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Abstract
In the classic Integer Programming (IP) problem, the objective is to decide whether, for a given
m × n matrix A and an m-vector b = (b1, . . . , bm), there is a non-negative integer n-vector x
such that Ax = b. Solving (IP) is an important step in numerous algorithms and it is important
to obtain an understanding of the precise complexity of this problem as a function of natural
parameters of the input.

The classic pseudo-polynomial time algorithm of Papadimitriou [J. ACM 1981] for instances
of (IP) with a constant number of constraints was only recently improved upon by Eisenbrand
and Weismantel [SODA 2018] and Jansen and Rohwedder [ArXiv 2018]. We continue this line
of work and show that under the Exponential Time Hypothesis (ETH), the algorithm of Jansen
and Rohwedder is nearly optimal. We also show that when the matrix A is assumed to be
non-negative, a component of Papadimitriou’s original algorithm is already nearly optimal under
ETH.

This motivates us to pick up the line of research initiated by Cunningham and Geelen [IPCO
2007] who studied the complexity of solving (IP) with non-negative matrices in which the number
of constraints may be unbounded, but the branch-width of the column-matroid corresponding to
the constraint matrix is a constant. We prove a lower bound on the complexity of solving (IP)
for such instances and obtain optimal results with respect to a closely related parameter, path-
width. Specifically, we prove matching upper and lower bounds for (IP) when the path-width of
the corresponding column-matroid is a constant.
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1 Introduction

In the classic Integer Programming problem, the input is an m× n integer matrix A, and
an m-vector b = (b1, . . . , bm). We consider the feasibility version of the problem, where
the objective is to find a non-negative integer n-vector x (if one exists) such that Ax = b.
Solving this problem, denoted by (IP), is a fundamental step in numerous algorithms and
it is important to obtain an understanding of the precise complexity of this problem as a
function of natural parameters of the input. Throughout the paper we denote ∆ for the
largest absolute value of the entries of A.

(IP) is known to be NP-hard. However, there are two classic algorithms due to Lenstra
[13] and Papadimitriou [16] solving (IP) in polynomial or pseudo-polynomial time for two
important cases when the number of variables and the number of constraints are bounded.
These algorithms in some sense complement each other.

The algorithm of Lenstra shows that (IP) is solvable in polynomial time when the number
of variables is bounded. Actually, the result of Lenstra is even stronger: (IP) is fixed-parameter
tractable parameterized by the number of variables. However, the running time of Lenstra’s
algorithm is doubly exponential in n. Later, Kannan [12] provided an algorithm for (IP)
running in time nO(n). Deciding whether the running time nO(n) can be improved to 2O(n)

is a long-standing open question.
Our work is motivated by the complexity analysis of the complementary case when the

number of constraints is bounded. (IP) is NP-hard already for m = 1 (the Knapsack
problem) but solvable in pseudo-polynomial time. In 1981, Papadimitriou [16] extended this
result by showing that (IP) is solvable in pseudo-polynomial time on instances for which the
number of constraints m is a constant. The algorithm of Papadimitriou consists of two steps.
The first step is combinatorial, showing that if the entries of A and b are from {0,±1, . . . ,±d},
and (IP) has a solution, then there is also a solution which is in {0, 1, . . . , n(md)2m+1}n.
The second, algorithmic step shows that if (IP) has a solution with the maximum entry at
most B, then the problem is solvable in time O((nB)m+1). Thus the total running time of
Papadimitriou’s algorithm is O(n2m+2 · (md)(m+1)(2m+1)), where d = max{∆, ‖b‖∞}. There
was no algorithmic progress on this problem until the very recent breakthrough of Eisenbrand
and Weismantel [6]. They proved the following result.

I Proposition 1 (Theorem 2.2, Eisenbrand and Weismantel [6]). (IP) with m× n matrix A is
solvable in time (m ·∆)O(m) · ‖b‖2

∞.

Then, Jansen and Rohwedder improved Proposition 1 and gave a matching lower bound
very recently [10].

I Proposition 2 (Jansen and Rohwedder [10]). (IP) with m× n matrix A is solvable in time
O(m∆)m log(∆) log(∆ + ‖b‖∞). Assuming the Strong Exponential Time Hypothesis (SETH),
there is no algorithm for (IP) running in time nO(1) · O(m(∆ + ‖b‖∞))m−δ for any δ > 0.

SETH is the hypothesis that CNF-SAT cannot be solved in time (2 − ε)nmO(1) on n-
variable m-clause formulas for any constant ε. ETH is the hypothesis that 3-SAT cannot be
solved in time 2o(n) on n-variable formulas. Both ETH and SETH were first introduced in
the work of Impagliazzo and Paturi [8], which built upon earlier work of Impagliazzo, Paturi
and Zane [9]. One of the natural question is whether the exponential dependence of ‖b‖∞
can be improved significantly at the cost of super polynomial dependence on n. Our first
theorem provides a conditional lower bound indicating that any significant improvements are
unlikely.
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I Theorem 3. Unless the Exponential Time Hypothesis (ETH) fails, (IP) with m × n

matrix A cannot be solved in time no( m
logm ) · ‖b‖o(m)

∞ even when the constraint matrix A is
non-negative and each entry in any feasible solution is at most 2.

Let us note that since the bound in Theorem 3 holds for a non-negative matrix A, we
can always reduce (in polynomial time) the original instance of the problem to an equivalent
instance where the maximum value ∆ in the constraint matrix A does not exceed ‖b‖∞.
Thus Theorem 3 also implies the conditional lower bound no( m

logm ) · (∆ · ‖b‖∞)o(m). When
m = O(n), our bound also implies the lower bound (n · m)o( m

logm ) · (∆ · ‖b‖∞)o(m). We
complement Theorem 3 by turning our focus to the dependence of algorithms solving (IP)
on m alone, and obtaining the following theorem.

