Changing Lanes on a Highway

Authors Thomas Petig, Elad M. Schiller, Jukka Suomela



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2018.9.pdf
  • Filesize: 495 kB
  • 15 pages

Document Identifiers

Author Details

Thomas Petig
  • Qamcom Research and Technology AB, Sweden
Elad M. Schiller
  • Chalmers University of Technology, Sweden
Jukka Suomela
  • Aalto University, Finland

Cite AsGet BibTex

Thomas Petig, Elad M. Schiller, and Jukka Suomela. Changing Lanes on a Highway. In 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018). Open Access Series in Informatics (OASIcs), Volume 65, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/OASIcs.ATMOS.2018.9

Abstract

We study a combinatorial optimization problem that is motivated by the scenario of autonomous cars driving on a multi-lane highway: some cars need to change lanes before the next intersection, and if there is congestion, cars need to slow down to make space for those who are changing lanes. There are two natural objective functions to minimize: (1) how long does it take for all traffic to clear the road, and (2) the total number of maneuvers. In this work, we present an approximation algorithm for solving these problems in the two-lane case and a hardness result for the multi-lane case.

Subject Classification

ACM Subject Classification
  • Theory of computation → Discrete optimization
Keywords
  • Collaborative agents
  • vehicle scheduling
  • traffic optimization
  • approximation algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Maksat Atagoziyev, Klaus W. Schmidt, and Ece G. Schmidt. Lane change scheduling for autonomous vehicles. In Proc. 14th IFAC Symposium on Control in Transportation Systems (CTS 2016), volume 49(3) of IFAC-PapersOnLine, pages 61-66. Elsevier, 2016. URL: http://dx.doi.org/10.1016/j.ifacol.2016.07.011.
  2. Wonshik Chee and Masayoshi Tomizuka. Vehicle lane change maneuver in automated highway systems. Research Report UCB-ITS-PRR-94-22, UC Berkeley, California Partners for Advanced Transportation Technology, 1994. Google Scholar
  3. Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207-216, 2005. URL: http://dx.doi.org/10.1016/j.tcs.2005.09.013.
  4. Li Feng, Li Gao, and Yun-hui Li. Research on information processing of intelligent lane-changing behaviors for unmanned ground vehicles. In Proc. 9th International Symposium on Computational Intelligence and Design (ISCID 2016), volume 2, pages 38-41. IEEE, 2016. URL: http://dx.doi.org/10.1109/ISCID.2016.2018.
  5. G. H. Fricke, S. T. Hedetniemi, and D. P. Jacobs. Independence and irredundance in k-regular graphs. Ars Combinatoria, 49:271-2719, 1998. Google Scholar
  6. Cem Hatipoğlu, Ümit Özgüner, and Konur A. Ünyelioğlu. On optimal design of a lane change controller. In Proc. Intelligent Vehicles '95 Symposium, pages 436-441. IEEE, 1995. URL: http://dx.doi.org/10.1109/IVS.1995.528321.
  7. Ding-wei Huang. Lane-changing behavior on highways. Physical Review E, 66(2), 2002. URL: http://dx.doi.org/10.1103/PhysRevE.66.026124.
  8. Wm. Woolsey Johnson and William E. Story. Notes on the "15" puzzle. American Journal of Mathematics, 2(4):397-404, 1879. URL: http://dx.doi.org/10.2307/2369492.
  9. Jorge A. Laval and Carlos F. Daganzo. Lane-changing in traffic streams. Transportation Research Part B: Methodological, 40(3):251-264, 2006. URL: http://dx.doi.org/10.1016/j.trb.2005.04.003.
  10. Kai Nagel. High-Speed Microsimulations of Traffic Flow. PhD thesis, University of Cologne, Germany, 1994. Google Scholar
  11. Kai Nagel, Dietrich E. Wolf, Peter Wagner, and Patrice Simon. Two-lane traffic rules for cellular automata: A systematic approach. Physical Review E, 58(2), 1998. URL: http://dx.doi.org/10.1103/PhysRevE.58.1425.
  12. José Eugenio Naranjo, Carlos González, Ricardo García, and Teresa de Pedro. Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver. IEEE Transactions on Intelligent Transportation Systems, 9(3):438-450, 2008. URL: http://dx.doi.org/10.1109/TITS.2008.922880.
  13. Daniel Ratner and Manfred K. Warmuth. Finding a shortest solution for the n × n extension of the 15-puzzle is intractable. In Tom Kehler, editor, Proc. 5th National Conference on Artificial Intelligence (AAAI 1986), pages 168-172. Morgan Kaufmann, 1986. Google Scholar
  14. Daniel Ratner and Manfred K. Warmuth. The (n²-1)-puzzle and related relocation problems. Journal of Symbolic Computation, 10(2):111-138, 1990. URL: http://dx.doi.org/10.1016/S0747-7171(08)80001-6.
  15. Robin Schubert, Karsten Schulze, and Gerd Wanielik. Situation assessment for automatic lane-change maneuvers. IEEE Transactions on Intelligent Transportation Systems, 11(3):607-616, 2010. URL: http://dx.doi.org/10.1109/TITS.2010.2049353.
  16. F. Visintainer, L. Altomare, A. Toffetti, A. Kovacs, and A. Amditis. Towards manoeuver negotiation: AutoNet2030 project from a car maker perspective. In Proc. 6th Transport Research Arena (TRA 2016), volume 14 of Transportation Research Procedia, pages 2237-2244. Elsevier, 2016. URL: http://dx.doi.org/10.1016/j.trpro.2016.05.239.
  17. Richard M Wilson. Graph puzzles, homotopy, and the alternating group. Journal of Combinatorial Theory, Series B, 16(1):86-96, 1974. URL: http://dx.doi.org/10.1016/0095-8956(74)90098-7.
  18. Tay Wilson and W. Best. Driving strategies in overtaking. Accident Analysis &Prevention, 14(3):179-185, 1982. URL: http://dx.doi.org/10.1016/0001-4575(82)90026-4.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail