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Abstract
We consider the problem of dynamically maintaining (approximate) all-pairs effective resistances
in separable graphs, which are those that admit an nc-separator theorem for some c < 1. We
give a fully dynamic algorithm that maintains (1 + ε)-approximations of the all-pairs effective
resistances of an n-vertex graph G undergoing edge insertions and deletions with Õ(

√
n/ε2) worst-

case update time and Õ(
√
n/ε2) worst-case query time, if G is guaranteed to be

√
n-separable (i.e.,

it is taken from a class satisfying a
√
n-separator theorem) and its separator can be computed in

Õ(n) time. Our algorithm is built upon a dynamic algorithm for maintaining approximate Schur
complement that approximately preserves pairwise effective resistances among a set of terminals
for separable graphs, which might be of independent interest.

We complement our result by proving that for any two fixed vertices s and t, no incremental
or decremental algorithm can maintain the s − t effective resistance for

√
n-separable graphs

with worst-case update time O(n1/2−δ) and query time O(n1−δ) for any δ > 0, unless the Online
Matrix Vector Multiplication (OMv) conjecture is false.

We further show that for general graphs, no incremental or decremental algorithm can main-
tain the s− t effective resistance problem with worst-case update time O(n1−δ) and query-time
O(n2−δ) for any δ > 0, unless the OMv conjecture is false.
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40:2 Dynamic Effective Resistance on Separable Graphs

1 Introduction

Effective resistances and the closely related electrical flows are basic concepts for resistor
networks [12] and were found to be very useful in the design of graph algorithms, e.g., for
computing and approximating maximum flow [8, 36, 37], random spanning tree generation [38,
43], multicommodity flow [27], oblivious routing [18], and graph sparsification [44, 11]. They
also have found applications in social network analysis, e.g., for measuring the similarity
of vertices in social networks [33], in machine learning, e.g., for Gaussian sampling [7] and
in chemistry, e.g., for measuring chemical distances [28]. Previous research has studied the
problem of how to quickly compute and approximate the effective resistances (or equivalently,
energies of electrical flows; see the full version for more discussions), as such algorithms can
be used as a crucial subroutine for other graph algorithms. For example, one can (1 + ε)-
approximate the s− t effective resistance in Õ(m+ nε−2) [14] and Õ(m log(1/ε)) [9] time,
respectively, in any n-vertex m-edge weighted graph, for any two vertices s, t. (Throughout
the paper, we use Õ to hide polylogarithmic factors, i.e., Õ(f(n)) = O(f(n) · poly log f(n)).)
There are also algorithms that find (1 + ε)-approximations to the effective resistance between
every pair of vertices in Õ(n2/ε) time [24]. In order to exactly compute the s − t (or
single-pair) and all-pairs effective resistance(s), the current fastest algorithms run in times
O(nω) (by using the fastest matrix inversion algorithm [6, 21]) and O(n2+ω), respectively,
where ω < 2.373 is the matrix multiplication exponent [46]. In planar graphs, the algorithms
for exactly computing s− t and all-pairs effective resistance(s) run in times O(nω/2) (by the
nested dissection method for solving linear system in planar graphs [34]) and O(n2+ω/2),
respectively.

A natural algorithmic question is how to efficiently maintain the effective resistances
dynamically, i.e., if the graph undergoes edge insertions and/or deletions, and the goal is to
support the update operations and query for the effective resistances as quickly as possible,
rather than having to recompute it from scratch each time. Besides the potential applications
in the design of other (dynamic) algorithms, it is also of practical interest, e.g., to quickly
report the (dis)similarity between any two nodes in a social network in which its members
and their relationship are constantly changing. So far our understanding towards this
question is very limited: for exact maintenance, the only approach (for single-pair effective
resistance) we are aware of is to invoke the dynamic matrix inversion algorithm which gives
O(n1.575) update time and O(n0.575) query time or O(n1.495) update time and O(n1.495)
query time [42]; for (1 + ε)-approximate maintenance, we can maintain the spectral sparsifier
of size npoly(logn, ε−1) with poly(logn, ε−1) update time [3], while answering each query
will cost Θ(npoly(logn, ε−1)) time. (Subsequent to the Arxiv submission [17] of this paper,
Durfee et al. obtained a fully dynamic algorithm that maintains (1 + ε)-approximations
to all-pairs effective resistances of an unweighted, undirected multi-graph with Õ(m4/5ε−4)
expected amortized update and query time [13].)

In this paper, we study the problem of dynamically maintaining the (approximate) effective
resistances in separable graphs, which are those that satisfies an nc-separator theorem for
some c < 1. Interesting classes of separable graphs include planar graphs, minor free graphs,
bounded-genus graphs, almost planar graphs (e.g., road networks) [35], most 3-dimensional
meshes [40] as well as many real-world networks (e.g., phone-call graphs, Web graphs,
Internet router graphs) [5]. In the static setting, effective resistances (or electrical flows)
in planar/separable graphs have been utilized by Miller and Peng [39] to obtain the first
Õ(m

6/5

εΘ(1) ) time algorithm for approximate maximum flow in such graphs, and have also been
studied by Anari and Oveis Gharan [4] in the analysis of an approximation algorithm for
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Asymmetric TSP. We now give the necessary definitions to state our results.