I Theorem 4. Unless ETH fails, (IP) with m × n matrix A cannot be solved in time
f(m) · (n · ‖b‖∞)o( m

logm ) for any computable function f . The result holds even when the
constraint matrix A is non-negative and each entry in any feasible solution is at most 1.

Although Theorem 3 provides a better dependence on ‖b‖∞, Theorem 4 provides much
more information on how the complexity of the problem depends on m. Since several
parameters are involved in this running time estimation, a natural objective is to study the
possible tradeoffs between them. For instance, consider the O(m∆)m log(∆) log(∆ + ‖b‖∞)
time algorithm (Proposition 2) for (IP). A natural follow up question is the following. Could
it be that by allowing a significantly worse dependence (a superpolynomial dependence) on n
and ‖b‖∞ and an arbitrary dependence on m, one might be able to improve the dependence
on ∆ alone? Theorem 4 provides a strong argument against such an eventuality. Indeed, since
the lower bound of Theorem 4 holds even for non-negative matrices, it rules out algorithms
with running time f(m) ·∆o( m

logm ) · (n · ‖b‖∞)o( m
logm ). Therefore, obtaining a subexponential

dependence of ∆ on m even at the cost of a superpolynomial dependence of n and ‖b‖∞
on m, and an arbitrarily bad dependence on m is as hard as obtaining a subexponential
algorithm for 3-SAT.

We now motivate our remaining results. It is straightforward to see that when the
matrix A happens to be non-negative, the algorithm of Papadimitriou [16] runs in time
O((n · ‖b‖∞)m+1). Due to Theorems 3 and 4, the dynamic programming step of the
algorithm of Papadimitriou for (IP) when the maximum entry in a solution as well as in
the constraint matrix is bounded, is already close to optimal. Consequently, any quest for
“faster” algorithms for (IP) must be built around the use of additional structural properties of
the matrix A. Cunningham and Geelen [1] introduced such an approach by considering the
branch decomposition of the matrix A. They were motivated by the fact that the result of
Papadimitriou can be interpreted as a result for matrices of constant rank and branch-width
is a parameter which is upper bounded by rank plus one. For a matrix A, the column-matroid
of A denotes the matroid whose elements are the columns of A and whose independent
sets are precisely the linearly independent sets of columns of A. We postpone the formal
definitions of branch decomposition and branch-width till the next section. For (IP) with a
non-negative matrix A, Cunningham and Geelen [1] showed that when the branch-width of
the column-matroid of A is constant, (IP) is solvable in pseudo-polynomial time.

I Proposition 5 (Cunningham and Geelen [1]). (IP) with a non-negative m× n matrix A
given together with a branch decomposition of its column matroid of width k, is solvable in
time O((‖b‖∞ + 1)2kmn+m2n).

We analyze the complexity of (IP) parameterized by the branch-width of A, by making
use of SETH.
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I Theorem 6. Unless SETH fails, (IP) with a non-negative m×n constraint matrix A cannot
be solved in time f(bw)(‖b‖∞+ 1)(1−ε)bw(mn)O(1) or f(‖b‖∞)(‖b‖∞+ 1)(1−ε)bw(mn)O(1), for
any computable function f . Here bw is the branchwidth of the column matroid of A.

In recent years, SETH has been used to obtain several tight conditional bounds on the
running time of algorithms for various optimization problems on graphs of bounded treewidth
[14]. In fact, Theorem 6 follows from stronger lower bounds we prove using the path-width
of A as our parameter of interest instead of the branch-width. The parameter path-width is
closely related to the notion of trellis-width of a linear code, which is a parameter commonly
used in coding theory [7]. For a matrix A ∈ Rm×n, computing the path-width of the column
matroid of A is equivalent to computing the trellis-width of the linear code generated by
A. Roughly speaking, the path-width of the column matroid of A is at most k, if there is a
permutation of the columns of A such that in the matrix A′ obtained from A by applying
this column-permutation, for every 1 ≤ i ≤ n − 1, the dimension of the subspace of Rm
obtained by taking the intersection of the subspace of Rm spanned by the first i columns
with the subspace of Rm spanned by the remaining columns, is at most k − 1.

The value of the parameter path-width is always at least the value of branch-width and
thus Theorem 6 follows from the following theorems.

I Theorem 7. Unless SETH fails, (IP) with even a non-negative m×n constraint matrix A
cannot be solved in time f(k)(‖b‖∞ + 1)(1−ε)k(mn)O(1) for any computable function f and
ε > 0, where k is the path-width of the column matroid of A.

I Theorem 8. Unless SETH fails, (IP) with even a non-negative m× n constraint matrix
A cannot be solved in time f(‖b‖∞)(‖b‖∞ + 1)(1−ε)k(mn)O(1) for any computable function f
and ε > 0, where k is the path-width of the column matroid of A.

Although the proofs of both lower bounds have a similar structure, we believe that there
are sufficiently many differences in the proofs to warrant stating and proving them separately.

Note that although there is still a gap between the upper bound of Cunningham and
Geelen from Proposition 5 and the lower bound provided by Theorem 6, the lower bounds
given in Theorems 8 and 7 are asymptotically tight in the following sense. The proof of
Cunningham and Geelen in [1] actually implies the upper bound stated in Theorem 9. We
provide a self-contained proof in the appended full version of the paper for the reader’s
convenience.

I Theorem 9. (IP) with non-negativem×n matrix A given together with a path decomposition
of its column matroid of width k is solvable in time O((‖b‖∞ + 1)k+1mn+m2n).

Then by Theorem 7, we cannot relax the (‖b‖∞ + 1)k factor in Theorem 9 even if we allow
in the running time an arbitrary function depending on k, while Theorem 8 shows a similar
lower bound in terms of ‖b‖∞ instead of k. Put together the results imply that no matter
how much one is allowed to compromise on either the path-width or the bound on ‖b‖∞, it
is unlikely that the algorithm of Theorem 9 can be improved.

The path-width of matrix A does not exceed its rank and thus the number of constraints
in (IP). Hence, similar to Proposition 5, Theorem 9 generalizes the result of Papadimitriou
when restricted to non-negative matrices. Also we note that the assumption of non-negativity
is unavoidable (without any further assumptions such as a bounded domain for the variables)
in this setting because (IP) is NP-hard when the constraint matrix A is allowed to have
negative values (in fact even when restricted to {−1, 0, 1}) and the branchwidth of the
column matroid of A is at most 3. A close inspection of the instances they construct in their
NP-hardness reduction shows that the column matroids of the resulting constraint matrices
are in fact direct sums of circuits, implying that even their path-width is bounded by 3.



F. V. Fomin, F. Panolan, M. S. Ramanujan, and S. Saurabh 31:5

2 Preliminaries

We use Z≥0 and R to denote the set of non negative integers and real numbers, respectively.
For any positive integer n, we use [n] and Zn to denote the sets {1, . . . , n} and {0, 1, . . . , n−1},
respectively. For convenience, we say that [0] = ∅. For any two vectors b, b′ ∈ Rm and
i ∈ [m], we use b[i] to denote the ith coordinate of b and we write b′ ≤ b, if b′[i] ≤ b[i] for all
i ∈ [m]. We often use 0 to denote the zero-vector whose length will be clear from the context.
For a matrix A ∈ Rm×n, I ⊆ [m] and J ⊆ [n], A[I, J ] denote the submatrix of A obtained
by the restriction of A to the rows indexed by I and columns indexed by J . The notion
of the branch-width of graphs, and implicitly of matroids, was introduced by Robertson
and Seymour in [17]. Let M = (U,F) be a matroid with universe set U and family F of
independent sets over U . We use rM to denote the rank function of M . That is, for any
S ⊆ U , rM (S) = maxS′⊆S,S′∈F |S′|. For X ⊆ U , the connectivity function of M is defined
as λM (X) = rM (X) + rM (U \X)− rM (U) + 1.

For matrix A ∈ Rm×n, we use M(A) to denote the column-matroid of A. In this case
the connectivity function λM(A) has the following interpretation. For E = {1, . . . , n} and
X ⊆ E, we define S(A,X) = span(A|X) ∩ span(A|E \X), where A|X is the set of columns
of A restricted to X and span(A|X) is the subspace of Rm spanned by the columns A|X. It
is easy to see that the dimension of S(A,X) is equal to λM(A)(X)− 1.

A tree is cubic if its internal vertices all have degree 3. A branch decomposition of matroid
M with universe set U is a cubic tree T and mapping µ which maps elements of U to leaves
of T . Let e be an edge of T . Then the forest T − e consists of two connected components
T1 and T2. Thus every edge e of T corresponds to the partitioning of U into two sets Xe

and U \Xe such that µ(Xe) are the leaves of T1 and µ(U \Xe) are the leaves of T2. The
width of edge e is λM (Xe) and the width of branch decomposition (T, µ) is the maximum
edge width, where maximum is taken over all edges of T . Finally, the branch-width of M is
the minimum width taken over all possible branch decompositions of M .

The path-width of a matroid is defined as follows. Recall that a caterpillar is a tree
which is obtained from a path by attaching leaves to some vertices of the path. Then the
path-width of a matroid is the minimum width of a branch decomposition (T, µ), where T is
a cubic caterpillar. Let us note that every mapping of elements of a matroid to the leaves of
a cubic caterpillar corresponds to an ordering of these elements. Jeong, Kim, and Oum [11]
gave a constructive fixed-parameter tractable algorithm to construct a path decomposition
of width at most k for a column matroid of a given matrix.

For q ≥ 3, let δq be the infimum of the set of constants c for which there exists an
algorithm solving q-SAT with n variables and m clauses in time 2cn ·mO(1). The Exponential-
Time Hypothesis (ETH) and Strong Exponential-Time Hypothesis (SETH) are then formally
defined as follows. ETH conjectures that δ3 > 0 and SETH that limq→∞ δq = 1.

3 ETH lower bounds on pseudopolynomial solvability of (IP)

In this section we prove Theorem 4. Here, we give a brief overview of the reduction
and the intuition behind it. We use the ETH based lower bound result of Marx [15] for
Partitioned Subgraph Isomorphism. For two graphs G and H, a map φ : V (G) 7→ V (H)
is called a subgraph isomorphism from G to H, if φ is injective and for any {u, v} ∈ E(G),
{φ(u), φ(v)} ∈ E(H). In the Partitioned Subgraph Isomorphism problem, the input
consists of two graphs G,H, a bijection cG : V (G) 7→ [`] and a function cH : V (H) 7→ [`],
where ` = |V (G)| and the objective is to decide whether there a subgraph isomorphism φ

from G to H such that for any v ∈ V (G), cG(v) = cH(φ(v)).

ESA 2018
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I Lemma 10 ([15]). If Partitioned Subgraph Isomorphism can be solved in time
f(G)no( k

log k ), where f is an arbitrary function, n = |V (H)| and k = |E(G)|, then ETH fails.

