
Symmetry Exploitation for Online Machine
Covering with Bounded Migration

Waldo Gálvez
IDSIA, USI-SUPSI
Lugano, Switzerland
waldo@idsia.ch

José A. Soto
Departamento de Ingeniería Matemática & CMM, Universidad de Chile
Santiago, Chile
jsoto@dim.uchile.cl

José Verschae
Facultad de Matemáticas & Escuela de Ingeniería, Pontificia Universidad Católica de Chile
Santiago, Chile
jverschae@uc.cl

Abstract
Online models that allow recourse are highly effective in situations where classical models are
too pessimistic. One such problem is the online machine covering problem on identical machines.
In this setting, jobs arrive one by one and must be assigned to machines with the objective of
maximizing the minimum machine load. When a job arrives, we are allowed to reassign some
jobs as long as their total size is (at most) proportional to the processing time of the arriving
job. The proportionality constant is called the migration factor of the algorithm.

By rounding the processing times, which yields useful structural properties for online packing
and covering problems, we design first a simple (1.7+ε)-competitive algorithm using a migration
factor of O(1/ε) which maintains at every arrival a locally optimal solution with respect to the
Jump neighborhood. After that, we present as our main contribution a more involved (4/3 + ε)-
competitive algorithm using a migration factor of Õ(1/ε3). At every arrival, we run an adaptation
of the Largest Processing Time first (LPT) algorithm. Since the new job can cause a complete
change of the assignment of smaller jobs in both cases, a low migration factor is achieved by
carefully exploiting the highly symmetric structure obtained by the rounding procedure.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms, Theory of
computation → Online algorithms

Keywords and phrases Machine Covering, Bounded Migration, Online, Scheduling, LPT

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.32

Related Version A full version of the paper is available at [9], https://arxiv.org/abs/1612.
01829.

Funding This work was partially supported by SNSF Grant APXNET 200021_159697/1 and
CONICYT-Chile through projects FONDECYT 1181527 and 1181180, PCI PII 20150140 and
PIA AFB170001.

© Waldo Gálvez, José A. Soto, and José Verschae;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:waldo@idsia.ch
mailto:jsoto@dim.uchile.cl
mailto:jverschae@uc.cl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.32
https://arxiv.org/abs/1612.01829
https://arxiv.org/abs/1612.01829
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Symmetry exploitation for Online Machine Covering

1 Introduction

We consider a fundamental load balancing problem where n jobs need to be assigned to m
identical parallel machines. Each job j is fully characterized by a non-negative processing
time pj . Given an assignment of jobs, the load of a machine is the sum of the processing
times of jobs assigned to it. The machine covering problem asks for an assignment of jobs to
machines maximizing the load of the least loaded machine.

This problem is well known to be strongly NP-hard and allows for a polynomial-time
approximation scheme (PTAS) [21]. A well studied algorithm for this problem is the Largest
Processing Time First rule (LPT), that sorts the jobs non-increasingly and assigns them
iteratively to the least loaded machine. Deuermeyer et al. [5] show that LPT is a 4

3 -
approximation and that this factor is asymptotically tight; later, Csirik et al. [4] refine the
analysis giving a tight bound for each m.

In the online setting jobs arrive one after another, and at the moment of an arrival, we
must decide on a machine to assign the arriving job. This natural problem does not admit a
constant competitive ratio. Deterministically, the best possible competitive ratio is m [21],
while randomization allows for a Õ(

√
m)-competitive algorithm, which is the best possible

up to logarithmic factors [1].

Dynamic model. These negative facts motivate the study of a relaxed online scenario with
bounded migration. Unlike the classic online model, when a new job j arrives we are allowed
to reassign other jobs. More precisely, given a constant β > 0, we can migrate jobs whose
total size is upper bounded by βpj . The value β is called the migration factor and it accounts
for the robustness of the computed solutions. In one extreme, we can model the usual online
framework by setting β = 0. In the other extreme, setting β = ∞ allows to compute the
optimal offline solution in each iteration. Our main interest is to understand the exact
trade-off between the migration factor β and the competitiveness of our algorithms. Besides
being a natural problem with an interesting theoretical motivation, its original purpose was
to find good algorithms for a problem in the context of Storage Area Networks (SAN) [17].

Local search and migration. The local search method has been extensively used to tackle
different hard combinatorial problems, and it is closely related to online algorithms where
recourse is allowed. This comes from the fact that simple local search neighborhoods allow to
get considerably improved solutions while having accurate control over the recourse actions
needed, and in some cases even a bounded number of local moves leads to substantially
improved solutions (see [15, 10, 14] for examples in network design problems).

Related Work. Sanders et al. [17] develop online algorithms for load balancing problems
with migration. For the makespan minimization objective, where the aim is to minimize
the maximum load, they give a (1 + ε)-competitive algorithm with 2Õ(1/ε). A mayor open
problem in this area is to determine whether a migration factor of poly(1/ε) is achievable.

The landscape for the machine covering problem is somewhat different. Sanders et
al. [17] give a 2-competitive algorithm with migration factor 1, and this is until now the best
competitive ratio known for any algorithm with constant migration factor. On the negative
side, Skutella and Verschae [19] show that it is not possible to maintain arbitrarily near
optimal solutions using a constant migration factor, giving a lower bound of 20/19 for the
best competitive ratio achievable in that case. The lower bound is based on an instance
where arriving jobs are very small, not allowing to migrate other jobs. This motivated

W. Gálvez, J. A. Soto, and J. Verschae 32:3

1 2 3 4 5
6 7 8 9

13 12 11 10

14 15 16 17

j∗

(a) LPT for the original instance
and arriving job j∗.

