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Abstract
A database query q is called additive if q(A ∪ B) = q(A) ∪ q(B) for domain-disjoint input databases
A and B. Additivity allows the computation of the query result to be parallelised over the connected
components of the input database. We define the “connected formulas” as a syntactic fragment
of first-order logic, and show that a first-order query is additive if and only if it expressible by a
connected formula. This characterisation specializes to the guarded fragment of first-order logic.
We also show that additivity is decidable for formulas of the guarded fragment, establish the
computational complexity, and do the same for positive-existential formulas. Our results hold when
restricting attention to finite structures, as is common in database theory, but also hold in the
unrestricted setting.
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1 Introduction

Motivated by cloud computing and big data, in the past few years, there has been interest in
logical characterisations of queries that can be answered using parallelism [11]. An attractive
class of queries that was identified is formed by those that “distribute over components” [3].
These queries can be faithfully answered by the following three-step strategy: first, partition
the input database in any way that does not split connected components; second, evaluate
the query separately on each part, thus allowing some degree of parallelism; third, collect the
final result by taking the union of all partial results. Equivalently, over finite databases, a
query q for which this works correctly is additive, meaning that q(A ∪B) = q(A) ∪ q(B) for
any two domain-disjoint databases A and B. An added bonus is that the two partial results
Q(A) and Q(B) are disjoint. Apart from the relevance to distributed computing, additivity
is also a useful notion in the analysis of expressive power of query languages [20, 21].

Additivity is a semantic property that is undecidable for queries given, say, as Datalog
programs, or as first-order logic formulas. It is therefore desirable to match additivity to
a syntactic restriction in the query language. This was done successfully in the setting of
Datalog programs, where it is a natural idea to restrict rule bodies so that they must be
connected. It is then relatively straightforward to show that a Datalog query is additive
if and only if it can be computed by a Datalog program with connected rule bodies. This
program was successfully carried out for a range of Datalog variants, such as Datalog extended
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19:2 Additive First-Order Queries

with stratified or well-founded negation, or value invention [3, 4], as well as for unions of
conjunctive queries, and ontology-mediated querying with conjunctive queries over linear,
guarded, or sticky tuple-generating dependencies [6].

The case of first-order queries (equivalently, relational algebra queries), however, has
remained open until now. In this paper we define a syntactical notion of connectedness
for first-order logic formulas, as well as for relational algebra expressions. In a connected
relational algebra expression, equijoins are allowed, but cartesian products are not. Connected
first-order logic formulas are defined similarly. Queries expressible by connected formulas are
always additive. We show that the converse holds as well: if a first-order formula ϕ expresses
an additive query, then ϕ is equivalent to a connected formula. A similar result then follows
for relational algebra expressions.

Results of this kind are colloquially known as expressive completeness results, charac-
terisation theorems, or preservation theorems [2, 18]. For example, modal characterisation
theorems link bisimulation-invariant first-order formulas (in one free variable) to formulas in
modal logics [23, 17, 14, 15, 16]. Indeed, the proof of our result starts from ideas that were
developed to prove modal characterisation theorems over finite structures as well as over
all structures. As a consequence, also our result holds over finite structure as well as over
all structures.

In a second part of the paper, we consider the guarded fragment (GF) of first-order
logic [5]. GF was originally introduced as a first-order generalisation of modal logic that
preserves good properties such as the tree model property, the finite model property, and a
decidable satisfiability problem. Satisfiability for GF is 2ExpTime-complete in general and
ExpTime-complete for bounded arity [9].

When restricting attention to queries returning guarded tuples, the guarded fragment
corresponds to the semijoin algebra [12]. Such queries are always additive. We complement
this picture and show that a guarded formula ϕ expresses an additive query if and only if ϕ
is equivalent to a connected guarded formula. We will see that additivity is decidable for GF
as well, by a reduction to satisfiability. While our reduction preserves bounded arity, it is
unfortunately exponential, so we only obtain a 2ExpTime upper bound, even for bounded
arity. By a very simple reduction from satisfiability, additivity for GF is 2ExpTime-complete
in general and ExpTime-hard for bounded arity.

Finally, we will consider positive-existential (PE) first-order formulas. Such formulas
have the same expressive power as unions of conjunctive queries (UCQ) [1]. In earlier work
[6], additivity for UCQs was shown to be NP-complete. In this paper we complement this
result and show that additivity for PE formulas is ΠP

2 -complete. The pattern that seems to
emerge here is that additivity has the same complexity as containment.

2 Preliminaries

From the outset, we assume a supply of relation names, where each relation name has an
associated arity (a natural number). We use R/k to denote that the relation name R has
arity k. In this paper we do not consider nullary relation names, as their presence corrupts
the intuitive notion of domain-disjointness which will play an important role in this work
(see Section 3).

We further assume an infinite domain dom of atomic data elements called constants. A
fact is of the form R(a1, . . . , ak) where a1, . . . , ak are constants and R/k is a relation name.
We call R the predicate of the fact.