To prove Theorem 4 we give a polynomial time reduction from Partitioned Sub-
graph Isomorphism to (IP) such that for every instance (G,H, cG, cH) of Partitioned
Subgraph Isomorphism the reduction outputs an instance of (IP) where the constraint
matrix has dimension O(|E(G)|)×O(|E(H)|) and the largest value in the target vector is
max{|E(H)|, |V (H)|}.

Let (G,H, cG, cH) be an instance of Partitioned Subgraph Isomorphism. Let
k = |E(G)| and n = |V (H)|. We construct an instance Ax = b of (IP) from (G,H, cG, cH) in
polynomial time. Without loss of generality we assume that [n] = V (H) and that there are
no isolated vertices in G. Hence, the number of vertices in G is at most 2k. Let m = |E(H)|.
For each e ∈ E(H) we assign a unique integer from [m]. Let α : E(H) 7→ [m] be the bijection
which represents the assignment mentioned above. For any i, j ∈ [`], we use EH(i, j) as a
shorthand for the set of edges of H between c−1

H (i) and c−1
H (j). Finally, for ease of presentation

we let {v1, . . . , v`} = V (G) and cG(vi) = i for all i ∈ [`], where ` = |V (G)|.
We now formally define the (IP) instance output by our reduction. The set of indeterm-

inants x of the (IP) instance is {x({a, b}, cH(a), cH(b)) : {a, b} ∈ E(H)}. Notice that for any
{a, b} ∈ E(H), there are two indeterminants x({a, b}, cH(a), cH(b)) and x({a, b}, cH(b), cH(a))
associated with it. Thus the cardinality of x is upper bounded by 2|E(H)| = 2m. Recall
that {v1, . . . , v`} = V (G) and cG(vi) = i for all i ∈ [`], where ` = |V (G)|. For each
vi ∈ V (G) we define 2dG(vi)− 1 many constraints as explained below. Let r = dG(vi) and
NG(vi) = {vj1 , . . . , vjr}. The constraints for vi ∈ V (G) are the following. For all q ∈ [r],∑

e∈EH(i,jq)

x(e, i, jq) = 1 (1)

The constraints of the form above encode the “selection” constraint in Partitioned
Subgraph Isomorphism, which says that for every edge {i, j} in G, we must pick an edge
in H which has one endpoint in color class i and the other in color class j. For all q ∈ [r− 1],

∑
{a,b}∈EH(i,jq)

a∈c−1
H

(i)

a · x({a, b}, i, jq) +
∑

{a,b′}∈EH(i,jq+1)
a∈c−1

H
(i)

(n− a) · x({a, b′}, i, jq+1) = n (2)

For each {vi, vj} ∈ E(G) with i < j, we define the following constraint in the (IP)
instance.∑
{a,b}∈EH(i,j)
a∈c−1

H
(i)

α({a, b}) · x({a, b}, i, j) +
∑

{a,b}∈EH(i,j)
b∈c−1

H
(j)

(m− α({a, b})) · x({a, b}, j, i) = m (3)

The two sets of constraints above enforce the property that for any color class i in H,
the set of edges that we have selected in the solution among those with exactly one endpoint
in i, in fact have the same endpoint in the color class i. Together these constraints allow
one to reconstruct the solution to the Partitioned Subgraph Isomorphism instance
from a feasible solution for the resulting (IP) instance. Clearly, the number of rows in A is
|E(G)|+

∑
v∈V (G) 2dG(v)− 1 ≤ 5k and number of columns in A is 2m. In order to prove

Theorem 4, we first show that (G,H, cG, cH) is a Yes instance of Partitioned Subgraph
Isomorphism if and only if Ax = b, x ≥ 0 is feasible and if Ax = b, x ≥ 0 is feasible, then
for any solution x∗, each entry of x∗ belongs to {0, 1}.
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4 Path-width parameterization: SETH bounds

We prove Theorems 7 and 8 by giving reductions from CNF-SAT. At this point, one might
be tempted to start the reduction from k-CNF SAT as seen in [2]. However, the fact that
in our case we also need to control the path-width of the reduced instance poses serious
technical difficulties if one were to take this route. Therefore, we take a different route and
reduce from CNF-SAT which allows us to construct appropriate gadgets for propagation
of consistency in our instance while simultaneously controlling the path-width. Moreover,
the parameters in the reduced instances are required to obey certain strict conditions. For
example, the reduction we give to prove Theorem 7 must output an instance of (IP), where
the path-width of the column matroid M(A) of the constraint matrix A is a constant and the
upper bound on the largest entry in b depends on the path-width. Similarly, in the reduction
used to prove Theorem 8, we need to construct an instance of (IP) where the largest entry
in the target vector is upper bounded by a constant. These stringent requirements on the
parameters make the SETH-based reductions quite challenging. However, reductions under
SETH are allowed to take super polynomial time – they can even take 2(1−ε)n time for some
ε > 0, where n is the number of variables in the instance of CNF-SAT. This freedom to avail
exponential time in SETH-based reductions is used crucially in the proofs of Theorems 7
and 8.

Now we give an overview of the reduction used to prove Theorem 7. Let ψ be an instance
of CNF-SAT with n variables and m clauses. Given ψ and a fixed constant c ≥ 2, we
construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0 of (IP) satisfying certain properties. Since for
every c ≥ 2, we have a different A(ψ,c) and b(ψ,c), this can be viewed as a family of instances
of (IP). In particular our main technical lemma is the following.

I Lemma 11. Let ψ be an instance of CNF-SAT with n variables andm clauses. Let c ≥ 2 be
a fixed integer. Then, in time O(m22nc ), we can construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0,
of (IP) with the following properties.
(a.) ψ is satisfiable if and only if A(ψ,c)x = b(ψ,c), x ≥ 0 is feasible.
(b.) The matrix A(ψ,c) is non-negative and has dimension O(m)×O(m2nc ).
(c.) The path-width of the column matroid of A(ψ,c) is at most c+ 4.
(d.) The largest entry in b(ψ,c) is at most 2dnc e − 1.

Once we have Lemma 11, we prove Theorem 7 using the fact that if we have an algorithm
A solving (IP) in time f(k)(‖b‖∞ + 1)(1−ε)k(mn)a for some ε, a > 0, then we can use this
algorithm to refute SETH. In particular, given an instance ψ of CNF-SAT, we choose an
appropriate c depending only on ε and a, construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0, of
(IP), and run A on it. Our careful choice of c will imply a faster algorithm for CNF-SAT,
refuting SETH. More formally, we choose c to be an integer such that (1− ε) + 4(1−ε)

c + a
c < 1.

Then the total running time to test whether ψ is satisfiable, is the time require to construct
A(ψ,c)x = b(ψ,c), x ≥ 0 plus the time required by A to solve the constructed instance of (IP).
That is, the time required to test whether ψ is satisfiable is

O(m22nc ) + f(c+ 4)2nc (1−ε)(c+4)2 a·nc mO(1) = 2
(

(1−ε)+ 4(1−ε)
c + a

c

)
n
mO(1) = 2ε

′nmO(1),

where ε′ < 1 is a constant depending on the choice of c. It is important to note that the
utility of the reduction described in Lemma 11 is extremely sensitive to the value of the
numerical parameters involved. In particular, even when the path-width blows up slightly,
say up to δc, or when the largest entry in b(ψ,c) blows up slightly, say up to 2δ nc , for some
δ > 1, then the calculation above will not give us the desired refutation of SETH. Thus, the

ESA 2018
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challenging part of the reduction described in Lemma 11 is making it work under these strict
restrictions on the relevant parameters and we focus on this part in the extended abstract.

As stated in Lemma 11, in our reduction, we need to obtain a constraint matrix with
small path-width. An important first step towards this is understanding what a matrix of
small path-width looks like. We first give an intuitive description of the structure of such
matrices. Let A be a m×n matrix of small path-width and let M(A) be the column matroid
of A. For any i ∈ {1, . . . , n − 1}, let A|{1, . . . i} denote the set of columns (or vectors) in
A whose index is at most i (that is, the first i columns) and let A|{i + 1, . . . n} denote
the set of columns with index strictly greater than i. The path-width of M(A) is at most
maxi dim〈span(A|{1, . . . , i}) ∩ span(A|{i+ 1, . . . , n})〉+ 1. Consequently, in order to obtain
a bound on the pathwidth, it is sufficient to bound dim〈span(A|{1, . . . , i}) ∩ span(A|{i +
1, . . . , n})〉 for every i ∈ [n].

The construction used in Lemma 11 takes as input an instance ψ of CNF-SAT with n
variables and a fixed integer c ≥ 2, and outputs an instance A(ψ,c)x = b(ψ,c), x ≥ 0, of (IP),
that satisfies all four properties of the lemma. Let X denote the set of variables in the input
CNF-formula ψ = C1 ∧C2 ∧ . . .∧Cm. For the purposes of the present discussion we assume
that c divides n. We partition the variable set X into c blocks X0, . . . , Xc−1, each of size n

c .
Let Xi, i ∈ {0, . . . , c − 1}, denote the set of assignments of variables corresponding to Xi.
Set ` = n

c and L = 2`. Clearly, the size of Xi is upper bounded by 2nc = 2` = L. We denote
the assignments in Xi by φ0(Xi), φ1(Xi), . . . , φL−1(Xi). To construct the matrix A(ψ,c), we
view “each of these assignments as a different assignment for each clause”. In other words we
have separate sets of variables in the constraints corresponding to different pairs (Cr, Xi),
where Cr is a clause and Xi is a block in the partition of X. That is for each clause Cr and
block Xi, we have variables {yCr,i,a a ∈ Z2L }. In other words for each Cr and assignment
φa(Xi), a ∈ ZL, we have two variables yCr,i,2a and yCr,i,2a+1. For any clause Cr, i ∈ Zc and
a ∈ Z2L, assigning value 1 to yC,i,a corresponds to choosing an assignment φb a2 c(Xi) for Xi.
In our reduction we will create the following set of constraints.∑

i∈[c],a∈Z2L such that
a is even and

φb a2 c
(Xi) satisfies C

yC,i,a = 1 for all C ∈ C (4)

∑
a∈Z2L

yC,i,a = 1 for all C ∈ C and i ∈ Zc (5)

Equation (4) takes care of satisfiability of clauses, while Equation (5) allows us to pick
only one assignment from {φ0(Xi), φ1(Xi), . . . , φL−1(Xi)} per clause C and block Xi. Note
that this implies that we will choose an assignment in Xi for each clause Cr. That way we
might choose m assignments from Xi corresponding to m different clauses. However, for the
backward direction of the proof, it is important that we choose the same assignment from Xi
for each clause. This will ensure that we have selected an assignment to the variables in Xi.
Towards this we will have a third set of constraints as follows.∑

a∈Z2L

(
ba2 c · yCr,i,a

)
+
(

(L− 1− ba2 c)yCr+1,i,a

)
= L− 1 ∀r ∈ [m− 1] , i ∈ Zc (6)

Equation (6) enforce consistencies of assignments of blocks across clauses in a sequential
manner. That is, for any block Xi, we make sure that the two variables set to 1 corresponding
to (Cr, Xi) and (Cr+1, Xi) are consistent for any r ∈ {1, . . . ,m− 1}, as opposed to checking
the consistency for every pair (Cr, Xi) and (Cr′ , Xi) for r 6= r′. Thus in some sense these
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consistencies propagate. Furthermore, the idea of making consistency in a sequential manner
also allows us to bound the path-width of column matroid of A(ψ,c) by c+ 4.

