Convex Polygons in Cartesian Products

Jean-Lou De Carufel
School of Electrical Engineering and Computer Science, University of Ottawa, Canada
jdecaruf@uottawa.ca

Adrian Dumitrescu
Department of Computer Science, University of Wisconsin-Milwaukee, USA
dumitres@uwm.edu

Wouter Meulemans
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
w.meulemans@tue.nl

Tim Ophelders
Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
ophelder@egr.msu.edu

Claire Pennarun
LIRMM, CNRS & Université de Montpellier, France
claire.pennarun@gmail.com

Csaba D. Tóth
Department of Mathematics, California State University Northridge, Los Angeles, CA, USA
Department of Computer Science, Tufts University, Medford, MA, USA
csaba.toth@csun.edu

Sander Verdonschot
School of Computer Science, Carleton University, Ottawa, ON, Canada
sander@cg.scs.carleton.ca

Abstract

We study several problems concerning convex polygons whose vertices lie in a Cartesian product of two sets of n real numbers (for short, grid). First, we prove that every such grid contains a convex polygon with $\Omega(\log n)$ vertices and that this bound is tight up to a constant factor. We generalize this result to d dimensions (for a fixed $d \in \mathbb{N}$), and obtain a tight lower bound of $\Omega(\log^{d-1} n)$ for the maximum number of points in convex position in a d-dimensional grid. Second, we present polynomial-time algorithms for computing the longest convex polygonal chain in a grid that contains no two points with the same x- or y-coordinate. We show that the maximum size of such a convex polygon can be efficiently approximated up to a factor of 2. Finally, we present exponential bounds on the maximum number of convex polygons in these grids, and for some restricted variants. These bounds are tight up to polynomial factors.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Erdős–Szekeres theorem, Cartesian product, convexity, polyhedron, recursive construction, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.22

Related Version A full version of this paper is available at https://arxiv.org/abs/1812.11332.

Funding Wouter Meulemans: Partially supported by the Netherlands eScience Center (NLeSC, 027.015.G02)
Csaba D. Tóth: Supported in part by the NSF awards CCF-1422311 and CCF-1423615.

Acknowledgements This work was initiated at the 2017 Fields Workshop on Discrete and Computational Geometry (Carleton University, Ottawa, ON, July 31–August 4, 2017).
1 Introduction

Can a convex polygon P in the plane be reconstructed from the projections of its vertices to the coordinate axes? Assuming that no two vertices of P share the same x- or y-coordinate, we arrive at the following problem: given two sets, X and Y, each containing n real numbers, does the Cartesian product $X \times Y$ support a convex polygon with n vertices? We say that $X \times Y$ contains a polygon P if every vertex of P is in $X \times Y$; and $X \times Y$ supports P if it contains P and no two vertices of P share an x- or y-coordinate. For short, we call the Cartesian product $X \times Y$ an $n \times n$ grid.

Not every $n \times n$ grid supports a convex n-gon. This is the case already for $n=5$ (Figure 1). Several interesting questions arise: can we decide efficiently whether an $n \times n$-grid supports a convex n-gon? How can we find the largest k such that it supports a convex k-gon? What is the largest k such that every $n \times n$ grid supports a convex k-gon? How many convex polygons does an $n \times n$ grid support, or contain? We initiate the study of these questions for convex polygons, and their higher dimensional variants for convex polyhedra.

Our results. We first show that every $n \times n$ grid supports a convex polygon with $(1-o(1)) \log n$ vertices; this bound is tight up to a constant factor: there are $n \times n$ grids that do not support convex polygons with more than $4(\lceil \log n \rceil + 1)$ vertices. We generalize our upper and lower bounds to higher dimensions, and show that every d-dimensional Cartesian product $\prod_{i=1}^{d} Y_i$, where $|Y_i|=n$ and d is constant, contains $\Omega(\log^{d-1} n)$ points in convex position; this bound is also tight apart from constant factors (Section 2). Next, we present polynomial-time algorithms to find a maximum supported convex polygon that is x- or y-monotone. We show how to efficiently approximate the maximum size of a supported convex polygon up to a factor of two (Section 3). Finally, we present tight asymptotic bounds for the maximum number of convex polygons supported by an $n \times n$ grid (Section 4).