Effective Resistances. Let G = (V,E,w) be a undirected weighted graph with w(e) > 0
for any e ∈ E. Let A denote its weighted adjacency matrix and D denote the weighted
degree diagonal matrix. Let L = D−A denote the Laplacian matrix of G. Let L† denote
the Moore-Penrose pseudo-inverse of the Laplacian of G. Let 1u ∈ RV denote the indicator
vector of vertex u such that 1u(v) = 1 if v = u and 0 otherwise. Let χs,t = 1s − 1t. Given
any two vertices u, v ∈ V , the s− t effective resistance is defined as RG(s, t) := χTs,tL†χs,t.

Separable Graphs. Let C be a class of graphs that is closed under taking subgraphs. We
say that C satisfies a f(n)-separator theorem if there are constants α < 1 and β > 0 such that
every graph in S with n vertices has a cut set with at most βf(n) vertices that separates the
graph into components with at most αn vertices each [35]. In this paper we are particularly
interested in the class of graphs that satisfies an n1/2-separator theorem, which include
the class of planar graphs, Kt-minor free graphs and bounded-genus graphs, etc., though
our approach can also be generalized to other class of graphs that satisfies a nc-separator
theorem, for some c < 1. In the following, we call a graph f(n)-separable if it is a member of
a class that satisfies an f(n)-separator theorem.

We would like to quickly maintain the exact or a good approximation of the s− t effective
resistances in a

√
n-separable graph that undergoes edge insertions and deletions, for all

pairs s, t ∈ V . We call this the dynamic all-pairs effective resistances problem. Our goal is
to solve this problem with both small update and query times. More precisely, our data
structure supports the following operations.

Insert(u, v, w): Insert the edge (u, v) of weight w to G, provided that the updated graph
remains

√
n-separable.

Delete(u, v): Delete the edge (u, v) from G.
EffectiveResistance(s, t): Return the exact or approximate value of the effective
resistance between s and t in the current graph G.

1.1 Our Results
We give a fully dynamic algorithm for maintaining (1 + ε)-approximations of all-pairs and
single-pair effective resistance(s) with small update and query times for any

√
n-separable

graph, if its separator can be computed fast. Throughout the paper, all the running times of
our algorithms are measured in worst-case performance. All our algorithms are randomized,
and the performance guarantees hold with probability at least 1− n−c for some c ≥ 1.

I Theorem 1. Let G denote a dynamic n-vertex graph under edge insertions and deletions.
Assume that G is

√
n-separable and its separator can be computed in s(n) time, throughout

the updates. There exist fully dynamic algorithms that maintain (1 + ε)-approximations of
the all-pairs effective resistances with Õ(

√
n
ε2 + s(n)√

n
) update time and Õ(

√
n
ε2 ) query time;

the s− t effective resistance with Õ(
√
n
ε2 + s(n)√

n
) update time and O(1) query time.

In particular, if s(n) = Õ(n), then our update times are Õ(
√
n
ε2 ).

By using the well known facts that a balanced separator of size O(
√
n) for planar graphs

(and bounded-genus graphs) can be computed in O(n) time [35], and for Kt-minor-free graphs
(for any fixed integer t > 0) in O(n1+δ) time, for any constant δ > 0 [26], we obtain dynamic
algorithms for the effective resistances for planar and minor-free graphs with Õ(

√
n/ε2) and

Õ(
√
n/ε2 + n1/2+δ) update time, respectively.

ESA 2018



40:4 Dynamic Effective Resistance on Separable Graphs

The performance of our dynamic algorithm in planar graphs almost matches the best-
known dynamic algorithm for (1+ε)-approximate all-pairs shortest path in planar graphs with
Õ(
√
n) update and query time [2], though our approaches are different. This is interesting as

the shortest path corresponds to flows with controlled `1 norm while the energy of electrical
flows (i.e., effective resistance) corresponds to those with minimum `2 norm.

In order to design a dynamic algorithm for effective resistances of separable graphs (i.e., to
prove Theorem 1), we give a fully dynamic algorithm that efficiently maintains an approximate
Schur complement [30, 31, 14] of such graphs (see Section 4.1), which might be of independent
interest. Approximate Schur complement can be treated as a vertex sparsifier that preserves
pairwise effective resistances among a set of terminals (see Section 3). Therefore, our
algorithm is a dynamic algorithm for vertex effective resistance sparsifiers with sublinear (in
n) update time for separable graphs. The problem of dynamically maintaining graph edge
sparsifiers has received attention very recently. For example, Abraham et al. presented fully
dynamic algorithms that maintain cut and spectral sparsifiers with poly-logarithmic update
times [3]. Formally, we prove the following theorem.

I Theorem 2. For an n-vertex
√
n-separable graph G whose separator can be computed

in s(n) time, and a terminal set K ⊆ V with |K| ≤ O(
√
n), there exists a fully dynamic

algorithm that maintains a (1 + δ)-approximate Schur complement with respect to K ′ such
that K ⊆ K ′ and |K ′| = O(

√
n), while achieving Õ(

√
n/δ2 + s(n)√

n
) update time. Furthermore,

our algorithm supports terminal additions as long as |K| ≤ O(
√
n).

We complement our algorithm by giving a conditional lower bound for any incremental
or decremental algorithm that maintains single-pair effective resistance of a

√
n-separable

graph. Our lower bound is established from the Online Matrix Vector Multiplication (OMv)
conjecture (see the full version).

I Theorem 3. No incremental or decremental algorithm can maintain the (exact) s − t
effective resistance in

√
n-separable graphs on n vertices with both O(n 1

2−δ) worst-case update
time and O(n1−δ) worst-case query time for any δ > 0, unless the OMv conjecture is false.

We note that there are very few conditional lower bounds for dynamic planar/separable
graphs, as most known reductions are highly non-planar. The only recent result that we are
aware of is by Abboud and Dahlgaard [1], who showed that under some popular conjecture,
no algorithm for dynamic shortest paths or maximum weight bipartite matching in planar
graphs has both updates and queries in amortized O(n1/2−δ) time, for any δ > 0.

We also give a stronger conditional lower bound for the same problem in general graphs,
which shows that it is hard to maintain effective resistances with both sublinear (in n) update
and query times for general graphs, even for the incremental or decremental setting.

I Theorem 4. No incremental or decremental algorithm can maintain the (exact) s − t
effective resistance in general graphs on n vertices with both O(n1−δ) worst-case update time
and O(n2−δ) worst-case query time for any δ > 0, unless the OMv conjecture is false.

We remark that both lower bounds for separable and general graphs hold for any algorithm
with sufficiently high accurate approximation ratio (see Section 5 and full version).

Comparison to [16]. In our previous work [16], we gave a fully dynamic algorithm for
(1 + ε)-approximating all-pairs effective resistances for planar graphs with Õ(r/ε2) update
time and Õ((r + n/

√
r)/ε2) query time, for any r larger than some constant. The algorithm

can also be generalized to
√
n-separable graphs, and we also provided a conditioned lower
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bound for any approximation algorithm of the s− t effective resistance in general graphs in
the vertex-update model. However, besides the apparent improvement of the performance of
the dynamic algorithm (i.e., we reduce the best trade off between update time and query
time from Õ(n2/3) and Õ(n2/3) to Õ(n1/2) and Õ(n1/2)), our current work also improves
over and differs from [16] in the following perspectives.

I. Our algorithm dynamically maintains the approximate Schur complement of a separable
graphs by maintaining a separator tree of such graphs, rather than their r-divisions as
used in [16]. In fact, we do not believe purely r-divisions based algorithms will achieve the
performance as guaranteed by our new algorithm. This is evidenced by previous dynamic
algorithms for maintaining reachability in directed planar graphs by Subramanian [45],
(1 + ε)-approximating to all-pairs shortest paths by Klein and Subramanian [29], exactly
maintaining s− t max-flow in planar graphs by Italiano et al. [23], all of which are based on
r-divisions and have running times of order n2/3 (and some of which have been improved by
using other approaches).

II. Our current lower bound is much stronger than the previous one: the previous lower
bound only holds for general graphs and the vertex-update model, where nodes, not edges,
are turned on or off, and its proof was based on a simple relation between s− t connectivity
and s− t effective resistance RG(s, t) (i.e., if s, t is connected iff RG(s, t) is not infinity). In
contrast, our new lower bounds hold for separable graphs (and also general graphs) and
the edge-update model. The corresponding proofs exploit new reductions from the OMv
problem to the 5-length cycle detection and triangle detection problems in separable graphs
and general graphs, respectively, which might be of independent interest, and the latter
problems are related to the effective resistances (see Section 5).

1.2 Our Techniques
Our dynamic algorithm for maintaining an Approximate Schur complement (ASC) w.r.t.
a set of terminals for separable graphs is built upon maintaining a separator tree of such
graphs and two properties (called transitivity and composability) of ASCs. Such a tree can
be constructed very efficiently by recursively partitioning the subgraphs using separators.
Slightly more formally, each node in the tree corresponds to a subgraph of the original
graph and contains a subset of vertices as its boundary vertices which in turn are treated as
terminals. For each node H, we will maintain an ASC H ′ of H w.r.t its terminals. We will
guarantee throughout all the updates that the ASC of any node can be computed efficiently
in a bottom-up fashion, by the above two properties of ASCs. This stems from the fact
that we only need to recompute the ASCs of nodes that lie on a path from a constant
number leaves to the node of interest. Since each such path has length O(logn) and the
recomputation of ASC of one node takes time Õ(

√
n), the update time will be guaranteed

to be Õ(
√
n). For the detailed implementation, we need to overcome the difficulty that the

error in the approximation ratio might accumulate through this recursive computation and
an update might require to change the set of boundary vertices of many nodes, thus resulting
in a prohibitive running time. We remark that though the idea of using separator tree of
planar/separable graphs is standard (e.g., [15]), the main novelty of our algorithm is to use
such a tree as the backbone to dynamically maintain the approximate Schur complement.

To obtain our dynamic algorithms for all-pair effective resistance, we appropriately declare
and add new terminals whenever we get a new query, and then run the above dynamic
algorithm for ASC with respect to the corresponding terminal set.