1 2 3 4 5
j∗ 6 7 8

12 11 10 9

17 16 15 14 13

(b) LPT for the new instance. Thick items
correspond to migrated jobs.

Figure 1 Ω(m) migration factor needed to maintain LPT at the arrival of j∗.

the study of an amortized version, called reassignment cost model, where they develop a
(1 + ε)-competitive algorithm using a constant reassignment factor. They also show that if
all arriving jobs are larger than ε ·OPT, then there is a (1 + ε)-competitive algorithm with
constant migration factor.

Similar migration models have been studied for other packing and covering problems.
For example, Epstein & Levin [6] design a (1 + ε)-competitive algorithm for the online bin
packing problem using a migration factor of 2Õ(1/ε2), which was improved later by Jansen &
Klein [12] to poly(1/ε) migration factor, and then further refined by Berndt et al. [2]. Also,
for makespan minimization with preemption and other objectives, Epstein & Levin [7] design
a best-possible online algorithm using a migration factor of

(
1− 1

m

)
.

Regarding local search applied to load balancing problems, many neighborhoods have
been studied such as Jump, Swap, Push and Lexicographical Jump in the context of makespan
minimization on related machines [18], makespan minimization on restricted related machines
[16], and also multi-exchange neighborhoods for makespan minimization on identical parallel
machines [8]. For the case of machine covering, Chen et al. [3] study the Jump neighborhood
in a game-theoretical context, proving that every locally optimal solution is 1.7-approximate
and that this factor is tight.

Our Contribution. Our main result is a (4/3 + ε)-competitive algorithm using poly(1/ε)
migration factor. This is achieved by running a carefully crafted version of LPT at the arrival
of each new job. We would like to stress that, even though LPT is a simple and well studied
algorithm in the offline context, directly running this algorithm in each time step in the
online context yields an unbounded migration factor; see Figure 1 for an illustrative example.

To overcome this barrier, we first adapt a less standard procedure to round processing
times in the online framework. The rounding reduces the possible number of sizes of jobs
larger than Ω(εOPT) (where OPT is the offline optimum value) to Õ(1/ε) many numbers,
and furthermore these values are multiples of a common number g ∈ Θ(ε2OPT). This implies
that the number of possible loads for machines having only big jobs is constant since they
are multiples of g as well. Unlike known techniques used in previous work that yield similar
results (see e.g. [13]), our rounding is well suited for online algorithms and helps simplifying
the analysis as it does not depend on OPT (which varies through iterations).

In order to show the usefulness of the rounding procedure, we first present a simple
(1.7 + ε)-competitive algorithm using a migration factor of O(1/ε). This algorithm maintains
through the arrival of new jobs a locally optimal solution with respect to Jump for large
jobs and a greedy assignment for small jobs on top of that. Although for general instances
this can induce a very large migration factor as discussed before, for rounded instances we
can have a very accurate control on the jumps needed to reach a locally optimal solution by
exploiting the fact that there are constant many possible processing times for large jobs.

ESA 2018

32:4 Symmetry exploitation for Online Machine Covering

In the second part of the paper we proceed with the analysis of our (4/3 + ε)-competitive
algorithm. Here we crucially make use of the properties obtained by the rounding procedure
to create symmetries. After a new job arrival we re-run the LPT algorithm for the new
instance. While assigning a job to a current least loaded machine, since there is a constant
number of possible machine loads, there will usually be multiple least loaded machines
to assign the job. All options lead to different (but symmetric) solutions in terms of job
assignments, all having the same load vector and thus the same objective value. Broadly
speaking, the algorithm will construct one of these symmetric schedules, trying to maintain
as many machines with the same assignments as in the previous time step. The analysis
of the algorithm will rely on monotonicity properties implied by LPT which, coupled with
rounding, implies that for every job size the increase in the number of machines with different
assignments (w.r.t the solution of the previous time step) is constant. This finally yields
a migration factor that only grows polynomially in 1/ε. Finally, we give a lower bound of
17/16 for the best competitive ratio achievable by an algorithm with constant migration,
improving the bound on [19].

Due to space constraints, we defer most of the proofs to the full version [9].

2 Preliminaries

Consider a set of n jobs J and a set of m machines M. In our problem, a solution or
schedule S : J → M corresponds to an assignment of jobs to machines. The set of jobs
assigned to a machine i is then S−1(i) ⊆ J . The load of machine i in S corresponds to
`i(S) =

∑
j∈S−1(i) pj . The minimum load is denoted by `min(S) = mini∈M `i(S), and a

machine i is said to be least loaded in S if `i(S) = `min(S).
For an algorithm A and an instance (J ,M), we denote by SA(J ,M) the schedule

returned by A when run on (J ,M). Similarly, SOPT(J ,M) denotes the optimal schedule,
being OPT(J ,M) its minimum load. When it is clear from the context, we will drop the
dependency on J orM.

2.1 Algorithms with robust structure
An important fact used in the robust PTAS for makespan minimization from Sanders et
al. [17] is that small jobs can be assigned greedily almost without affecting the approximation
guarantee. This is however not the case for machine covering; see, e.g. [19] or [9]. A way to
avoid this inconvenience is to develop algorithms that are oblivious to the arrival of small
jobs, that is, algorithms where the assignment of big jobs is unaffected by arriving small job.
I Definition 1. Let h ∈ R+. An algorithm A has robust structure at level h if, for any
instance (J ,M) and j∗ /∈ J such that pj∗ < h, SA(J ,M) and SA(J ∪ {j∗},M) assign to
the same machines all the jobs in J with processing time at least h.

This definition highlights also the usefulness of working with the LPT rule, since the
addition of a new small job to the instance does not affect the assignment of larger jobs.
Indeed, it is easy to see the following.
I Remark. For any h ∈ R+, LPT has robust structure at level h.

We proceed now to define relaxed solutions where, roughly speaking, small jobs are added
greedily on top of the assignment of big jobs.
I Definition 2. Let A be an α-approximation algorithm for the machine covering problem,
with α constant, k1, k2 ∈ R+ constants, 1 ≤ k1 ≤ k2 and ε > 0. Given a machine covering
instance (J ,M), a schedule S is a (k1, k2)-relaxed version of SA if:

W. Gálvez, J. A. Soto, and J. Verschae 32:5

1. jobs with processing time at least k1εOPT are assigned exactly as in SA, and
2. for every machine i ∈M, if S assigns at least one job of size less than k1εOPT to i, then

`i(S) ≤ `min(S) + k2εOPT.

The following lemma shows that we can consider relaxed versions of known algorithms or
solutions while almost not affecting the approximation factor. This will be helpful to control
the migration of small jobs.

I Lemma 3. Let A be an α-approximation, α ≥ 1 constant, k1, k2 ∈ R+ constants, 1 ≤ k1 ≤
k2, 0 < ε < 1

2k2α
and (J ,M) a machine covering instance. Every (k1, k2)-relaxed version of

SA is an (α+O(ε))-approximate solution.

The described results allow us to significantly simplify the analysis of the designed
algorithms. For example, consider LPT and suppose that at the arrival of jobs with
processing time at least some specific value h = Θ(εOPT) we can construct relaxed versions
of solutions constructed by LPT. Dealing with an arriving job of size smaller than h becomes
a simple task since assigning it to the current least loaded machine does not affect the
assignment of big jobs, and we can prove that, for suitable constants k1, k2, a (k1, k2)-relaxed
version of a solution constructed by LPT is maintained that way, almost preserving then
its approximation ratio. It is important to remark that this approach is useful only if
the algorithm has robust structure as, in general, the arrival of small jobs does not allow
migration of big jobs and their structure may need to be changed because of these arrivals in
order to maintain the approximation factor.

2.2 Rounding procedure
Another useful tool is rounding the processing times to simplify the instance and create
symmetries while affecting the approximation factor only by a negligible value. Let us
consider 0 < ε < 1 such that 1/ε ∈ Z. We use the following rounding technique which
is a slight modification of the one presented by Hochbaum and Shmoys in the context of
makespan minimization on related machines [11]. For any job j, let ej ∈ Z be such that
2ej ≤ pj < 2ej+1. We then round down pj to the previous number of the form 2ej + kε2ej

for k ∈ N, that is, we define p̃j := 2ej +
⌊
pj−2ej
ε2ej

⌋
ε2ej .

Observe that pj ≥ p̃j ≥ pj − ε2ej ≥ (1 − ε)pj . Hence, an α-approximation algorithm
for a rounded instance has an approximation ratio of α/(1− ε) = α+O(ε) for the original
instance. From now on we work exclusively with the rounded processing times.

Consider an upper bound UB on OPT such that OPT ≤ UB ≤ 2OPT. This can be
computed by any 2-approximation for the problem such as LPT. Consider the index set

Ĩ(UB) :=
{
i ∈ Z : εUB ≤ 2i < UB

}
= {`, . . . , u}. (1)

We classify jobs as small if p̃j < 2`, big if p̃j ∈ [2`, 2u+1), and huge otherwise. Notice that
small jobs have size at most 2εUB and huge jobs have size at least UB. As we will see, our
main difficulty will be given by big jobs; small and huge jobs are easy to handle. Notice that
in every solution S constructed using LPT, if we ignore small jobs, huge jobs are assigned to
a machine on their own and every machine i ∈M without huge jobs has load at most 2UB.
This is because i either has a big job alone, which has size at most 2UB, or it has load at
most `min(S) + p̃j ≤ 2`min(S) ≤ 2UB, where j is the smallest job assigned to i. Let

P̃ =
{

2i + kε2i : i ∈ {`, . . . , u}, k ∈ {0, 1, . . . , (1/ε)− 1}
}
, (2)

ESA 2018

32:6 Symmetry exploitation for Online Machine Covering

be the set of all (rounded) processing times that a big job may take. The next lemma
highlights the main properties of our rounding procedure.

I Lemma 4. Consider the rounded job sizes p̃j for all j. Then it holds that,
1. |P̃ | ∈ O((1/ε) log(1/ε)), and
2. for each big and huge job j it holds that p̃j = h · ε2` for some h ∈ N0.

Unlike other standard rounding techniques (e.g. [19, 13]), the rounded sizes do not depend
on OPT (or UB). This avoids possible migrations provoked by new rounded values, greatly
simplifying our techniques.

3 A simple (1.7 + ε)-competitive algorithm with O(1/ε) migration.

In this section we will adapt a local search algorithm for Machine Covering to the online
context with migration, using the properties of instances rounded as described in Section 2.2
to bound the migration factor.

In the context of online load balancing with migration, it is a good strategy to look for
local search algorithms with good approximation guarantees and efficient running times. The
main reason is that the migrated load corresponds to the sum of the migrated jobs in each
local move, and for simplified instances (rounded, for example) the number of local moves
until a locally optimal solution is found is usually a constant. That is the case for two natural
neighborhoods used in local search algorithms for load balancing problems: Jump and Swap.
Two solutions S,S ′ are jump-neighbors if they assign the jobs to the same machines (up to
relabeling of machines or jobs of equal size) except for at most one job, and swap-neighbors
if they assign the jobs to the same machines (up to relabeling of machines or jobs of equal
size) except for at most two jobs and, if they differ in exactly two jobs j1, j2 then they are
in swapped machines, i.e., S(j1) = S ′(j2) and S(j2) = S ′(j1). The weight of a solution
is defined through a two-dimensional vector having the minimum load of the schedule as
first coordinate and the number of non-least loaded machines as second one. We compare
the weight of two solutions lexicographically1. In other words, a solution is jump-optimal
(respectively swap-optimal) if the migration of a single job (resp. the migration of a job
or the swapping of two jobs) does not increase the minimum load and, if it maintains the
minimum load, then it does not reduce the number of least loaded machines. The following
lemma characterizes jump-optimal solutions for machine covering.

I Lemma 5. Given (J ,M) a machine covering instance, a schedule S is jump-optimal if
and only if for any machine i ∈M and any job j ∈ S−1(i), we have that `i(S)−pj ≤ `min(S).

Chen et al. [3] proved tight bounds for the approximability of jump-optimal solutions.
Their result is stated in a game theoretical framework, where jump-optimal solutions are
equivalent to pure Nash equilibria for the Machine Covering game (see for example [20]). In
this game, each job is a selfish agent trying to minimize the load of its own machine and the
minimum load is the welfare function to be maximized. Through a small modification these
bounds can be generalized to swap-optimal solutions as well (notice that a swap-optimal
solution is jump-optimal by definition). We summarize the result in the following theorem
which will be useful for our purposes.

1 Just using the minimum load does not lead to good approximation ratios: think for example of m > 2
machines and m jobs of size 1; it is swap-optimal to assign all of them to the same machine.

W. Gálvez, J. A. Soto, and J. Verschae 32:7

Algorithm 1 Online jump-optimality.
Input: Instances (J ,M) and (J ′,M) such that J ′ = J ∪ {j∗}; a schedule S(J ,M).
1: run LPT on input J ′ and let τ be the minimum load. Set UB← 2τ . Define P̃ , `, and u

based on this upper bound UB using (1) and (2).
2: set S ′ ← S
3: if p̃j∗ < 2` then. . Arriving job is small.
4: assign j∗ to a least loaded machine in S ′.
5: else
6: set QB ← {j∗}. . Set with unassigned big jobs.
7: set Qs ← ∅. . Set with unassigned small jobs.
8: while QB 6= ∅ do
9: let j be the largest job in QB . Set QB ← QB \ {j}.
10: in S ′B, use Push to assign j to a least loaded machine m∗, obtaining its output

set Q. Update S ′B to be the output solution of this procedure.
11: reassign jobs in S ′ such that the assignment of (big) jobs in S ′ and S ′B coincides.
12: while m∗ contains a small job w.r.t. UB and `m∗(S ′) > `min(S ′) + 2` do
13: remove the smallest job in S ′−1(m∗) and add it to Qs.
14: end while
15: QB ← QB ∪Q.
16: end while
17: assign the jobs in Qs to S ′ using list-scheduling.
18: end if
19: return S ′.

I Theorem 6 (from [3]). Any locally optimal solution with respect to Jump (resp. Swap)
for Machine Covering is 1.7-approximate. Moreover, there are instances showing that the
approximation ratio of jump-(resp. swap-)optimality is at least 1.7.

3.1 Online jump-optimality.
Using the rounding procedure from Section 2.2, jump-optimality can be adapted to the online
context using a migration factor of O

(1
ε

)
. Our algorithm, described in detail in Algorithm 1,

is called every time a new job j∗ arrives to the system, and receives as input the current
solution S for (J ,M), initialized as empty if J = ∅. It will output a (k, k)-relaxed version
of a jump-optimal solution for some k ≤ 4. We use the concept of a list-scheduling algorithm,
that refers to assigning jobs iteratively (in any order) to some machine of minimum load.
Given a schedule S, SB denotes the restriction of schedule S to big jobs.

The general idea of Algorithm 1 is to first round the instance, and assign the incoming
job to a least loaded machine using an auxiliary algorithm called Push (see Algorithm 2).
Push assigns a given job j into a given machine i and then iteratively removes the jobs in i
that break jump-optimality according to Lemma 5, storing them in a set Q which is part
of the output. Jobs removed by Push need to be reassigned, which we do by iteratively
applying Push on each one of them which is big to assign them to the current least loaded
machine until only small jobs are left to be assigned. At each iteration jump-optimality is
preserved in a relaxed way, and as a last step all the unassigned small jobs are reassigned
using list-scheduling. Notice that, since Push only removes jobs of size strictly smaller than
the inserted job, each job is migrated at most once.

ESA 2018

32:8 Symmetry exploitation for Online Machine Covering

Algorithm 2 Push.
Input: Schedule S for (J ,M), i ∈M, j /∈ J
Output: Q ⊆ J , schedule S ′ for ((J ∪ {j}) \Q,M)
1: Q← ∅.
2: S ′ ← S.
3: assign j to machine i in S ′.
4: for k ∈ S−1(i) do
5: if `i(S ′)− p̃k > `min(S ′) then
6: take out k from i in S ′.
7: Q← Q ∪ {k}.
8: end if
9: end for

10: return Q, S ′.