A database schema (or schema for short) is a finite set of relation names. An instance
of a schema S is a nonempty set of facts with predicates from S. The set of all constants
appearing in an instance A is called the active domain of A and denoted by adom(A).
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I Remark (Finite vs unrestricted instances). In database theory it is common and natural to
restrict attention to finite instances. Our results will hold in restriction to finite instances, as
well as in the unrestricted setting where we allow all instances.

Let S be a schema, and let k be a natural number. A k-ary query over S is a function
that maps each instance A of S to a k-ary relation on adom(A). Note that a nullary query
(k = 0) has only two possible results, {()} and ∅, which can be interpreted as the boolean
values true and false respectively. Thus nullary queries capture the notion of boolean or
yes/no query.

A standard language for expressing queries is the relational algebra [22]. To fix notation,
we define it formally [13]. Note that we only consider equality selections and equijoins;
the extension of our work to selection and join predicates involving constants, order, or
arithmetic, is an interesting direction for further research.

I Definition 1. The expressions of the relational algebra (RA) over a schema S are generated
as follows:

Each relation name R ∈ S is a relational algebra expression. Its arity comes from S.
If E1, E2 ∈ RA have arity n, then also E1 ∪ E2 (union) and E1 − E2 (difference) belong
to RA and are of arity n.
If E ∈ RA has arity n and i1, . . . , ik ∈ {1, . . . , n}, then πi1,...,ik

(E) (projection) belongs
to RA and is of arity k.
If E ∈ RA has arity n and i, j ∈ {1, . . . , n}, then σi=j(E) (selection) belongs to RA and
is of arity n.
If E1, E2 ∈ RA have arities n and m, respectively, then E1 × E2 (cartesian product)
belongs to RA and is of arity n+m.

The semantics is well known; we recall it for the sake of completeness. Let A be an
instance of S.

If E is a relation name R then E(A) := {ā | R(ā) ∈ A}.
If E is E1∪E2, or E1−E2, or E1×E2, then E(A) := E1(A)∪E2(A), or E1(A)−E2(A),
or E1(A)× E2(A), respectively.
If E is πi1,...,ik

(E1) then E(A) := {(ai1 , . . . , aik
) | ā ∈ E1(A)}.

If E is σi=j(E1) then E(A) := {ā ∈ E1(A) | ai = aj}.

The relational algebra is equivalent in expressive power to the language of first-order
logic (FO) [22, 1]. To match RA as formalised above, we use FO with equality but without
constants. An FO formula ϕ with free variables x1, . . . , xk expresses the k-ary query that
maps an instance A to the set of all k-tuples (α(x1), . . . , α(xk)), where α is a valuation from
{x1, . . . , xk} to adom(A) such that A, α |= ϕ. Here, A is viewed as a structure with domain
adom(A), so we employ the active-domain semantics for first-order logic. We denote the
resulting relation by ϕ(A). In particular, sentences (formulas without free variables) express
nullary queries.

Notation.
To indicate an ordering of the free variables of ϕ, we will use the notation ϕ(x1, . . . , xk).
We will use FO to denote the class of queries expressible in FO.

3 Additive queries

Let q be a query over schema S. We call q additive if q(A ∪ B) = q(A) ∪ q(B) for any
two S-instances A and B that are domain-disjoint, meaning that adom(A) is disjoint from
adom(B). Note that, formally, this definition applies equally well to boolean (nullary)
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19:4 Additive First-Order Queries

queries. Interpreting {()} as true and ∅ as false, as we will always do, the condition
q(A ∪ B) = q(A) ∪ q(B) can be equivalently read as “q(A ∪ B) is true if and only if q(A) is
true or q(B) is true”.

Notation. When we write A = B + C we will mean that A = B ∪ C and B and C are
domain-disjoint.

I Example 2. Consider queries about two binary relations R and T , expressed in RA.
1. The selection σ1=2(R) is clearly additive.
2. The join π1,2,4σ2=3(R× T ) is additive.
3. The union R ∪ T and the difference R− T are additive.

In order to give examples of queries that are not additive, it is useful to introduce the
following definitions and lemma.

I Definition 3 ([3]). A strict component of an instance A is an instance C such that
A = C + B for some instance B, and C is minimal with this property. (Recall that instances
are nonempty.) We now say that an instance C is a component of an instance A, if C is a
strict component of A, or if C equals A and A has no strict components.

I Definition 4. Let A be an instance and let t be a tuple of elements of adom(A). We call t
mixed with respect to A, if t contains elements from (at least) two different components of A.

I Lemma 5. Let q be an additive query and let A be an instance. Then q(A) does not
contain any mixed tuples (with respect to A).

Proof. Suppose t ∈ q(A) contains elements from two distinct components B and C (and
possibly more). Write A = B+ C +D. Then t ∈ q(B)∪ q(C)∪ q(D). However, t cannot be in
q(B) since q(B) is a relation on adom(B) and t contains elements from adom(C). For similar
reasons, t can neither be in q(C) nor in q(D). We have arrived at a contradiction. J

We can now follow up Example 2 with some negative examples.