The proof technique for Theorem 8 is similar to that for Theorem 7. This is achieved
by modifying the matrix A(ψ,c) constructed in the reduction described for Lemma 11. The
largest entry in A(ψ,c) is 2nc −1 (see Equation (6)). So each of these values can be represented
by a binary string of length at most ` = n

c . We remove each row, say row indexed by γ,
with entries greater than 1 and replace it with n

c rows, γ1, . . . , γ`. Where, for any j, if the
value A(ψ,c)[γ, j] = W then A(ψ,c)[γk, j] = ηk, where ηk is the kth bit in the `-sized binary
representation of W . This modification reduces the largest entry in A(ψ,c) to 1 and increases
the path-width from constant to approximately n. Finally, we set all the entries in b(ψ,c) to
be 1. This concludes the overview of our reductions.

4.1 Proof of Theorem 7
In this section we give a more detailed sketch of the proof of Theorem 7. Towards this, we
first present the main details in the proof of our most technical lemma (Lemma 11).

Let ψ = C1 ∧ C2 ∧ . . . ∧ Cm be an instance of CNF-SAT with variable set X =
{x1, x2, . . . , xn} and let c ≥ 2 be a fixed constant given in the statement of Lemma 11. We
construct the instance A(ψ,c)x = b(ψ,c), x ≥ 0 of (IP) as follows.

Construction. Let C = {C1, . . . , Cm}. Without loss of generality, we assume that n is
divisible by c, otherwise we add at most c dummy variables to X such that |X| is divisible by
c. We divide X into c blocks X0, X1, . . . , Xc−1. That is Xi = {x i·n

c +1, x i·nc +2, . . . , x (i+1)·n
c

}
for each i ∈ Zc. Let ` = n

c and L = 2`. For each block Xi, there are exactly 2` assignments.
We denote these assignments by φ0(Xi), φ1(Xi), . . . , φL−1(Xi).

Now, we create m · c · 2`+1 variables; they are named yC,i,a, where C ∈ C, i ∈ Zc and
a ∈ Z2L = Z2`+1 . In other words, for a clause C, a block Xi and an assignment φa(Xi), we
create two variables; they are yC,i,2a and yC,i,2a+1. Then, we create the (IP) constraints
given by Equations (4), (5), and (6).

This completes the construction of (IP) instance. Let A(ψ,c)y = b(ψ,c) be the (IP)
instance defined using Equations (4), (5), and (6). The purpose of Equation (4) is to ensure
satisfiability of all the clauses. Because of Equation (5), for each clause C and for each
block Xi, we select only one assignment. Notice, that, so far it is allowed to choose many
assignments from a block Xi, for different clauses. To ensure the consistency of assignments
in each block across clauses, we added a system of constraints (Equation (6)). Equation (6)
ensures the consistency of assignments in the adjacent clauses (in the order C1, . . . , Cm).
Thus, the consistency of assignments propagates in a sequential manner. Notice that number
constraints defined by Equations (4), (5), and (6) are m, m · c and (m− 1) · c, respectively.
The number of variables is m · c · 2`+1. Also notice that all the coefficients in Equations (4),
(5) and (6) are non-negative. This implies that A(ψ,c) is non-negative and has dimension
O(m) × O(m2nc ). Thus, the property (b.) of Lemma 11 is satisfied. The largest entry in
b(ψ,c) is L − 1 = 2dnc e − 1 (see Equation (6)) and hence the property (d.) of Lemma 11 is
satisfied. The complete details for the proof of property (a.) can be found in the appended
full version. Moving forward, we simplify the notation by using A instead of A(ψ,c) and b
instead of b(ψ,c).

Now we need to prove property (c.) of Lemma 11. That is the path-width of A is at most
c+ 4. Towards that we need to understand the structure of matrix A. We decompose the
matrix A into m disjoint submatrices B1, . . . Bm which are disjoint and cover all the non-zero
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entries in the matrix A. First we define some notations and fix the column indices of A
corresponding the the variables in the constraints. Let Y denote the set {yC,i,a | C ∈ C, i ∈
Zc, a ∈ Z2L} of variables in the constraints defined by Equations (4), (5) and (6). These
variables can be partitioned into

⊎
C∈C YC , where YC = {yC,i,a | i ∈ Zc, a ∈ Z2L}. Further

for each C ∈ C, YC can be partitioned into
⋃
i∈Zc YC,i, where YC,i = {yC,i,a | a ∈ Z2L}. The

set of columns indexed by [r · c2̇`+1] \ [(r− 1) · c · 2`+1], for any r ∈ [m], corresponds to the set
of variables in YCr . Among the set of columns corresponding to YC , the first 2`+1 columns
corresponds to the variables in YC,1, second 2`+1 columns corresponds to the variables in
YC,2, and so on. Among the set of columns corresponds to YC,i for any C ∈ C and i ∈ Zc,
the first two columns corresponds to the variable yC,i,0 and yC,i,1, and second two columns
corresponds to the variables yC,i,2 and yC,i,3, and so on.