I Lemma 7. For any h ∈ R+, Algorithm 1 has robust structure at level h. Furthermore,
Algorithm 1 is (1.7 +O(ε))-competitive and has polynomial running time.

Proof idea. Robust structure of Algorithm 1 comes from the fact that Push removes jobs
that are only smaller than the inserted job. We can then show that our solution is a (k, 2k)-
relaxed version of a jump-optimal solution for k = 2`/(εOPT′) ≤ 4, and we can conclude
the first part of the result by using Theorem 6 and Lemma 3. Polynomial running time is
implied by the fact that each job is migrated at most once. J

To analyze the migration factor, we define the migration tree of the algorithm as a node-
weighted tree G = (V,E), where V is the set of migrated jobs together with the incoming job
j∗ /∈ J , and the weight of each v ∈ V is the processing time of the corresponding job p̃v. The
tree is constructed by first adding j∗ as root. For each node (job) v in the tree, its children
are defined as all the jobs migrated at the insertion of v. It is easy to see that this process
does not create any loops as each job is migrated at most once. By definition, the leaves of
the tree are the jobs not inducing migration, and thus any small job in the tree is a leaf. In
the context of local search, the number of nodes in the tree corresponds to the number of
iterations of the specific local search procedure. By analyzing the migration tree level by
level, and together with the already discussed ideas, we can show the following result.

I Lemma 8. Algorithm 1 uses migration factor O((1/ε) log(1/ε)).

Proof idea. Let wi be the total processing time of jobs in level i of the migration tree. Every
time a job j is inserted using Push, the total load of removed jobs in Q is strictly less than p̃j ,
which means that wi is strictly decreasing. Since wi is strictly decreasing and jobs of size at
most 2` do not induce migration, the tree has at most |P̃ | ∈ O((1/ε) log(1/ε)) levels, each of
them having total load at most p̃j∗ . This implies that the total load of migrated big jobs is at
most O((1/ε) log(1/ε)p̃j∗) and hence the migration factor is at most O((1/ε) log(1/ε)). J

The analysis of the migration factor can be further refined to get a tight bound of O (1/ε).
The details can be found in the full version [9].

I Theorem 9. Given ε > 0, Algorithm 1 is a polynomial time (1.7 +ε)-competitive algorithm
with migration factor O (1/ε). Moreover, there are instances for which this factor is Ω (1/ε).

W. Gálvez, J. A. Soto, and J. Verschae 32:9

4 LPT online with migration Õ(1/ε3).

In this section we present our main contribution which is an approximate online adaptation
of LPT using poly(1/ε) migration factor. In order to analyze it, we will first show some
structural properties of the solutions constructed by LPT and how they behave when the
instance is perturbed by a new job.

Algorithm 1 presented in Section 3 already gives some of the features and properties that
our online version of LPT fulfills. However, now in the analysis we will crucially exploit
the symmetry of instances rounded according to the procedure described in Section 2.2, in
particular the fact that the load of each machine is a multiple of some fixed value. Since
LPT takes decisions based solely on the machine loads, having a bounded number of values
for them allows us to accurately control the set of machines where the assignment of big jobs
can be kept unchanged after the arrival of a big job while maintaining the structure of the
solution. Unless stated otherwise, for the rest of this section machine loads are considered
with respect to the rounded processing times p̃j .

Load Monotonicity. Here we describe in more detail the useful structural properties of
solutions constructed using LPT.

I Definition 10. Given a schedule S, its load profile, denoted by load(S), is an Rm≥0-vector
(t1, . . . , tm) containing the load of each machine sorted so that t1 ≤ t2 ≤ . . . ≤ tm.

The following lemma shows that after the arrival of a job, the load profile of solutions
constructed using LPT can only increase. This property only holds if the vector of loads is
sorted, as it can be seen in Figure 1. This monotonicity property is essential for our analysis.

I Lemma 11. Let (J ,M) be a machine covering instance and j∗ /∈ J a job. Then,
it holds that load(SLPT(J ,M)) ≤ load(SLPT(J ′,M)), where the inequality is considered
coordinate-wise and J ′ = J ∪ {j∗}.

This lemma together with our rounding procedure allow us to show that the difference (in
terms of the Hamming distance) of the load profiles of two consecutive solutions consisting
purely of big jobs, is bounded by a small constant. This property will be important to
obtain a poly(1/ε) migration factor and here we crucially exploit the fact that the load of
the machines is always multiple of a fixed value.

I Lemma 12. Consider two instances (J ,M) and (J ′,M) with J ′ = J ∪ {j∗}, where
J ′ contains only big or huge jobs w.r.t UB. Then the vectors load(SLPT(J ,M)) and
load(SLPT(J ′,M)) differ in at most p̃j∗

ε2` ∈ O(1/ε2) many coordinates.

Proof. Due to Lemma 11, we have that load(SLPT(J ,M)) = (t1, . . . , tm) ≤ (t′1, . . . , t′m) =
load(SLPT(J ′,M)). Also, if ti < t′i for some i, then t′i ≥ ti + ε2` since all values
tj , tj′ are integer multiples of ε2` because of Lemma 4. Since ||load(SLPT(J ′,M)) −
load(SLPT(J ,M))||1 = p̃j∗ , we obtain that the number of coordinates in which the load
profiles differ is at most p̃j∗

ε2` . Finally, recalling that j∗ is big, then p̃j∗ ≤ 2u ≤ UB ≤ 2`/ε,
and we can bound the number of different coordinates by p̃j∗

ε2` ≤ 1/ε2. J

Description of Online LPT. Consider two instances (J ,M) and (J ′,M) such that J ′ =
J ∪ {j∗}, and let OPT and OPT′ be their optimal values respectively. In what follows, for
a given list-scheduling algorithm, we will refer to a tie-breaking rule as a rule that decides
a particular machine for assigning a job when faced with multiple least loaded machines.