I Example 6.
1. Let E be the cartesian product R × T . Then E is not additive. Indeed, consider
A = {R(a, a), T (b, b)}. Then (a, a, b, b) ∈ E(A) is a mixed tuple, contradicting Lemma 5.

2. Let ϕ(x, y, z) be the FO query R(x, y)∨T (y, z). Then ϕ is not additive. Indeed, consider
A = {R(a, b), T (c, d)}. Then (a, b, c) ∈ ϕ(A) is a mixed tuple, again contradicting
Lemma 5.

3. Let ϕ be the boolean FO query ¬∃z R(z, z). Then ϕ is not additive. Indeed, consider
A = {R(a, b)} and B = {R(c, c)}. Then ϕ(A) is true, but ϕ(A ∪ B) is false. Note that ϕ
does not return mixed tuples, yet is not additive.

3.1 Queries that distribute over components
A notion closely related to additivity is that of distributing over components [3]. A query q
is said to distribute over components if q(A) equals the union of q(C) over all components C
of A.

Let us denote the class of additive queries by ADD and the class of queries distributing
over components by DIST. Clearly, DIST implies ADD. Over instances that have only finitely
many components, the converse implication is quite clear as well. Over infinite instances,
the converse implication can still be shown quite simply, but only for non-boolean queries.

We summarise the situation as follows. Let ADD∗ be the class of additive queries that
are not nullary, and similarly for DIST∗.
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I Proposition 7. In restriction to finite instances, ADD = DIST. In the unrestricted setting,
ADD∗ = DIST∗.

Proof. The only part that is not immediately clear is that ADD implies DIST for non-boolean
queries in the unrestricted setting. To show this, let q be an additive non-boolean query,
and let A be an instance. We need to verify that q(A) equals the union of q(C) over all
components C of A. For the inclusion from right to left, take a component C and write
A = C + B. Then q(C) ⊆ q(C) ∪ q(B) = q(A).

For the inclusion from left to right, let t ∈ q(A). By Lemma 5, t consists of elements
from a single component C of A. Moreover, since q is non-boolean, t is nonempty. Write
A = C + B. Thus t ∈ q(C) ∪ q(B). However, t cannot be in q(B) since B is domain-disjoint
from C. Hence t ∈ q(C) as desired. J

Actually, over infinite instances, ADD does not imply DIST for boolean queries. Indeed,
the boolean query “does the instance have infinitely many components?” is in ADD but not
in DIST. Within FO, however, the equivalence between ADD and DIST does hold. This will
follow from our result on additive boolean FO queries (Proposition 14).

4 The first-order case

In this section we introduce the connected formulas as a syntactical restriction on FO
formulas. Our main result will be that a query expressible in FO is additive if and only if it
is expressible by a connected FO formula. A similar result will then follow for the relational
algebra. We will conclude the section with a very simple reduction from satisfiability to
additivity.

4.1 Connected FO
Connected FO formulas are generated according to the following syntax rules:

Every atomic formula is connected.
If ϕ is connected then ∃y ϕ, for any variable y, is also connected.
If ϕ and ψ are connected and they share at least one free variable, then ϕ ∧ ψ is also
connected.
If ϕ and ψ are connected and have exactly the same free variables (possibly none), then
ϕ ∨ ψ is also connected.
If ϕ and ψ are connected, ψ has at least one free variable, and ϕ has all the free variables
of ψ, then ϕ ∧ ¬ψ is also connected.

I Example 8. Revisiting Examples 2 and 6, we see that the positive examples are expressible
by connected formulas: the selection example by R(x, y) ∧ x = y; the equijoin by R(x, y) ∧
T (y, z); the union and difference by R(x, y) ∨ T (x, y) and R(x, y) ∧ ¬T (x, y), respectively.

We also see that the negative examples are not connected formulas: the formula R(x, y)∧
T (u, v) for cartesian product violates the conjunction rule; the formula R(x, y) ∨ T (y, z)
violates the disjunction rule; and the formula ¬∃z R(z, z) violates the negation rule.

It is readily verified that connected FO queries are always additive. Our main result in
this section is that the converse holds as well. Let CFO denote the queries expressible by a
connected FO formula. We establish:

I Theorem 9. FO ∩ADD = CFO.
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19:6 Additive First-Order Queries

4.2 Non-boolean queries
Our theorem is proven separately for formulas with free variables, and for sentences. In this
subsection we handle the case with free variables.

We need to recall the basic notions concerning the locality of first-order logic [8]. The
Gaifman graph of an instance A, denoted by G(A), is the undirected graph with adom(A)
as the set of nodes; there is an edge between distinct nodes a and b if a and b occur together
in some fact in A. The distance between a and b in G(A) is denoted by dA(a, b), or simply
d(a, b) if A is understood. For any natural number `, the set {b ∈ adom(A) | d(a, b) ≤ `} is
denoted by BA(a, `) or B(a, `) if A is understood (B for “ball”). The notation B(ā, `), for
a tuple ā = a1, . . . , ak, denotes the union of B(ai, `) for i = 1, . . . , k. The restriction of A
to B(ā, `) is denoted by NA(ā, `) (N for “neighbourhood”). A k-ary formula ϕ(x̄) is called
`-local if for every instance A and every k-tuple ā over adom(A), we have

ā ∈ ϕ(A) ⇔ ā ∈ ϕ(NA(ā, `)).