Now we move to the description of Bj , j ∈ [m]. The matrix Bj will cover the coefficients of
YCj in Equations (4), (5) and (6). In other words Bj covers the non-zero entries in the columns
corresponding to YCj , i.e, in the columns of A indexed by [j · c · 2`+1] \ [(j− 1) · c · 2`+1]. Now
we explain these submatrices. Each matrix Bj has c · 2`+1 columns; each of them corresponds
to a variable in YCj . Each row in A corresponds to a constraint in the system of equations
defined by Equations (4), (5) and (6). So we use notations f(C1), . . . f(Cm) to represents the
constraints defined by Equations (4). Similarly we use notations {s(C, i) | C ∈ C, i ∈ Zc}
and {t(C, i) | C ∈ C, i ∈ Zc} to represent the constraints defined by Equations (5) and (6),
respectively.

Matrices Br for 1 < r < m. Matrix Br is of dimension (3c + 1) × (c · 2`+1). The first c
rows are defined by Equation (6). For j ∈ [c], in ith row, we have coefficients of YCr from
t(Cr−1, i). In the (c+ 1)st row of Br, we have coefficients of YCr from f(Cr). For i ∈ [c], the
rows indexed by c+ 1 + i and 2c+ 1 + i are defined as follows. In the (c+ 1 + i)th row of
Br, we have coefficients of YCr from s(Cr, i) while in the (2c+ 1 + i)th row of Br, we have
coefficients of YCr from t(Cr, i). This completes the definition of Br. By their role in the
reduction, the matrix Br is partitioned in to four parts. The part composed of the first c rows
is called the predecessor matching part. The part composed of the row indexed by c+ 1 is
called the evaluation part of B1. The part composed of rows indexed by c+ 2, c+ 3, . . . , 2c+ 1
is called selection part and the part composed of last c rows is called successor matching part.
That is the entries of B1 are as follows, where i ∈ Zc and a ∈ ZL.

The predecessor matching part is defined by

Br[i+ 1, i · 2`+1 + 2a+ 1] = Br[i+ 1, i · 2`+1 + 2a+ 2] = L− 1− a. (7)

The evaluation part is defined by

Br[c+ 1, i · 2`+1 + 2a+ 2] = 0, (8)

and

Br[c+ 1, i · 2`+1 + 2a+ 1] =
{

1, if φa(Xi) satisfies Cr,
0, otherwise. (9)

The selection part for Br is defined as

Br[c+ 2 + i, i · 2`+1 + 2a+ 1] = Br[c+ 2 + i, i · 2`+1 + 2a+ 2] = 1, (10)

The successor matching part for Br is defined as

Br[2c+ 2 + i, i · 2`+1 + 2a+ 1] = Br[2c+ 2 + i, i · 2`+1 + 2a+ 2] = j. (11)
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All other entries in Br, which are not listed above, are zero. That is, for all i, i′ ∈ Zc and
g ∈ [2`+1] such that i 6= i′,

Br[i+ 1, i′ · 2`+1 + g] = 0, (12)
Br[c+ 2 + i, i′ · 2`+1 + g] = 0, and (13)
Br[2c+ 2 + i, i′ · 2`+1 + g] = 0. (14)

Matrices B1 and Bm. These have a slightly different structure. Informally, B1 and Bm can
be defined like Br, 1 < r < m, but we delete first c rows to get B1 and delete last c rows to
get Bm. A brief description of B1 and Bm is given below.

Matrix B1 is of dimension (2c+ 1)× (c · 2`+1). In the first row of B1, we have coefficients
of YC1 from f(C1). For i ∈ Zc, the rows indexed by 2 + i and c+ 2 + i are defined as follows.
In the (2 + i)th row of B1, we have coefficients of YC1 from s(C1, i) while in the (c+ 2 + i)th
row of B1, we have coefficients of YC1 from t(C1, i).

Matrix Bm is of dimension (2c+1)× (c ·2`+1). For j ∈ [c], in ithe row, we have coefficients
of YCm from t(Cm−1, i). In the (c+ 1)st row of Br, we have coefficients of YCm from f(Cm).
In the (c+ 1 + i)th row of Bm, we have coefficients of Yr from s(Cm, i).

Matrix A. Now we explain how the matrix A is formed from B1, . . . , Bm. The matrices
B1, . . . , Bm are disjoint submatrices of A and they cover all non zero entries of A. Informally,
the submatrices B1, . . . , Bm form a chain such that the rows corresponding to the successor
matching part of Br will be the same as the rows in the predecessor matching part of Br+1
(because of Equation (6)). Formally, let I1 = [2c + 1] and Im = [(m − 1)(2c + 1) + (c +
1)] \ [(m− 1)(2c+ 1)− c]. For every 1 < r < m, let Ir = [r(2c+ 1)] \ [(r − 1)(2c+ 1)− c],
and for r ∈ [m], let Jr = [r · c · 2`+1] \ [(r − 1) · c · 2`+1]. Now for each r ∈ [m], the matrix
A[Ir, Jr] := Br. All other entries of A not belonging to any of the submatrices A[Ir, Jr] are
zero.

Towards upper bounding the path-width of A, we start with some notations. We partition
the set of columns of A into m parts J1, . . . , Jm (we have already defined these sets) with
one part per clause. For each r ∈ [m], Jr is the set of columns associated with YCr . We
further divide Jr into c equal parts, one per variable set YCr,i. These parts are

Pr,i = {(r − 1)c · 2`+1 + i · 2`+1 + 1, . . . , (r − 1)c · 2`+1 + (i+ 1) · 2`+1}, i ∈ Zc.

In other words, Pr,i is the set of columns corresponding to YCr,i and |Pr,i| = 2`+1. We also
put n′ = m · c · 2`+1 to be the number of columns in A.