Related work. Erdős and Szekeres proved, as one of the first Ramsey-type results in combinatorial geometry [16], that for every $k \in \mathbb{N}$, a sufficiently large point set in the plane in general position contains k points in convex position. The minimum cardinality of a point set that guarantees k points in convex position is known as the Erdős–Szekeres number, $f(k)$. They proved that $2^{k-2} + 1 \leq f(k) \leq \left(\frac{k-2}{2}\right) + 1 = 4^{k-2-o(1)}$, and conjectured that the lower bound is tight [14]. The current best upper bound, due to Suk [29], is $f(k) \leq 2^{k(1+o(1))}$. In other words, every set of n points in general position in the plane contains $(1-o(1)) \log n$ points in convex position, and this bound is tight up to lower-order terms.

In dimension $d \geq 3$, the asymptotic growth rate of the Erdős–Szekeres number is not known. By the Erdős–Szekeres theorem, every set of n points in general position in \mathbb{R}^d contains $\Omega(\log n)$ points in convex position (it is enough to find points whose projections onto a generic plane are in convex position). For every constant $d \geq 2$, Károlyi and Valtr [19] and Valtr [30] constructed n-element sets in general position in \mathbb{R}^d in which no more than $O(\log^{d-1} n)$ points are in convex position. Both constructions are recursive, and one of them is related to high-dimensional Horton sets [30]. These bounds are conjectured to be optimal apart from constant factors. Our results establish the same $O(\log^{d-1} n)$ upper bound for Cartesian products $\prod_{i=1}^{d} Y_i$, where $|Y_i|=n$, for which it is tight apart from constant factors. However our results do not improve the bounds for points in general position.

1 Throughout this paper all logarithms are in base 2.
Algorithmically, one can find a largest convex cap in a given set of \(n \) points in \(\mathbb{R}^2 \) in \(O(n^2 \log n) \) time by dynamic programming [10], and a largest subset in convex position in \(O(n^3) \) time [7, 10]. The same approach can be used for counting the number of convex polygons contained in a given point set [20]. While this approach applies to grids, it is unclear how to include the restriction that each coordinate is used at most once. On the negative side, finding a largest subset in convex position in a point set in \(\mathbb{R}^d \) for \(d \geq 3 \) was recently shown to be NP-hard [15].

There has been significant interest in counting the number of convex polygons in various point sets. Answering a question of Hammer, Erdős [13] proved that every set of \(n \) points in general position in \(\mathbb{R}^2 \) contains \(\exp(\Theta(\log^2 n)) \) subsets in convex position, and this bound is the best possible. Bárány and Pach [2] showed that the number of convex polygons in an \(n \times n \) section of the integer lattice is \(\exp(\Theta(n^{2/3})) \). Bárány and Vershik [3] generalized this bound to \(d \)-dimensions and showed that there are \(\exp\left(\Theta(n^{(d−1)/(d+1)})\right) \) convex polytopes in an \(n \times \cdots \times n \) section of \(\mathbb{Z}^d \). Note that the exponent is sublinear in \(n \) for every \(d \geq 2 \). We prove that an \(n \times n \) Cartesian product can contain \(\exp(\Theta(n)) \) convex polygons, significantly more than integer grids; our bounds are tight up to polynomial factors.

Motivated by integer programming and geometric number theory, lattice polytopes (whose vertices are in \(\mathbb{Z}^d \)) have been intensely studied; refer to [1, 4]. However, results for lattices do not extend to arbitrary Cartesian products. Recently, several deep results have been established for Cartesian products in incidence geometry and additive combinatorics [23, 24, 25, 28], while the analogous statements for points sets in general position remain elusive.

Definitions. A polygon \(P \) in \(\mathbb{R}^2 \) is convex if all of its internal angles are strictly smaller than \(\pi \). A point set in \(\mathbb{R}^2 \) is in convex position if it is the vertex set of a convex polygon; and it is in general position if no three points are collinear. Similarly, a polyhedron \(P \) in \(\mathbb{R}^d \) is convex if it is the convex hull of a finite set of points. A point set in \(\mathbb{R}^d \) is in convex position if it is the vertex set of a convex polytope; and it is in general position if no \(d + 1 \) points lie on a hyperplane. In \(\mathbb{R}^d \), we say that the \(x_d \)-axis is vertical, hyperplanes orthogonal to \(x_d \) are horizontal, and understand the above-below relationship with respect to the \(x_d \)-axis. Let \(\mathbf{e}_d \) be a standard basis vector parallel to the \(x_d \)-axis. A point set \(P \) in \(\mathbb{R}^d \) is full-dimensional if no hyperplane contains \(P \).

We consider special types of convex polygons. Let \(P \) be a convex polygon with vertices \((x_1, y_1), \ldots, (x_k, y_k)\) in clockwise order. We say that \(P \) is a convex cap if the \(x \)- or \(y \)-coordinates are strictly monotonic, and a convex chain if both the \(x \)- and \(y \)-coordinates are strictly monotonic. We distinguish four types of convex caps (resp., chains) based on the monotonicity of the coordinates as follows:

- **convex caps** come in four types \(\ominus, \ominus, \ominus, \ominus \). We have
 - \(P \in \ominus \) if and only if \((x_i)_{i=1}^k \) strictly increases;
 - \(P \in \ominus \) if and only if \((y_i)_{i=1}^k \) strictly increases;
 - \(P \in \ominus \) if and only if \((x_i)_{i=1}^k \) strictly decreases;
 - \(P \in \ominus \) if and only if \((y_i)_{i=1}^k \) strictly decreases.
- **convex chains** come in four types \(\omastar, \omastar, \omastar, \omastar \). We have
 - \(\mathcal{C} = \ominus \cap \ominus \), \(\ominus = \ominus \cap \ominus \), \(\ominus = \ominus \cap \ominus \), \(\ominus = \ominus \cap \ominus \).

Initial observations. It is easy to see that for \(n = 3, 4 \), every \(n \times n \) grid supports a convex \(n \)-gon. However, there exists a \(5 \times 5 \) grid that does not support any convex pentagon (cf. Fig. 1). Interestingly, every \(6 \times 6 \) grid supports a convex pentagon.

Lemma 1. Every \(6 \times 6 \) grid \(X \times Y \) supports a convex polygon of size at least 5.
Convex Polygons in Cartesian Products

Let $X' = X \setminus \{\min(X), \max(X)\}$ and $Y' = Y \setminus \{\min(Y), \max(Y)\}$. The 4×4 grid $X' \times Y'$ supports a convex chain P' of size 3 between two opposite corners of $X' \times Y'$. Then one x-coordinate $x' \in X'$ and one y-coordinate $y' \in Y'$ are not used by P'. Without loss of generality, assume that $P' \in \mathcal{C}$. Then the convex polygon containing the points of P' and $(x', \min(Y))$ and $(\max(X), y')$ is a supported convex polygon of size 5 on $X \times Y$.

2 Extremal bounds for convex polytopes in Cartesian products

2.1 Lower bounds in the plane

In this section, we show that for every $n \geq 3$, every $n \times n$ grid supports a convex polygon with $\Omega(\log n)$ vertices. The results on the Erdős-Szekeres number cannot be used directly, since they crucially use the assumption that the given set of points is in general position. An $n \times n$ section of the integer lattice is known to contain $\Theta(n)$ points in general position [12], and this number is conjectured to be $\frac{\sqrt{3}}{3} n(1 + o(1))$ [17, 31]. However, this result does not apply to arbitrary Cartesian products. It is worth noting that higher dimensional variants for the integer lattice are poorly understood: it is known that an $n \times n \times n$ section of \mathbb{Z}^3 contains $\Theta(n^2)$ points no three of which are collinear [22], but no similar statements are known in higher dimensions. We use a recent result from incidence geometry.

Lemma 2. (Payne and Wood [21]) Every set of N points in the plane with at most ℓ collinear, $\ell \leq O(\sqrt{N})$, contains a set of $\Omega(\sqrt{N} / \log \ell)$ points in general position.

Lemma 3. Every $n \times n$ grid supports a convex polygon of size $(1 - o(1)) \log n$.

Proof. Every $n \times n$ grid contains a set of $\Omega(\sqrt{n^2 / \log n}) = \Omega(n / \sqrt{\log n})$ points in general position by applying Lemma 2 with $N = n^2$ and $\ell = n$. Discarding points with the same x- or y-coordinate reduces the size by a factor at most $\frac{1}{2}$, so this asymptotic bound also holds when coordinates in X and Y are used at most once. By Suk’s result [29], the grid supports a convex polygon with at least $(1 - o(1))(\log(n / \sqrt{\log n})) = (1 - o(1)) \log n$ vertices.

2.2 Upper bounds in the plane

For the upper bound, we construct $n \times n$ Cartesian products that do not support large convex chains. For $n = 8$, such a grid is depicted in Figure 2.