We say that a formula is local if it is `-local for some `.
We are now ready to state an important lemma. In modal characterisation theorems,

one considers unary FO formulas over unary and binary relations that are invariant under
bisimulation [23]. Invariance under bisimulation implies invariance under disjoint sums [15].
Additivity is the natural generalisation of invariance under disjoint sums to higher-arity
queries. In earlier work, one of us showed, by a detailed Ehrenfeucht-Fraïssé game argument,
that unary FO formulas, invariant under disjoint sums, are always local [16, Lemma 3.5].
We have carefully verified that the exact same argument also works for formulas about
higher-arity relations and with multiple free variables. We thus obtain:

I Lemma 10. Let ϕ be an additive FO formula and let q be its quantifier rank. Then ϕ is
2q-local.

By the above lemma, all subformulas of ϕ(x̄) may be assumed to talk about elements
y that belong to B(x̄, 2q). Moreover, by Lemma 5 we already know that the values of the
free variables x̄ must come from the same component. This is not quite enough, however,
to express y ∈ B(x̄, 2q) by a connected FO formula; for that we need a finite upper bound
on the diameter of the tuple of (valuations of) free variables that holds uniformly over all
instances. This is provided by the following:

I Proposition 11. Let ϕ be an additive FO formula of quantifier rank q. Assume (a1, . . . , an)
is in ϕ(A). Then dA(ai, aj) ≤ (n− 1)2q for all i, j ∈ {1, . . . , n}.

Proof. Let ā = a1, . . . , an and let ` = 2q. Suppose to the contrary that d(ai, aj) > (n− 1)`.
Then there exists a partition {I, J} of {1, . . . , n} such that d(ā|I , ā|J) > `. Here, d(ā|I , ā|J)
naturally stands for the minimum of d(ai, aj) for i ∈ I and j ∈ J .

Let us make a domain-disjoint copy f(A) of A by using a bijection f : adom(A)→ B for
some set B disjoint from adom(A). Take q additional domain-disjoint copies of A, which we
denote by q · A. Define the tuple b̄ = b1, . . . , bn by

bi =
{
ai if i ∈ I,
f(ai) if i ∈ J .

Consider the instance C = A + f(A) + q · A. Since ā ∈ ϕ(A) and ϕ is additive, also
ā ∈ ϕ(C). Using an Ehrenfeucht-Fraïssé game argument, inspired on the original proof of
Lemma 10, we obtain that b̄ ∈ ϕ(C). This contradicts the additivity of ϕ, since b̄ is a mixed
tuple with respect to C (Lemma 5). J
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Our final lemma is the following:

I Lemma 12. Let x̄ be a nonempty list of variables. Let ϕ be a formula, with free variables
among x̄, so that each quantifier in ϕ is of the form ∃y ∈ B(x̄′, `) with y /∈ x̄, and x̄′ a
nonempty subtuple of x̄. Let δ be a connected formula with exactly x̄ as free variables. Then
ϕ ∧ δ can be rewritten as a connected formula.

Proof. It is readily verified that predicates of the form d(x, y) ≤ m can be expressed by
connected formulas. The lemma can be proven by a straightforward structural induction. J

I Example 13. Let us illustrate Lemma 12 with ϕ being ∃y ∈ B(x1, x2, 3)¬S(y), and δ

being R(x1, x2). The formula ϕ ∧ δ can be rewritten into the connected formula

∃y
(
(¬S(y) ∧ d(x1, y) ≤ 3 ∧R(x1, x2)) ∨ (¬S(y) ∧ d(x2, y) ≤ 3 ∧R(x1, x2))

)
.

We now have all ingredients to prove that every additive FO formula ϕ with at least
one free variable can be rewritten as a connected formula. Let x̄ = x1, . . . , xn be the list
of free variables of ϕ. By Lemma 10, we may assume that each quantifier in ϕ is of the
form ∃y ∈ B(x̄, `). We may always assume that y /∈ x̄ simply by choosing another bound
variable. Furthermore, by Proposition 11, ϕ is equivalent to ϕ∧ δ, where δ is the conjunction
of d(x1, xi) ≤ (n− 1)` for i = 2, . . . , n. (If n = 1, set δ to x1 = x1.) Hence, by Lemma 12, ϕ
is equivalent to a connected formula as desired.

4.3 Boolean queries
The argument in the previous subsection relies on the presence of at least one free variable
to connect everything inside the formula. So, to prove Theorem 9 for sentences, we need a
separate argument. Interestingly, this argument will then only work for sentences and not
with free variables. However, in the next section, we will be able to adapt the argument at
least to guarded formulas, with or without free variables.

Recall that a simple local sentence is a sentence of the form ∃xϕ where ϕ is local [15].
By Lemma 12, such sentences can be rewritten in connected form (use x = x for δ). Since a
disjunction of connected sentences is again connected, the following proposition proves all we
need.

I Proposition 14. Every additive FO sentence can be rewritten as a finite disjunction of
simple local sentences.

Proof. Let ϕ be an additive sentence. The formula ϕ∗ that is (x = x)∧ϕ is invariant under
disjoint copies, by which we mean the following. For an instance A, let q · A denote an
instance consisting of q domain-disjoint copies of A. Then, for any a ∈ adom(A) and any q,
we have a ∈ ϕ∗(A) iff a ∈ ϕ∗(A+ q · A). Over unary and binary relations, it was already
proven that any formula in one free variable, invariant under disjoint copies, is equivalent
to a boolean combination of simple local sentences and local formulas [15, Proposition 19].
That proof goes through verbatim for higher-arity relations as well. It follows that ϕ ≡ ∃xϕ∗
is equivalent to a boolean combination of simple local sentences.

So we now assume that ϕ is a boolean combination, in disjunctive normal form, over a
finite set Σ of simple local sentences. We may assume that each clause is complete, meaning
that it either contains σ or ¬σ for every σ ∈ Σ. We may also assume that each clause is
satisfiable. We will identify ϕ with the set of its clauses.

ICDT 2019



19:8 Additive First-Order Queries

The plan of the proof is to first get rid of negations, then of conjunctions, leaving a
disjunction as desired. For the first step, let Γ denote the set of all satisfiable complete
clauses over Σ. For two clauses γ1 and γ2 in Γ, we write γ1 ≤ γ2 if every σ ∈ Σ that occurs
positively in γ1 also occurs positively in γ2. We claim the following monotonicity property:

Let γ1 ∈ ϕ and let γ2 ∈ Γ such that γ1 ≤ γ2. Then also γ2 ∈ ϕ.

In proof, let A and B be domain-disjoint instances such that A |= γ1 and B |= γ2. Since
A |= ϕ, by additivity also A+ B |= ϕ, so A+ B |= γ for some γ ∈ ϕ. We verify that γ = γ2.
Consider any σ ∈ Σ.

If σ occurs positively in γ2, then B |= σ, so also A + B |= σ. Hence, σ cannot occur
negated in γ, i.e., σ occurs positively also in γ.
If σ occurs negated in γ2, then also in γ1, so neither A |= σ nor B |= σ holds, and thus
A+ B |= ¬σ. Hence, σ cannot occur positively in γ, i.e., σ occurs negated also in γ.

By the monotonicity property, we can simplify ϕ so that it is now a disjunction of
conjunctions, each conjunction over some finite subset of Σ. We will naturally view ϕ as a
set of subsets of Σ. We may also assume that ϕ is simplified further so that every γ ∈ ϕ
is minimal, meaning that replacing γ by a strict subset γ′ ( γ would yield a sentence not
equivalent to ϕ.

Now assume, for the sake of contradiction, that some γ ∈ ϕ has at least two elements.
Then we can split γ = γ1∪γ2 in two disjoint nonempty subsets. By the minimality assumption,
there exist instances A and B such that A |= γ1 ∧ ¬ϕ, and B |= γ2 ∧ ¬ϕ. (Here, we view
each γi as the conjunction of its elements.) By additivity, A+ B |= ¬ϕ. However, clearly
A+ B |= γ, whence A+ B |= ϕ, a contradiction. J

4.4 Some consequences
Connected RA. We can give an analogue to Theorem 9 for RA instead of FO. Call an
RA expression connected if every cartesian product subexpression of the form e1 × e2 occurs
in the context of a selection subexpression of the form σi=j(e1 × e2), with i ∈ {1, . . . , n}
and j ∈ {n + 1, . . . , i + m}, where n and m are the arities of e1 and e2 respectively. In
other words, in connected RA, pure cartesian products are disallowed, but equijoins are still
allowed. Denote the queries expressible by connected RA expressions by CRA. It is clear
that CRA queries are always additive. Again we have the converse:

I Corollary 15. RA ∩ADD = CRA.

Indeed, it is well known that RA can be translated into FO, so, by Theorem 9, all we need to
show is that CFO can be translated back into CRA. The translation from FO to RA given
by Ullman [22] can be easily adapted to this effect.

Finite vs infinite. Theorem 9 holds in restriction to finite instances, as well as over all
instances, but the two settings still need to be kept separate. CFO formulas are always
additive, over all instances. This, however, should not lull the reader into believing that an
FO formula that is additive over finite instances is also additive over all instances. Indeed,
our results only show that such a formula is equivalent to a CFO formula over finite instances.

An example of an FO sentence over a binary relation R that is additive over finite
instances but not in general, expresses that R consists of two total orders, over two disjoint
sets, each order without a maximum.
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4.5 Reduction from satisfiability

It is expected that additivity of FO formulas is an undecidable property. There is actually
an extremely simple reduction from unsatisfiability. The proof of the correctness of this
reduction, while short, is not entirely trivial and given in the Appendix.