ESA 2018

32:10 Symmetry exploitation for Online Machine Covering

We say that an assignment is an LPT-solution if there is some tie-breaking rule such that
LPT yields such assignment. We will compute an upper bound UB on OPT′ by computing
an LPT-solution and duplicating the value of its minimum load. For this upper bound, we
compute its respective set P̃ with (1) and (2). In the algorithm, we will label elements in
P̃ = {q1, . . . , q|P̃ |} such that q1 > q2 > · · · > q|P̃ |. Let Jh ⊆ J (respectively J ′h ⊆ J ′) be
the set of jobs of size qh in J (respectively J ′), for qh ∈ P̃ . Similarly, we define J0 (resp.
J ′0) to be the set of jobs in J (resp. J ′) of sizes larger than q1, that is, all huge jobs in J
(resp. J ′). Also, let Sh (resp. S ′h) be the solution S (resp. S ′) restricted to jobs of size qh or
larger. Finally, S0 and S ′0 are the respective solutions restricted to jobs in J0.

In what follows, x+ denotes the positive part of x ∈ R, i.e., x+ = max{x, 0}. To
understand the algorithm, it is useful to have the following observation in mind.

I Observation 13. Consider a solution S for jobs in J and let K be a set of jobs with
J ∩ K = ∅ and all jobs in K have the same size p. Consider a solution SLS constructed
by adding the jobs from K in S using list-scheduling, and let λ = `min(SLS). Notice that
λ is independent of the tie-breaking rule used in list-scheduling. Consider any solution S ′
that is constructed starting from S and adding jobs in K in some arbitrary way. Then, S ′
corresponds to a solution obtained by adding jobs from K with a list-scheduling procedure
(for some tie-breaking rule) if and only if the number of jobs in K added to each machine i
is: (i)

⌈
(λ−`i(S))+

p

⌉
if (λ−`i(S))+

p is not an integer, and either (λ−`i(S))+
p or (λ−`i(S))+

p + 1 if
(λ−`i(S))+

p is a non-negative integer.

Our main procedure is called every time that we get a new job j∗ (where J ′ = J ∪ {j∗})
and receives as input the current solution S for (J ,M). If J = ∅, then S is trivially
initialized as empty. The exact description is given in Algorithm 3.

Broadly speaking, the algorithm works in phases h ∈ {0, . . . , |P̃ |}, where for each h

it assigns jobs in J ′h. First, we assign jobs exactly as in Sh for machines in which the
assignment of Sh−1 and S ′h−1 coincide. The set of such machines is denoted byM=

h−1 and
the set of remaining machines is denoted byM6=h−1. As we will see, this is consistent with
LPT by the previous observation and Lemma 11. The remaining jobs in J ′h are assigned
using list-scheduling. Crucially, we will break ties in favor of machines where the assignment
of Sh−1 and S ′h−1 differ. This is necessary to avoid creating new machines with different
assignments. After assigning huge and big jobs, small jobs are added exactly as in S in
machines where the assignment of big jobs in S and S ′ coincides. The rest of small jobs are
added greedily. In the last part, the algorithm rebalances small jobs by moving them from
machines of load higher than `i(S ′) + 2` to the least loaded machines.

We can prove the following lemma in a very similar way to Lemma 7.

I Lemma 14. Algorithm 3 is (4/3 +O(ε))-competitive.

Bounding the migration factor. To analyze the migration factor of the algorithm, we will
show that |M6=|P̃ || is upper bounded by a constant. This will be done inductively by first
bounding |M 6=h \M

6=
h−1| for each h and then using the fact that |P̃ | ∈ O((1/ε) log(1/ε)). A

description of the overall idea can be found in Figure 2.
Let us consider huge jobs w.r.t UB (i.e. jobs in J ′0). Notice that all these jobs are larger

than OPT′ ≥ OPT, and hence in S ′0 each one is assigned alone to one machine. The same
situation happens in solution S restricted to jobs in J0. Thus, none of these jobs are migrated.
Hence, we can assume w.l.o.g. for the sake of the analysis of the migration that all jobs are
big or small w.r.t UB (including j∗). Additionally, we can assume that j∗ is not small, since
otherwise there is no migration.

W. Gálvez, J. A. Soto, and J. Verschae 32:11

Algorithm 3 Online LPT.
Input: Instances (J ,M) and (J ′,M) such that J ′ = J ∪ {j∗}; a schedule S(J ,M).
1: run LPT on input J ′ and let τ be the minimum load of the constructed solution. Set

UB← 2τ . Define P̃ , `, and u based on this upper bound UB using (1) and (2).
2: setM=

−1 ←M andM6=−1 ← ∅.
3: for h = 0, 1, . . . , |P̃ | do . Assignment of big and huge jobs
4: for each machine i ∈M=

h−1, assign all jobs in Jh ∩ S−1(i) to i in S ′.
5: for jobs in J ′h still not assigned in S ′, apply list-scheduling (with an arbitrary order

of jobs). If there is more than one least loaded machine break ties in favor ofM 6=h−1.
6: defineM=

h as the set of machines i such that S−1
h (i) = S ′−1

h (i) andM6=h ←M\M=
h .