ESA 2018
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To obtain our lower bound, we provide new reductions from the Online Boolean Matrix-
Vector Multiplication (OMv) problem to the incremental or decremental single-source effective
resistance problem. More specifically, given an OMv instance with vectors u,v and a matrix
M, we construct a

√
n-separable graph G such that uMv = 1 if and only if there exists a

cycle of length 5 incident to some vertex t in G. This 5-length cycle detection problem in
turn can be solved by inspecting the diagonal entry corresponding to t of the inverse of a
matrix that is defined from G. Furthermore, the diagonal entry of this matrix is inherently
related to the effective resistance [41]. By appropriately dynamizing the graph G and using
the time bounds for the OMv problem from the conjecture, we get the conditional lower
bound for separable graphs. For general graphs, the lower bound is proved in a similar way,
except that the constructed graph is different and we instead use a relation between effective
resistance and triangle detection problem. That is, we first reduce the OMv problem to the
t-triangle detection problem such that the OMv instance satisfies uMv = 1 if and only if
there exists a triangle incident to some vertex t in the constructed G. The latter problem
can again be solved by checking the diagonal entry corresponding to t of some matrix, which
in turn encodes the effective resistance of between t and a properly specified vertex s.

Other Related Work. Previous work on dynamic algorithms for planar or plane graphs
include: shortest paths [29, 2, 23], s − t min-cuts/max-flows [23], reachability in directed
graphs [45, 22, 10], (k-edge) connected components [15, 20], the best swap and the minimum
spanning forest [15]. There also exist work on dynamic algorithms for

√
n-separable graphs,

e.g., on transitive closure and (1 + ε)-approximation of all-pairs shortest paths [25].
As mentioned before, subsequent to our Arxiv submission, Durfee et al. [13] obtained a

dynamic all-pairs effective resistances algorithm with Õ(m4/5ε−4) expected amortized update
and query time, against an oblivious adversary. This algorithm uses ideas stemmed from
this paper, in particular, one of their key ideas is to dynamically maintain an approximate
Schur complement. If restricted to separable graphs, the running times of their algorithm are
worse than ours. It is also interesting to note that for the (simpler) offline dynamic effective
resistance problems, i.e., the sequence of updates and queries are given as an input, Li et
al. [32] recently gave an incremental algorithm with O(poly logn

ε2 ) amortized update and query
time for general graphs.

2 Basic Tools

Our algorithm is built upon two tools: separator trees and approximate Schur complement.

Separator Trees. Let G be a
√
n-separable graph. For an edge-induced subgraph H of G,

any vertex that is incident to vertices not in H is called a boundary vertex. We let ∂(H)
denote the set of boundary vertices belonging to H. A hierarchical decomposition of G is
obtained by recursively partitioning the graph using separators into edge-disjoint subgraphs
(called regions). This decomposition is represented by a binary (decomposition) tree T (G),
which we refer to as a separator tree of G. For any subgraph H of G, we use H ∈ T (G) to
denote that H is a node of T (G) (to avoid confusion with the vertices of G, we refer to the
vertices of T (G) as nodes). The height η(H) of a node is the number of edges in the longest
path between that node and a leaf. Let S(H) denote a balanced separator of the subgraph
H. Further details on the definition and properties of T (G) can be found in the full version.
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(Approximate) Schur Complement (ASC). For a given connected graph G = (V,E) and
a set K ⊂ V of terminals with 1 ≤ |K| ≤ |V | − 1, let N = V \ K. The partition of V
into N and K naturally induces the following partition of the Laplacian L(G) into blocks:
L(G) =

( LN LM

LT
M LK

)
. We remark that since G is connected and N and K are non-empty, one

can show that LN is invertible. We have the following definition of Schur complement.

I Definition 5 (Schur Complement). The (unique) Schur complement of a graph Laplacian
L(G) with respect to a terminal set K is S(G,K) := LK − LTML−1

N LM .

It is known that the matrix S(G,K) is a Laplacian for some graph G′ with vertex set K.

I Definition 6 (Approximate Schur Complement (ASC)). Given a graph G = (V,E,w),
K ⊂ V and its Schur complement S(G,K), we say that a graph H = (K,EH ,wH) is a
(1 ± ε)-approximate Schur complement (abbr. (1 ± ε)-ASC) with respect to K if ∀x ∈
R|K|, (1− ε)xTS(G,K)x ≤ xTL(H)x ≤ (1 + ε)xTS(G,K)x.

In particular, if L(H) = S(G,K), then we say H is a 1-ASC of G w.r.t. K.

ASC can be computed efficiently as guaranteed in the following lemma.

I Lemma 7 ([14]). Fix ε ∈ (0, 1/2) and γ ∈ (0, 1), and let G = (V,E,w) be a graph with
K ⊂ V . There is an algorithm ApproxSchur(G,K, ε, γ) that computes a (1± ε)-ASC H

of G with respect to K such that the following statements hold with probability at least 1− γ:
(1) The graph H has O(|K|ε−2 log(n/γ)) edges. (2) The total running time for computing
H is Õ(m log3(n/γ) + nε−2 log4(n/γ)).

3 Useful Properties of Approximate Schur Complement

Approximate Schur Complement as Vertex Effective Resistance Sparsifier. To maintain
effective resistances efficiently, it will be useful to consider the following notion of vertex
sparsifier that preserves pairwise effective resistances among a set of terminals.

I Definition 8 (Vertex Resistance Sparsifier (VRS)). Given a graph G = (V,E,w) with
K ⊂ V , we say that a graph H = (K,EH ,wH) is an (1± ε)-vertex resistance sparsifier (abbr.
(1±ε)-VRS) of G with respect to K if ∀s, t ∈ K, (1−ε)RG(s, t) ≤ RH(s, t) ≤ (1+ε)RH(s, t).

The lemma below relates ASC and VRS (see the full version for the proof.)

I Lemma 9. Let G = (V,E,w) be a graph with K ⊂ V . If H is an (1± ε)-ASC of G with
respect to K, then H is an 1/(1± ε)-VRS of G with respect to K.

Transitivity and Composability of ASCs. We will prove a transitivity and a composability
property of ASCs, which will enable us to compute the ASCs of all nodes of T (G) in a
bottom-up fashion. The corresponding proofs are deferred in the full version.

I Lemma 10 (Transitivity of ASCs). If H ′ is an (1± ε)-ASC of G w.r.t. K ′, and H is an
(1± ε)-ASC of H ′ w.r.t. K, where K ′ ⊇ K, then H is an (1± ε)2-ASC of G w.r.t. K.

Let G1 = (V1, E1) and G2 = (V2, E2) be edge-disjoint graphs with terminals K1 and K2,
respectively. Furthermore, assume that (V1 ∩ V2) ⊂ Ki, for i = {1, 2}. The merge of G1 and
G2 is the graph G = (V1 ∪ V2, E1 ∪ E2) with terminals K1 ∪K2 formed by identifying the
terminals in V1 ∩ V2. We denote this operation by G := G1 ⊕G2.

I Lemma 11 (Composition of ASCs). Let G := G1 ⊕ G2. If H ′1 is an (1 ± ε)-ASC of G1
with respect to K1, and H ′2 is an (1± ε)-ASC of G2 with respect to K2, then H ′ := H ′1 ⊕H ′2
is an (1± ε)-ASC of G with respect to K.

ESA 2018
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Algorithm 1: ApproxSchurNode(H, ∂(H), δ′).
1 Set γ = 1/n3.
2 if H is a leaf then
3 Set H ′ ← ApproxSchur(H, ∂(H), δ′, γ).
4 if H is a non-leaf then
5 Let c1(H), c2(H) be the children of H.
6 Let ci(H)′ be the ASC of ci(H), for i = 1, 2.
7 Set R← c1(H)′ ⊕φ c2(H)′ and E(R)← E(R) ∪X(H).
8 Set H ′ ← ApproxSchur(R, ∂(H), δ′, γ).
9 return H ′.

4 Dynamic Algorithms for Effective Resistances in Separable Graphs

In this section, we first present our fully dynamic algorithm for maintaining an ASC of
a
√
n-separable graph and then show how to extend it to dynamic effective resistances

algorithm. For simplicity, we assume the separator of G can be computed in Õ(n) time. We
defer the discussion on the general case, some implementation details and analysis to the full
version.

4.1 Dynamic Approximate Schur Complement
Let δ ∈ (0, 1). Let K ⊂ V be a set of terminals with |K| ≤ O(

√
n). We give a data-structure

for maintaining a (1± δ)-ASC of a
√
n-separable graph G with respect to a set K ′ of

√
n

vertices (which contains the terminal set K) that supports Insert and Delete operations
as defined before. In addition, it supports the following operation:

AddTerminal(u): Add the vertex u to the terminal set K, as long as |K| ≤ O(
√
n).

Data Structure. We compute and maintain a balanced separator S(G) of G that contains
K and satisfies that |S(G)| ≤ O(

√
n). We let K ′ = S(G) and we will maintain a (1± δ)-ASC

of G w.r.t. K ′. By definition of boundary vertices, K ′ = ∂(G). Let δ′ = δ
c logn+1 for some

constant c. In our dynamic algorithm, we will maintain a separator tree T (G) (see the full
version) such that for each node H ∈ T (G), we maintain its separator S(H) and a set X(H)
of edges of H, which is initially empty, and an ASC H ′ of H w.r.t. ∂(H). Throughout the
updates, the set X(H) will denote the subset of edges which are only contained in H while
contained in neither of its children. Let D(G, δ) denote such a data-structure. We recompute
D(G, δ) every Θ(

√
n) operations using the initialization below.

Initialization. We show how to efficiently compute the ASC H ′ for each node H from
T (G). We do this in a bottom-up fashion by first calling Algorithm 1 on each leaf node
and then on the non-leaf nodes, where ApproxSchur is the procedure from Lemma 7. In
what follows, whenever we compute an ASC, we assume that procedure ApproxSchur
from Lemma 7 is invoked on the corresponding subgraph and its boundary vertices, with
approximation parameter δ′ and error probability γ = 1

n3 . We will also assume that all the
calls to ApproxSchur are correct.

The following lemma shows that after invoking Algorithm 1 in a bottom-up fashion, we
have computed the ASC for every node in T (G).
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Algorithm 2: UpdateApproxSchur(Stack Q).
1 while Q 6= ∅ do
2 Set H ← Q.Pop().
3 Set H ′ ← ApproxSchurNode(H, ∂(H), ε).

I Lemma 12. Let H ∈ T (G) be a node of height η(H) ≥ 0 and X(H) = ∅. Then H ′ =
ApproxSchurNode(H, ∂(H), ε) is an (1± δ′)η(H)+1-ASC of H with respect to ∂(H).