I Proposition 16. Let ϕ be an FO sentence over schema S and let S and T be two unary
relation names not in S. Then ϕ is unsatisfiable if and only if ϕ∧∃xS(x)∧∃y T (y) is additive.

Over all instances, the additive FO formulas are recursively enumerable; this actually
follows from our theorem, but can also be seen by a direct reduction from additivity to
unsatisfiability. We will see this reduction later when showing decidability of validity for
guarded formulas. Over finite instances, the additive FO formulas are clearly co-r.e.

5 The guarded case

In this section we specialise Theorem 9 to the guarded fragment. We also show that additivity
for guarded formulas is decidable and 2ExpTime-complete.

5.1 Guarded and connected formulas

We recall the syntax of the guarded fragment [5], which we denote by GF.
Every atomic formula is guarded.
If ϕ and ψ are guarded, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ.
If α is an atomic formula, ψ is a guarded formula such that all free variables of ψ occur
in α, and ȳ is a subtuple of the free variables of α, then ∃ȳ(α ∧ ψ) is guarded.

Let us denote the class of queries expressible by guarded formulas by GF, and the class
of queries expressible by formulas that are both guarded and connected by CGF. We will
establish:

I Theorem 17. GF ∩ADD = CGF.

Towards the proof, we introduce:

I Definition 18. The relaxed version of CGF, denoted by CGF+, is defined as follows:
1. Every atomic formula is in CGF+.
2. If ϕ and ψ are in CGF+, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ϕ ∧ ¬ψ, on condition that the

rules for building connected formulas (Section 4.1) are satisfied.
3. If α is an atomic formula, and ψ is a boolean combination of CGF+ formulas, all with

at least one free variable, and all free variables of ψ occur in α, then both α ∧ ψ and
∃ȳ(α ∧ ψ) belong to CGF+, with ȳ a subtuple of the free variables of α.

I Example 19. The sentence ϕ: ∃x, y (R(x, y) ∧ (S(x) ∨ T (y))) belongs to CGF+, but it is
not connected due to the subformula S(x) ∨ T (y). However, ϕ can be equivalently rewritten
as ∃x, y(R(x, y) ∧ S(x)) ∨ ∃x, y(R(x, y) ∧ T (y)) which is in CGF.

In general we note:

I Lemma 20. Every CGF+ formula is equivalent to a CGF formula.
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19:10 Additive First-Order Queries

We also introduce a subclass of CGF+ formulas, which we call the simple guarded formulas.
These are the formulas that can be generated using only syntax rules 1 and 3 of CGF+

(Definition 18). Simple guarded formulas are useful building blocks. First of all, they are
additive. They are q-local if q is their quantifier rank. Furthermore we have the following
lemma:

I Lemma 21. Every GF formula is equivalent to a boolean combination of simple guarded
formulas.

So, we can start the proof of Theorem 17 with an additive boolean combination ϕ of
simple guarded formulas, in disjunctive normal form. Within each clause ψ, we identify the
pseudopositive part as the part consisting of all positive literals, plus all negative literals with
a single free variable. The remainder of the clause is called the negative part. We will denote
the pseudopositive part of a clause ψ by ψpp and the negative part by ψneg.

We may assume that ϕ has been simplified so that it has no redundancies in the
following sense:
(A) If we would remove a subpart of the pseudopositive part of some clause, the resulting

formula would not be logically equivalent to ϕ.
(B) If we would remove an entire clause, the resulting formula would again not be logically

equivalent to ϕ.
(C) No clause contains a negated literal ¬η such that η is a sentence that logically implies ϕ.
If, after these simplifications, we end up with an empty disjunction, then the original ϕ
expresses the n-ary empty query, with n the number of free variables of ϕ. It is a simple
exercise to express this query in CGF.

The plan of the proof is as follows. Each step relies on the additivity of ϕ; the steps are
proven in the given order.
Claim 1: The pseudopositive part of each clause is connected.
Claim 2: In each clause, the free variables of the negative part are included in those of the

pseudopositive part.
Claim 3: No clause can have negated literals that are sentences.
Claim 4: All clauses have the same free variables.
The result is a CGF+ formula and we are done by Lemma 20.

5.2 Complexity of additivity for GF
We show:

I Theorem 22. Additivity of guarded formulas is 2ExpTime-complete.

Since satisfiability for guarded formulas is 2ExpTime-hard [9], the hardness follows
directly from the simple reduction from satisfiability to additivity given by Proposition 16.
Conversely, the membership in 2ExpTime is shown by a reduction from validity to unsatisfi-
ability, which we next describe.

Consider an arbitrary guarded formula ϕ over a schema S. We will construct a guarded
formula ϕ′ over a larger schema S+ such that ϕ is additive iff ϕ′ is unsatisfiable. Specifically,
S+ = S ∪ {U1, U2}, for two fresh unary relation names U1 and U2.