7: end for
8: for machines i ∈M=

|P̃ | do . Assignment of small jobs

9: assign all small jobs w.r.t to UB in J ∩ S−1(i) to i in S ′.
10: end for
11: assign the remaining jobs using list-scheduling.
12: setM to be the set of machines containing a small job w.r.t UB.
13: while there exists i ∈M s.t. `i(S ′) > `min(S ′) + 2` do
14: consider a machine i ∈M of maximum load. Reassign the smallest job in S ′−1(i) to

any least loaded machine.
15: updateM to be the set of machines containing a small job w.r.t UB.
16: end while
17: return S ′.

Let J =
h be the set of jobs assigned by Step 5 to machines inM=

h−1. Notice that the jobs
in J =

h correspond to the jobs in J ′h that S ′ assigns to a machine inM=
h−1 but S processes

inM6=h−1. The next lemma is the main technical contribution of this section.

I Lemma 15. For all h ∈ {1, . . . , |P̃ |} it holds that |M 6=h \M
6=
h−1| ∈ O(p̃j∗

ε2`).

The strategy to prove this lemma is first to show that |J =
h | ∈ O(p̃j∗

ε2`); this is the main
difficulty and for the proof we use lemmas 11 and 12. Having this, since jobs in J =

h are the
only jobs assigned in a given iteration h that can cause one new machine to have different
assignments in Sh and S ′h, then |M

6=
h \M

6=
h−1| ≤ |J =

h | and the lemma holds.
Let SLPT,h be an LPT-solution for jobs in J0 ∪ . . . ∪ Jh, and similarly S ′LPT,h for jobs

in J ′0 ∪ . . . ∪ J ′h. Let us fix h ≥ 1 and consider the target values λ = `min(SLPT,h) and
λ′ = `min(S ′LPT,h). Notice that by Lemma 11, λ ≤ λ′. In order to bound |J =

h |, we first show
in the following lemma that, if a job is actually assigned by Step 5 to some machine inM=

h−1,
then many jobs from the stage must be assigned to machines inM6=h−1.

I Lemma 16. Assume that J =
h 6= ∅. For each machine i ∈ M 6=h−1, if λ − `i(S ′h−1) ≥ 0

solution S ′h assigns to i at least
⌊

(λ−`i(S′h−1))+
qh

⌋
+ 1 many jobs from Jh.

Now we can sketch the proof that |J =
h | ∈ O(p̃j∗

ε2`) (a detailed proof can be found in [9]).

I Lemma 17. It holds that |J =
h | ∈ O(p̃j∗

ε2`).

Proof Sketch. Assume w.l.o.g. thatM 6=h−1 = {1, . . . ,m′} and that `1(S ′h−1) ≤ `2(S ′h−1) ≤
· · · ≤ `m′(S ′h−1). Consider also a permutation σ :M6=h−1 →M

6=
h−1 such that `σ(1)(Sh−1) ≤

ESA 2018

32:12 Symmetry exploitation for Online Machine Covering

M6=h−1 M=
h−1

. . .

Figure 2 Depiction of a possible situation at the end of iteration h− 1. The machines on the
right side correspond to machines inM=

h−1 and therefore process the same jobs in Sh−1 and S ′h−1.
Assume, possibly erroneously and just as a thought experiment, that the machines inM6=h−1 can be
sorted non-decreasingly by load for Sh−1 and S ′h−1 simultaneously. The two solutions are depicted
simultaneously in the picture, where the difference of loads on machines inM 6=h−1 corresponds to
the dashed area. The total dashed load equals to p̃j∗ , which is spread in only constantly many
machines by Lemma 12. When assigning jobs in Jh, the algorithm first assigns a number of jobs to
each machine inM=

h−1 (Step 4), and then fills machines inM 6=h−1. Notice that while the algorithm
does not assign another job to a machine inM=

h−1, no new machine will enterM6=h \M
6=
h−1. On

the other hand, the number of such jobs can be bounded by a number proportional to p̃j∗ (and
1/ε), which then also bounds the number of machines inM 6=h \M

6=
h−1. In reality, however, it is not

true that the machines inM6=h−1 can be sorted non-decreasingly on the loads for Sh−1 and S ′h−1
simultaneously. This provokes a number of technical difficulties that we avoid by using a different
permutation of machines for each solution and invoking Lemma 11.

`σ(2)(Sh−1) ≤ · · · ≤ `σ(m′)(Sh−1). By using Lemma 11, we can show that `σ(i)(Sh−1) ≤
`i(S ′h−1) for all i ∈M6=h−1. Let us consider sets

T− = {i ∈M6=h−1 : `i(S ′h−1) ≤ λ}, and

T+ = {i ∈M6=h−1 : `σ(i)(Sh−1) ≤ λ and `i(S ′h−1) > λ}.

Lemma 16 implies that the total number of jobs from J ′h assigned by S ′h to machines in
M6=h−1 is at least∑

i∈T−

(⌊
(λ−`i(S′h−1))+

qh

⌋
+ 1
)

=
∑

i∈T−∪T+

(⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
+ 1
)

−
∑
i∈T+

(⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
+ 1
)

+
∑
i∈T−

⌊
(λ−`i(S′h−1))+

qh

⌋
−
⌊

(λ−`σ(i)(Sh−1))+
qh

⌋
.