Proof. We proceed by induction on η(H). For the base case, i.e., η(H) = 0, H is a leaf node.
By Lemma 7 and Algorithm 1, H ′ is indeed a (1± δ′)-ASC of H with respect to ∂(H).

Let H be a non-leaf node, i.e. η(H) > 0. Let c1(H), c2(H) and c′1(H), c′2(H) be
defined as in Algorithm 1. By properties (2), (3) and (4) of T (G) and the fact that
X(H) = ∅, we have H = c1(H)⊕ c2(H). By induction hypothesis, it follows that ci(H)′ is an
(1± δ′)η(ci(H))+1-ASC of ci(H), for i = 1, 2. Using Lemma 11 and since η(ci(H)) + 1 = η(H),
for i = 1, 2, we get that R := c1(H)′ ⊕ c2(H)′ is an (1± δ′)η(H)-ASC of H with respect to
V (R) := ∂(c1(H)) ∪ ∂(c2(H)). Now, since V (R) ⊇ ∂(H) by property (4) of T (G) and by
Lemma 7, it follows that H ′ is an (1± δ′)-ASC of R with respect to ∂(H). Finally, applying
Lemma 10 on R and H ′ we get that H ′ is an (1± δ′)η(H)+1-ASC of H. J

Since δ′ = δ
c logn+1 and η(G) = O(logn), the graph G′ is a (1± δ)-ASC of G w.r.t. ∂(G).

Handling Edge Insertions. We now describe the Insert operation. Let us consider the
insertion of an edge e = (u, v) of weight w. We maintain a stack Q, which is initially set to
empty. We then update the root node by adding (u, v) with weight w to G, and push G onto
Q. During the traversal of T (G), our procedure maintains two pointers that point to the
current node H (initially set to G) and a node N (if any exists) that represents the node for
which u and v belong to different children of N , respectively. As long as we have not found
such a node N , and the current node H is not a leaf, we proceed as follows.

We examine the child of H that contains both u and v (if there is more than one, then we
just pick one of them). If u and v belong to the same child, say c(H), then we add this edge
to c(H) and update the current node H to c(H). We then push H onto Q. If, however, u
and v belong to different children, then we set N to be the current node H and add the edge
(u, v) to X(N), since u and v cannot appear together in the nodes of the lower levels. At this
point, this forces u and v to become boundary vertices in N and all other nodes descending
from N that contain either u or v. We handle this by making use of the AddBoundary()
procedure, depicted in Algorithm 4. Finally, we recompute the ASCs of the affected nodes
in a bottom-up fashion using the stack Q (as shown in Algorithm 2). This procedure is
summarized in Algorithm 3. We remark that for simplicity, we let Q.Push(H) denote the
event of pushing the pointer to H to the stack Q, for any node H.

After the pre-processing step and after each insertion/deletion of an edge, our augmented
separator tree T (G) satisfies the following invariant.

I Invariant 13. For every edge e in the current graph G exactly one of the following two
holds: (1) there is a leaf node H ∈ T (G) such that e ∈ E(H), (2) there is an internal node
H ∈ T (G) such that e ∈ X(H).

The following lemma guarantees that the updated graph G′ (i.e., the sparsifier of the root
node G) is a good estimate to the Schur complement of G with respect to the boundary, after
the execution of Insert(u, v) in Algorithm 3, and its proof is deferred to the full version.
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Algorithm 3: Insert(u, v, w).
1 Let Q be an initially empty stack.
2 Set E(G)← E(G) ∪ {(u, v)}, Q.Push(G), H ← G and N ← nil.
3 while N = nil and H is a non-leaf do
4 if there exists a child of H that contains both u and v then
5 Let c(H) denote any such a child.
6 Set E (c(H))← E (c(H)) ∪ {(u, v)}.
7 Set H ← c(H).
8 Q.Push(H).
9 else

10 Set N ← H.
11 Set X(N)← X(N) ∪ {(u, v)}.
12 AddBoundary(u,N), AddBoundary(v,N).

13 UpdateApproxSchur(Q). // Update the ASCs of the nodes in Q

Algorithm 4: AddBoundary(u,N).
1 Let Q be an initially empty stack.
2 while N = nil do
3 if u 6∈ ∂(H) then
4 Set ∂(H)← ∂(H) ∪ {u}.
5 Q.Push(H).
6 if H is a non-leaf then
7 Let c(H) be the unique child that contains u.
8 Set H ← c(H).

9 if H is a leaf then
10 Set H ← nil.

11 UpdateApproxSchur(Q). // Update the ASCs of the nodes in Q

I Lemma 14. Let G′ be the updated sparsifier of the root node G, after the insertion of edge
(u, v). Then G′ is an (1± δ)-ASC of G with respected to ∂(G).