I Lemma 12. The path-width of the column matroid of A is at most c+ 4

Proof. Recall that n′ = m · c · 2`+1, is the number of columns in A and m′ the number of
rows in A. To prove that the path-width of A is ≤ c + 4, it suffices to show that for all
j ∈ [n′ − 1],

dim〈span(A|{1, . . . , j}) ∩ span(A|{j + 1, . . . , n′})〉 ≤ c+ 3. (15)

The idea for proving Equation (15) is based on the following observation. For V ′ =
A|{1, . . . , j} and V ′′ = A|{j + 1, . . . , n′}, let I = {q ∈ [m′] | there exist v′ ∈ V ′ and v′′ ∈
V ′′ such that v′[q] 6= v′′[q] 6= 0}. Then the dimension of span(V ′) ∩ span(V ′′) is at most |I|.
Thus to prove (15), for each j ∈ [n′ − 1], we construct the corresponding set I and show that
its cardinality is at most c+ 3.

We proceed with the details. Let v1, v2, . . . , vn′ be the column vectors of A. Let j ∈ [n′−1].
Let V1 = {v1, . . . , vj} and V2 = {vj+1, . . . , vn′}. We need to show that dim〈span(V1) ∩
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span(V2)〉 ≤ c+ 3. Let I ′ = {q ∈ [m′] | there exists v ∈ V1 and v′ ∈ V2 such that v[q] 6= 0 6=
v′[q]}. We know that [n′] is partitioned into parts Pr′,i′ , r′ ∈ [m], i′ ∈ Zc. We fix r ∈ [m] and
i ∈ Zc such that j ∈ Pr,i.

Let j = (r− 1)c · 2`+1 + i · 2`+1 + g, where g ∈ [2`+1]. Let q1 = max{0, (r− 1)(2c+ 1)− c},
q2 = r(2c+1), j1 = (r−1) ·c ·2`+1, and j2 = r ·c ·2`+1. Then [q2]\ [q1] = Ir and [j2]\ [j1] = Jr
(recall the definition of sets Ir and Jr).

By the decomposition of matrix A, for every q > q2 and for every vector v ∈ V1, we have
v[q] = 0. Also, for every q ≤ q1 and for any v ∈ V2, we have that v[q] = 0. This implies that
I ′ ⊆ [q2] \ [q1] = Ir. Now we partition Ir into 4 parts: R1, R, S, and R2, These parts are
defined as follows.

R1 =
{
∅, if r = 1,
{(r − 2)(2c+ 1) + i′ | i′ ∈ Zc}, otherwise,

R = {(r − 1)(2c+ 1) + 1}, (16)
S = {(r − 1)(2c+ 1) + 2 + i′ | i′ ∈ Zc]},

R2 =
{
∅, if r = m,

{(r − 1)(2c+ 1) + c+ 2 + i′ | i′ ∈ Zc}, otherwise

We complete the proof of the lemma by proving the following series of claims. We first
show that for each r′ ∈ [m] such that q /∈ Ir′ and j′′ ∈ Jr′ , vj′′ [q] = 0. Following that,
we show that |I ′ ∩ R1| ≤ c − (i − 1). The final two claims in this series of claims are (i)
|I ′ ∩R2| ≤ i, and (ii) |I ′ ∩ S| ≤ 1.

With the help of these claims, we can conclude the following. |I ′| = |I ′ ∩ Ir| (since
I ′ ⊆ Ir) and |I ′ ∩ Ir| = |I ′ ∩ R1| + |I ′ ∩ R| + |I ′ ∩ S| + |I ′ ∩ R2| (by (16)), which implies
that |I ′| ≤ c− (i− 1) + 1 + 1 + i = c+ 3. This completes the proof of the lemma. J

5 Conclusion

While Theorems 3 and 4 come close to the bound of Proposition 1, the precise multivariate
complexity of (IP) with respect to the parameters n, m, ∆, and ‖b‖∞ is not fully clear and
our work leaves some unanswered questions regarding the landscape of tradeoffs between
the parameters. For instance, is it possible to solve (IP) in time (m · n ·∆)o(m) · (‖b‖∞)O(1),
or (m · n ·∆ · ‖b‖∞)o(m)? Or could one improve our lower bound results to rule out such
algorithms? While our SETH-based lower bounds for (IP) with non-negative constraint
matrix are tight for path-width parameterization, there is a “(‖b‖∞ + 1)k to (‖b‖∞ + 1)2k

gap” between lower and upper bounds for branch-width parameterization. Closing this gap
is a natural question.

The bottleneck in the algorithm of Cunningham and Geelen is the following subproblem.
We are given two vector sets A and B of partial solutions, each set of size at most (‖b‖∞+1)k.
We need to construct a new vector set C of partial solutions, where the set C will have size
at most (‖b‖∞ + 1)k and each vector from C is the sum of a vector from A and a vector
from B. Thus to construct the new set of vectors, one has to go through all possible pairs of
vectors from both sets A and B, which takes time roughly (‖b‖∞ + 1)2k.

A tempting approach towards speeding up this particular step could be the use of fast
subset convolution or matrix multiplication tricks, which work very well for “join” operations
in dynamic programming algorithms over tree and branch decompositions of graphs [5, 18, 4],
see also [3, Chapter 11]. Unfortunately, we have reason to suspect that these tricks may not
help for matrices: solving the above subproblem in time (‖b‖∞+ 1)(1−ε)2knO(1) for any ε > 0
would imply that 3-SUM is solvable in time n2−ε, which is believed to be unlikely.
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