Since T− ∪ T+ contains all indices i ∈ M 6=h−1 such that `σ(i)(Sh−1) ≤ λ, we have that∑
i∈T−∪T+

(⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
+ 1
)
≥ |J =

h | − 1. With a bit of work we get that

|J =
h | ≤ 1 + |T+|+

∑
i∈T+

⌊
(λ−`i(S′h−1))+

qh

⌋
+

∑
i∈T−∪T+

⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
−
⌊

(λ−`i(S′h−1))+
qh

⌋
,

which can be simplified even more since
∑
i∈T+

⌊
(λ−`i(S′h−1))+

qh

⌋
= 0. Finally, if we consider

T6= = {i ∈M6=h−1 : `σ(i)(Sh−1) 6= `i(S ′h−1)}, the last expression is at most

|J =
h | ≤ 1 + |T+|+

∑
i∈(T−∪T+)∩T 6=

⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
−
⌊

(λ−`i(S′h−1))+
qh

⌋
≤ 1 + |T+|+ |T6=|+

∑
i∈T 6=

`i(S′h−1)−`σ(i)(Sh−1)
qh

,

which concludes the proof since |T6=| ≤
p̃j∗

ε2` (Lemma 12) and the last sum is at most p̃j∗

ε2` . J

W. Gálvez, J. A. Soto, and J. Verschae 32:13

I Theorem 18. Online LPT is a polynomial time (4/3 +O(ε))-competitive algorithm with
O((1/ε3) log(1/ε)) migration factor.

We complement this result by improving the lower bound on the best possible competitive
ratio for an algorithm with constant migration factor (details can be found in [9]).

I Lemma 19. For any ε > 0, there is no
(17

16 − ε
)
-competitive algorithm using constant

migration factor for the online machine covering problem with migration.

References
1 Y. Azar and L. Epstein. On-line machine covering. J. Sched., 1:67–77, 1998.
2 S. Berndt, K. Jansen, and K. Klein. Fully dynamic bin packing revisited. In AP-

PROX/RANDOM 2015, pages 135–151, 2015.
3 Xujin Chen, Leah Epstein, Elena Kleiman, and Rob van Stee. Maximizing the minimum

load: The cost of selfishness. Theor. Comput. Sci., 482:9–19, 2013.
4 J. Csirik, H. Kellerer, and G. Woeginger. The exact LPT-bound for maximizing the min-

imum completion time. Oper. Res. Lett., 11:281–287, 1992.
5 B. Deuermeyer, D. Friesen, and M. Langston. Scheduling to maximize the minimum pro-

cessor finish time in a multiprocessor system. SIJADM, 3:190–196, 1982.
6 L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem. Math.

Program., 119:33–49, 2009.
7 L. Epstein and A. Levin. Robust algorithms for preemptive scheduling. Algorithmica,

69:26–57, 2014.
8 A. Frangioni, E. Necciari, and M. Scutellà. A multi-exchange neighborhood for minimum

makespan parallel machine scheduling problems. J. Comb. Optim., 8:195–220, 2004.
9 Waldo Gálvez, José A. Soto, and José Verschae. Symmetry exploitation for online machine

covering with bounded migration. CoRR, 2016. arXiv:1612.01829.
10 A. Gu, A. Gupta, and A. Kumar. The power of deferral: Maintaining a constant-

competitive steiner tree online. SIAM J. Comput., 45:1–28, 2016.
11 D. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheduling on

uniform processors: Using the dual approximation approach. SIAM J. Comput., 17:539–
551, 1988.

12 K. Jansen and K. Klein. A robust AFPTAS for online bin packing with polynomial migra-
tion. In ICALP 2013, pages 589–600, 2013.

13 K. Jansen, K. Klein, and J. Verschae. Closing the gap for makespan scheduling via sparsi-
fication techniques. In ICALP 2016, pages 1–13, 2016.

14 J. Łacki, J. Oćwieja, M. Pilipczuk, P. Sankowski, and A. Zych. The power of dynamic
distance oracles: Efficient dynamic algorithms for the steiner tree. In STOC 2015, pages
11–20, 2015.

15 N. Megow, M. Skutella, J. Verschae, and A. Wiese. The power of recourse for online MST
and TSP. SIAM J. Comput., 45:859–880, 2016.

16 D. Recalde, C. Rutten, P. Schuurman, and T. Vredeveld. Local Search Performance Guar-
antees for Restricted Related Parallel Machine Scheduling. LATIN 2010, pages 108–119,
2010.

17 P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration.
Math. Oper. Res., 34:481–498, 2009.

18 P. Schuurman and T. Vredeveld. Performance guarantees of local search for multiprocessor
scheduling. INFORMS J. Comput., 19:52–63, 2007.

19 M. Skutella and J. Verschae. Robust polynomial-time approximation schemes for parallel
machine scheduling with job arrivals and departures. Math. Oper. Res., 41:991–1021, 2016.

ESA 2018

http://arxiv.org/abs/1612.01829

32:14 Symmetry exploitation for Online Machine Covering

20 B. Vöcking. Selfish load balancing. In Algorithmic Game Theory, pages 517–542. Cambridge
University Press, 2007.

21 G. Woeginger. A polynomial-time approximation scheme for maximizing the minimum
machine completion time. Oper. Res. Lett., 20:149–154, 1997.

	Introduction
	Preliminaries
	Algorithms with robust structure
	Rounding procedure

	A simple (1.7+eps)-competitive algorithm with O(1/eps) migration.
	Online jump-optimality.

	LPT online with migration Õ(1/eps³).