Handling Terminal Additions to the Boundary. We now describe the AddTerminal(u)
operation. It is implemented by simply invoking AddBoundary(u,G), where G is the root
of T (G). For the procedure AddBoundary(u,H), we maintain a stack Q, which is initially
set to empty. As long as the current H is a node in T (G), we first check whether u ∈ ∂(H).
If this is the case, then we simply do nothing as the ASC H ′ of H with respect to ∂(H)
contains u. Otherwise, we add u to ∂(H), and push the node H to Q. Next, if H is not a
leaf-node, let c(H) be the unique child that contains u. We then set c(H) to be our current
node H and perform the same steps as above, until we reach some leaf-node, in which case
we set H to nil. Finally, we recompute the ASCs of the affected nodes in a bottom-up
fashion using the stack Q. This procedure is summarized in Algorithm 4. The correctness of
this procedure can be shown similarly to the correctness of Insert().
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Handing Edge Deletions and Running Times. The operation of deleting an edge can be
handled in a symmetric way as for handling edge insertions (see the full version). For all
three operations (i.e., Insert, Delete, AddTerminal), the running times are guaranteed
to be Õ(

√
n/δ2). Their analysis are deferred to the full version.

4.2 Extension to Dynamic All-Pairs Effective Resistances
Our dynamic effective resistance algorithm uses the dynamic algorithm for maintaining a
(1 ± δ)-ASC as a subroutine. Formally, to maintain (1 + ε)-approximate effective resist-
ances, we will invoke the dynamic ASC algorithm with parameter δ = ε/4, to handle edge
insertions/deletions, and terminal additions.

We now describe the query operation (for the case of all-pairs effective resistances). Given
s and t, we start by calling AddTerminal(s) and AddTerminal(t) from the dynamic
ASC data-structure. This ensures that both s and t are boundary nodes at the root node
G (if they were not previously). Thus we obtain a (1± δ)-ASC, denoted as G′, of the root
node G w.r.t. ∂(G) and run on G′ a nearly linear time algorithm for estimating the s− t
effective resistance (see the full version). Let ψ be such an estimate. For the correctness, by
Lemma 9, we have that G′ preserves all-pair effective resistances among vertices in ∂(G) of
G up to an 1/(1± δ) ≈ (1± 2δ) factor. Since we ensured that s and t are included in ∂(G),
the s− t effective resistance is approximated within the same factor. By a known result (see
the full version), it follows that the estimate ψ approximates the effective resistance between
s and t in G′, up to a (1± δ) factor. Combining the above guarantees, we get ψ gives an
(1± 2δ)(1± δ) ≤ (1± ε)-approximation to RG(s, t), by the choice of δ. The query time will
be guaranteed to be Õ(

√
n/ε2). Further details are deferred to the full version.

5 Lower Bounds for Partially Dynamic Effective Resistances

We now give a conditional lower bound for incrementally maintaining the s − t effective
resistance in O(

√
n)-separable graphs and prove Theorem 3. Our proof actually holds for

any algorithm that maintains a (1 +O( 1
n36 ))-approximation of s− t effective resistance. The

lower bounds for the decremental setting and general graphs are deferred to the full version.

The reduction. We reduce the uMv problem (see the definition in the full version) with
parameters n1 = n2 := n0 to the s− t effective resistance problem as follows. Let M be the
n0 × n0 Boolean matrix of the uMv problem. Let n = n2

0 + 2n0 + 2. Let κ = 3(n− 1)6.
Given the matrix M, we construct a graph GM = (VM, E) as follows. (1) For each pair

1 ≤ i, j ≤ n0, we create two vertices aij and bij , and add an edge (aij , bij) if and only if
Mij = 1. (2) For each row i, we create a vertex ui and add edge (ui, aik) for each 1 ≤ k ≤ n0.
For each column j, we create a vertex vj and add edge (vj , bkj) for each 1 ≤ k ≤ n0. This
finishes the definition of GM. Note that VM = {aij , bij , 1 ≤ i, j ≤ n0} ∪ {ui, 1 ≤ i ≤
n0} ∪ {vj , 1 ≤ j ≤ n0}. For any vertex x ∈ VM, let degGM

(x) denote the degree of x in GM.
Now we add two new vertices t and s to GM. For any x ∈ {aij , bij , 1 ≤ i, j ≤ n0}, add

an edge (s, x) with weight κ− degGM
(x). Denote the resulting graph by G and note that G

contains |VM ∪ {s, t}| = n2
0 + 2n0 + 2 = n vertices.

Assume that G is started in a dynamic effective resistance data structure. We also
maintain some counters in the data structure. That is, we initialize a global counter Y := 0.
For each vertex x ∈ {ui, 1 ≤ i ≤ n0} ∪ {vj , 1 ≤ j ≤ n0}, we maintain a counter c(x) which is
initialized to be 0. We now explain how we use this data structure to determine uMv.
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Once u arrives, for any i such that ui = 1, we insert an edge (t, ui) with weight 1, increase
Y and c(ui) by 1.
Once v arrives, for any j such that vj = 1, we insert an edge (t, vj) with weight 1, increase
Y and c(vj) by 1.
Insert an edge (s, t) with weight κ− Y . For each vertex x ∈ {ui, 1 ≤ i ≤ n0} ∪ {vj , 1 ≤
j ≤ n0}, insert an edge (s, x) with weight κ− c(x)− degGM

(x).
Perform a query EffectiveResistance(s, t) to obtain the (approximate) s− t effective
resistance in the final graph. Let λ = EffectiveResistance(s, t). If λ ≤ 1

κ + Y
κ3 +

Y (n0+1)
κ5 − 1

κ6 , then return 1; otherwise, return 0.

Analysis. Note that throughout the whole sequence of updates (which are only edge
insertions) and queries, the dynamic graph G is always O(

√
n)-separable, with a balanced

separator set S := {u1, · · · , un0} ∪ {v1, · · · , vn0} ∪ {s, t} of size O(
√
n).

