spaces (e.g., passages). In contrast, CityGML
includes boundary surfaces, rooms, openings, and closure surfaces (e.g., the space between
the kitchen and the living room is a virtual surface called closure surface).

Algorithm 1: 3D Voronoi deployment algorithm.
input : n omni-directional cameras Si(xi, yi, zi)
output : (Xi, Yi, Zi) optimal solutions
objective :Maximizing the coverage of cameras network

Initialize: Random distribution of the cameras on deployment planes
(walls/ceilings) Compute initial sensor network coverage ;

while stop_criterion do
3D_Voronoi(Si,...,Sn);
for i← 1 to n do

Movement strategy(Si);
{

1- choose the farthest vertex in the same direction of path segments;
2- project the movement vector on sensor deployed plane;
3- if movement vector has intersection with obstacle, keep a given distance
between sensors and obstacle;

}
Update sensor network coverage (Si);
{
1- choose the movement amount based on the coverage improvement
}

end
end

The objective of sensors deployment in such environment is the maximization of the
covered areas of path segments that include floors with the height of a typical pedestrian
who navigates in the indoor environment. Our aim with placing sensors in such environment
is to inform the PWD of the dynamics of those environments and also to guide them safely
towards their final destination.
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(a) Initial sensors positions with
3D Voronoi diagram. (b) Optimal sensors positions.

(c) Initial coverage area. (d) Optimal coverage area.

Figure 1 Deployment of 4 cameras in an indoor environment with obstacles.

The proposed algorithm for deployment of sensors (the cameras in this research) is inspired
from a local 2D Voronoi approach presented in [10]. This method uses a Voronoi diagram for
the representation of a sensor network and the relations between sensors. We extend that
method to 3D space and use a 3D Voronoi diagram for the representation of sensors and
their topological relations in the sensor network. Thus, in the proposed algorithm, we first
create the 3D Voronoi structure using sensors as the generators of the 3D cells in algorithm
1. In each iteration, we move the sensors towards the farthest vertex of their Voronoi cell to
reduce the overlapping coverages and to better cover the target areas. It should be noted
that the motion of each sensor needs to be done on the wall or ceiling. Therefore, the motion
vector of each sensor is projected on the sensor position plane and the sensor is moved in this
direction towards its new position. In the case of the presence of a permanent obstacle in the
moving direction we need to keep the sensor away from the obstacle with a given distance so
that its sensing field is maximized.

3 Experiment and results

In this experiment, we assume that four cameras are deployed in a semi-complex indoor
environment where the ceiling is composed of two sections with different heights. We assume
that the cameras have a spherical sensing model with a defined range of view. Each camera
has an initial position (x, y, z) and is located on the ceiling or walls.

The environment model represents a semi-complex three-dimensional indoor environment
and contains a few static obstacles (Figure 1a). The 3D indoor model is stored using
IndoorGML and the geometric information can be easily extracted and analyzed if needed.
In our case study, the indoor environment model consists of 8 segments (faces) and includes
two obstacles. The goal of this experiment is to reach the maximum coverage of the floor that
can be used as a part of path for the mobility of a PWD (e.g., a person using a wheelchair)
from an initial configuration of cameras (Figure 1c). Then, the objective function is defined
in a way that the floor is covered with a height corresponding to the height of a person using
a wheelchair for her/his mobility (Figures 1b and 1d).
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4 Conclusions

Navigation of PWD is a complex task in indoor environments. These people need assistive
technologies to help them in their mobility and to guide them through their path by
providing them directions and information on the accessibility of their path. Wireless sensor
networks provide interesting opportunities to help these people with their navigation in indoor
environments. However, optimal deployment of a sensor network in a 3D indoor environment
is a very challenging problem given the complexity of the indoor environments and the
presence of diverse obstacles as well as the diversity of sensors and their sensing models. Here
in this paper, we have presented a new local optimization algorithm integrating 3D Voronoi
diagrams for sensor network representation and 3D IndoorGML for the representation of
the 3D indoor environments. We have defined an iterative algorithm for sensors movement
that allows the improvement of the overall coverage of the sensor network. Finally we have
presented a concept proving experiment with promising results. This work is part of an
ongoing research project. We plan to carry out more comprehensive experiments in the near
future to test and improve the proposed algorithm.
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