Satisfiability for guarded formulas of size n over relations of maximum arity a is decidable
in time 2O(n)·2a log a [10]. If n is the size of ϕ, our formula ϕ′ will have size 2O(n) but the
arity does not change. Hence, we will obtain that additivity is in 2ExpTime as desired.
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The high-level idea underlying the reduction can be sketched as follows. From ϕ, we
construct guarded formulas ϕ+ and ϕ∨ such that ϕ is additive iff ϕ+ and ϕ∨ are equivalent
over consistent instances (the definitions follow). A crucial property of consistency is that it
can be checked via a guarded sentence ϕcons. Therefore, ϕ is additive iff ϕcons |= ϕ+ ↔ ϕ∨

iff ϕcons ∧ ¬(ϕ+ ↔ ϕ∨) is unsatisfiable, while ϕcons ∧ ¬(ϕ+ ↔ ϕ∨) is guarded.

The formula ϕ+. We inductively define a translation ·+ that converts ϕ into a formula ϕ+

over S+ as follows:
1. If ϕ = R(x1, . . . , xn) for some R ∈ S, then

ϕ+ := (R(x1, . . . , xn) ∧
∧

1≤i≤n

U1(xi)) ∨ (R(x1, . . . , xn) ∧
∧

1≤i≤n

U2(xi)).

2. If ϕ = (x = y), then ϕ+ := (x = y).
3. The translation ·+ commutes with the boolean connectives, i.e., (ψ ∧ χ)+ := ψ+ ∧ χ+,

(ψ ∨ χ)+ := ψ+ ∨ χ+, and (¬ψ)+ := ¬ψ+.
4. If ϕ = ∃y ψ, then ϕ+ := ∃y ψ+.

Strictly speaking, the formula ϕ+ may not be guarded. However, it is readily transformed
into a guarded formula of size 2O(|ϕ|), where |ϕ| denotes the size of ϕ. In what follows, for
brevity, we write ϕ+ for the exponentially sized rewritten guarded formula.

The formula ϕ∨. For k = 1, 2, we define ϕk as the formula obtained from ϕ by relativising
all quantifiers and free variables to Uk. The latter means that quantifiers are of the form
∃x ∈ Uk, and for every free variable x we have a conjunct Uk(x). A guarded existential
formula ∃y1, . . . , yl(α ∧ ψ) can be relativised as ∃y1, . . . , yl(α ∧ Uk(y1) ∧ · · · ∧ Uk(yl) ∧ ψ),
which is still guarded. The formula ϕ∨ is then defined as the (guarded) formula ϕ1 ∨ ϕ2.

Consistency. An S+-instance A+ is consistent if it admits a partition (A1,A2) such that:
1. A1 is an (S ∪ {U1})-instance and A2 is an (S ∪ {U2})-instance.
2. adom(A1) ∩ adom(A2) = ∅.
3. {a | U1(a) ∈ A1} = adom(A1) and {b | U2(b) ∈ A2} = adom(A2).

So, consistent instances describe pairs of domain-disjoint instances. Applied to a consistent
instance (A1,A2), we see that ϕ+ returns ϕ(A1 ∪ A2), while ϕ∨ returns ϕ(A1) ∪ ϕ(A2).
Hence we obtain:

I Lemma 23. The following are equivalent:
1. ϕ is additive.
2. For every consistent S+-instance A+, ϕ+(A+) = ϕ∨(A+).

It remains to show that consistency can be checked via a guarded formula, which will
give us the desired reduction. In fact, consistency can be checked via the formula

ϕcons := ¬∃x(U1(x) ∧ U2(x)) ∧ ∃xU1(x) ∧ ∃xU2(x) ∧ ψ1 ∧ ψ2 ∧ χ,

where, for k = 1, 2, and assuming that S = {R1, . . . , Rn} (and Ri is ni-ary),

ψk := ∀x (Uk(x)→
n∨

i=1
∃y1, . . . , yni−1(Ri(x, y1, . . . , yni−1)

∨Ri(y1, x, y2, . . . , yni−1)
∨ · · · ∨Ri(y1, . . . , yni−1, x))),
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and

χ :=
∧

n
i=1∀x1, . . . , xni

(Ri(x1, . . . , xni
)→ ((U1(x1) ∧ · · · ∧ U1(xni

))
∨ (U2(x1) ∧ · · · ∧ U2(xni

)))

The above formula can be easily transformed in a guarded formula. We now obtain, as
announced, that ϕ is additive if and only if ϕcons |= ϕ+ ↔ ϕ∨.

I Remark. At the end of Section 4.4 we gave an example of an FO formula additive over
finite instances but not over all instances. Since GF has the finite model property, the above
reduction to unsatisfiability implies that a GF formula that is additive over finite instances
is automatically additive over all instances.

6 The positive-existential case

In this final section, we concentrate on queries expressed via positive-existential (PE) first-
order formulas, i.e., formulas that use only ∧, ∨, and existential quantification. As always
we also use PE to denote the class of all queries expressible in this manner.