We have the following lemma that shows an important property of our reduction. The
proof of the lemma is deferred to the end of this section.

I Lemma 15. For κ = 3(n−1)6, assume that EffectiveResistance(s, t) returns the exact
value of the s− t effective resistance in the final graph G. Then the following holds: (1) If
uMv = 1, then λ ≤ 1

κ + Y
κ3 + Y (n0+1)

κ5 − 1
κ6 ; (2) If uMv = 0, then λ > 1

κ + Y
κ3 + Y (n0+1)

κ5 − 1
κ6 .

Note that by the above lemma, the uMv problem can be solved according to our estimator
λ. Thus, the lower bound for the incremental setting in Theorem 3 follows by a reduction
from OMv conjecture to the uMv problem (see [19] and the full version of the paper) and by
noting that the total number of updates is O(n0) = O(

√
n) and the total number of queries

is 1.
In the following we prove Lemma 15. The proof is based on a connection between the

5-length cycle detection problem and the effective resistance problem.

Proof of Lemma 15. Let G denote the final graph of our reduction. Let H := G[VM ∪ {t}]
denote the subgraph induced by vertex set VM ∪ {t}. We observe that in the graph H, there
is a cycle of length 5 containing vertex t if and only if uMv = 1.

On the other hand, we can use our estimator λ to distinguish if H contains a 5-length
cycle incident to t or not. We let A ∈ R(n−1)×(n−1) denote the adjacency matrix of the
graph H. Note that all entries in A are either 1 or 0.

The first claim relates the 5-length cycle detection to the trace of a matrix related to A.
Recall that we let Xuv denote the entry of matrix X with row index corresponding to vertex
u and column index corresponding to vertex v.

I Claim 16. Let B = κ · I−A. If H contains a 5-length cycle incident to t, then (B−1)tt ≤
1
κ + Y

κ3 + Y (n0+1)
κ5 − 1.1

κ6 . If H does not contain a 5-length cycle incident to t, then (B−1)tt ≥
1
κ + Y

κ3 + Y (n0+1)
κ5 − 0.9

κ6 .

Proof. First we note that B is invertible, as it is strictly symmetric diagonally dominant.
Furthermore, it holds that κ ·B−1 = (I− 1

κ ·A)−1 and thus by the Neumann series expansion,
we have κ ·B−1 = (I − 1

κ ·A)−1 =
∑∞
i=0(− 1

κ )i ·Ai. This further implies that

(κ ·B−1)tt = 1Tt (
∞∑
i=0

(− 1
κ

)i ·Ai)1t =
∞∑
i=0

(− 1
κ

)i · 1Tt (Ai)1t =
∞∑
i=0

(− 1
κ

)i · (Ai)tt.
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Now observe that since κ = 3(n − 1)6, the first six terms of the above power series
dominate. More precisely, note that (Ai)tt is the number of i-length paths from t to t, which
is at most (n− 1)i. Thus

∑∞
i=6|(−

1
κ )i · (Ai)tt| ≤

∑∞
i=6

1
κi (Ai)tt ≤

∑∞
i=6

1
κi (n− 1)i ≤ 0.9

κ5 .

Now observe that (A0)tt = Itt = 1; that Att = 0 since H is a simple graph; that
(A2)tt = degH(t) = Y , where the last equation follows from the definition of Y ; that (A3)tt =
0 since there is no triangle containing t; and that (A4)tt =

∑
w:(w,t)∈E

∑
x:(x,w)∈E 1 =∑

w:(w,t)∈E degGM
(w) = detH(t) · (n0 + 1) = Y (n0 + 1). Therefore,

If H contains a 5-length cycle incident to t, then (A5)tt ≥ 2, and thus (κ · B−1)tt ≤
1 + Y

κ2 + Y (n0+1)
κ4 − 2

κ5 + 0.9
κ5 = 1 + Y

κ2 + Y (n0+1)
κ4 − 1.1

κ5

If H has no 5-length cycle incident to t, then (A5)tt = 0, and thus (κ · B−1)tt ≥
1 + Y

κ2 + Y (n0+1)
κ4 − 0.9

κ5

This completes the proof of the claim. J

The following claim relates s− t effective resistance to B−1. The proof almost follows
from Lemma 23 in [41] (see also the full version for the proof).

I Claim 17. Let Λ = EG(s, t) and B = κ · I−A. Then it holds that Λ = (B−1)tt.

Finally, by the above two claims, if uMv = 1, then H contains a 5-length cycle incident
to t, and thus Λ = (B−1)tt ≤ 1

κ + Y
κ3 + Y (n0+1)

κ5 − 1.1
κ6 ; if uMv = 0, then H does not contain

any 5-length cycle incident to t, and thus Λ = (B−1)tt ≥ 1
κ + Y

κ3 + Y (n0+1)
κ5 − 0.9

κ6 . The
statement of the lemma then follows from our assumption that λ = Λ.

Note that our lower bound actually holds if λ is a 1 + 1
κ6 = 1 +O( 1

n36 )-approximation of
Λ, by the above analysis and the inequality 1

κ6 ( 1
κ + Y

κ3 + Y (n0+1)
κ5 − 0.9

κ6 ) < 0.1
κ6 . J
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