It is well-known [1] that PE has the same expressive power as the class of unions of
conjunctive queries (UCQ), i.e., disjunctive FO-formulas of the form

∨
1≤i≤n ϕi(x̄), with

ϕi(x̄) = ∃ȳ (αi,1 ∧ · · · ∧ αi,mi), where each αi,j is an atomic formula. Formulas of the form
ϕi(x̄) are called conjunctive queries. In earlier work [6], two of us already showed that
UCQ ∩ADD = CUCQ, where CUCQ refers to the connected UCQs. As a consequence, also
PE ∩ADD = CPE, where CPE refers to the connected PE formulas.

In this section, we focus on the complexity of deciding additivity for PE formulas. For
UCQs, additivity was already shown to be NP-complete [6]. Unfortunately, in general, it
takes exponential time to convert a PE formula into a union of conjunctive queries. Thus,
the naive algorithm provides only an exponential time upper bound, which is not optimal.
We can, however, show that our problem lies at the second level of the polynomial hierarchy:

I Theorem 24. Additivity of PE formulas is ΠP
2 -complete. The lower bound holds even over

unary and binary relations.

Towards the proof, let us first introduce some useful notions. A component of a conjunctive
query ϕi(x̄) = ∃ȳ (α1 ∧ · · · ∧ αn) is a connected formula ψ = ∃ȳ (αi1 ∧ · · · ∧ αim

), where
{i1, . . . , im} ⊆ {1, . . . , n}, such that, for every j ∈ {1, . . . , n} \ {i1, . . . , im}, the formula
αi1 ∧ · · · ∧ αim ∧ αj is not connected anymore. Given two formulas ϕ(x̄) and ψ(x̄) over
a schema S, we say that ϕ is contained in ψ, written ϕ ⊆ ψ, if ϕ(A) ⊆ ψ(A) for every
S-instance A. We need the following:

I Lemma 25 ([6]). Consider a union of conjunctive queries ϕ(x̄) of the form
∨

1≤i≤n ϕi(x̄).
The following are equivalent:

ϕ is additive;
for each i ∈ {1, . . . , n}, there exists a component ψ(x̄) of ϕi(x̄) such that ψ ⊆ ϕ.

Consider an arbitrary PE-formula ϕ. Even though we cannot efficiently convert ϕ into an
equivalent union of conjunctive queries

∨
1≤i≤n ϕi, we can non-deterministically construct a

disjunct ϕi in polynomial time. This fact, together with Lemma 25, leads to the following
non-deterministic algorithm for checking whether ϕ is not additive:
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1. Non-deterministically construct a disjunct ϕi of the union of conjunctive queries obtained
after converting ϕ into an equivalent union of conjunctive queries.

2. Compute the set C of all the components of ϕi.
3. If, for each ψ ∈ C, it holds that ψ 6⊆ ϕ, then accept; otherwise, reject.

It is easy to verify, due to Lemma 25, that ϕ is not additive iff the above procedure
accepts. Observe now that steps 1 and 2 are feasible in polynomial time. Finally, during
step 3, we need to check polynomially many times for non-containment of a conjunction of
atomic formulas, i.e., a conjunctive query, into a PE-formula. The latter is feasible in coNP.
Thus, the obtained upper bound for non-additivity is NPNP = ΣP

2 , as needed.
It remains to establish that additivity for PE-formulas is ΠP

2 -hard. This is shown by a
reduction from the problem of containment for PE-sentences, i.e., given two PE-sentences
ϕ and ψ, to decide whether ϕ ⊆ ψ, which is ΠP

2 -hard [19]. Actually, this problem remains
ΠP

2 -hard even if the left-hand side formula is connected, and the relation symbols have arity
at most two; this is implicit from the work by Bienvenu et al. [7].

Given a connected PE-formula ϕ, and an arbitrary PE-formula ψ, we can show that
ϕ ⊆ ψ iff the PE-formula ϕ ∧ P (xϕ) ∧ ψ is additive, where xϕ is an existentially quantified
variable in ϕ, and P a fresh relation name. This shows that additivity for PE-formulas is
ΠP

2 -hard even for unary and binary relations.

7 Conclusion

We conclude with a few directions for further research.
1. Investigate the complexity, in terms of formula length, of the shortest connected formula

equivalent to an additive formula.
2. Our reduction from additivity to unsatisfiability for GF formulas is exponential. However,

the GF formula that is produced has exponential length only to get rid of disjunctive
guards. If disjunctive guards would be allowed, the reduction would be polynomial and
would preserve bounded arity. We conjecture that additivity for GF formulas of bounded
arity is actually in ExpTime, and plan to investigate this in the near future.

3. Also, our reduction from additivity to unsatisfiability works in general, for FO formulas,
and for other reasonable logics. It is interesting to apply the reduction to other decidable
logics, and see if the reduction produces a formula in the same logic. For example, our
reduction also works for FO2, thus additivity for FO2 formulas is decidable.

4. Give a short classical model-theoretic proof, e.g., involving the compactness theorem,
that every FO formula, additive over all structures, is equivalent to a CFO formula.

5. Our version for additivity is rather strict in the context of distributed computation.
Considering classes of queries that distribute over other kinds of partitions for instances
is an interesting line for future research.
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