Lemma 4. For every $n \in \mathbb{N}$, there exists an $n \times n$ grid that contains at most $4(\lceil \log n \rceil + 1)$ points in convex position.

Proof. Let $g(n)$ be the maximum integer such that for all n-element sets $X, Y \subset \mathbb{R}$, the grid $X \times Y$ supports a convex polygon of size $g(n)$; clearly $g(n)$ is nondecreasing. Let k be the minimum integer such that $n \leq 2^k$; thus $\lceil \log n \rceil \leq k$ and $g(n) \leq g(2^k)$. We show that $g(2^k) \leq 4(k + 1)$ and thereby establish that $g(n) \leq 4(k + 1)$.
Assume w.l.o.g. that $n = 2^k$, and let $X = \{0, \ldots, n-1\}$. For a k-bit integer m, let m_i be the bit at its i-th position, such that $m = \sum_{i=0}^{k-1} m_i 2^i$. Let $Y = \{\sum_{i=0}^{k-1} m_i (2n)^i \mid 0 \leq m \leq n-1\}$ (see Fig. 2). Both X and Y are symmetric: $X = \{\max(X) - x \mid x \in X\}$ and $Y = \{\max(Y) - y \mid y \in Y\}$. Thus, it suffices to show that no convex chain $P \in \mathcal{P}$ of size greater than $2k + 1$ exists.

Consider two points, $p = (x, y)$ and $p' = (x', y')$, in $X \times Y$ such that $x < x'$ and $y < y'$. Assume $y = \sum_{i=0}^{k-1} m_i (2n)^i$ and $y' = \sum_{i=0}^{k-1} m_i' (2n)^i$. The slope of the line spanned by p and p' is $\text{slope}(p, p') = \sum_{i=0}^{k-1} (m_i' - m_i)(2n)^i / (x' - x)$. Let j be the largest index such that $m_j \neq m_j'$. Then $y < y'$ implies $m_j < m_j'$, and we can bound the slope as follows:

$$\text{slope}(p, p') \leq \frac{\sum_{i=0}^{j-1} (2n)^i}{x' - x} \leq \frac{\sum_{i=0}^{j-1} (2n)^i}{2n - 1} = \frac{(2n)^{j+1} - 1}{2n - 1} < 2 \cdot (2n)^{j-1},$$

$$\text{slope}(p, p') \geq \frac{(2n)^j - \sum_{i=0}^{j-1} (2n)^i}{x' - x} > \frac{(2n)^j - 2(2n)^{j-1}}{n - 1} = 2 \cdot (2n)^{j-1},$$

Hence, $\text{slope}(p, p') \in I_j = (2 \cdot (2n)^{j-1}, 2 \cdot (2n)^j)$. Let us define the family of intervals $I_0, I_1, \ldots, I_{k-1}$ analogously, and note that these intervals are pairwise disjoint. Suppose that some convex chain $P \in \mathcal{P}$ contains more than $k + 1$ points. Since the slopes of the first $k + 1$ edges of P decrease monotonically, by the pigeonhole principle, there must be three consecutive vertices $p = (x, y)$, $p' = (x', y')$, and $p'' = (x'', y'')$ of P such that both $\text{slope}(p, p')$ and $\text{slope}(p', p'')$ are in the same interval, say I_j. Assume that $y = \sum_{i=0}^{k-1} m_i (2n)^i$, $y' = \sum_{i=0}^{k-1} m_i' (2n)^i$, and $y'' = \sum_{i=0}^{k-1} m_i'' (2n)^i$. Then j is the largest index such that $m_j \neq m_j'$, and also the largest index such that $m_j' \neq m_j''$. Because $m < m' < m''$, we have $m_j < m_j' < m_j''$, which is impossible since each of m_j, m_j', and m_j'' is either 0 or 1.
Hence, \(X \times Y \) does not contain any convex chain in \(r' \) of size greater than \(k+1 \). Analogously, every convex chain in \(\gamma, \varphi, \) or \(\tau \) has at most \(k+1 \) vertices. Consequently, \(X \times Y \) contains at most \(4(k+1) \) points in convex position.

2.3 Upper bounds in higher dimensions

We construct Cartesian products in \(\mathbb{R}^d \), for \(d \geq 3 \), that match the best known upper bound \(O(\log^{d-1} n) \) for the Erdős–Szekeres numbers in \(d \)-dimensions for points in general position.

Our construction generalizes the ideas from the proof of Lemma 4 to \(d \)-space.

Theorem 5. Let \(d \geq 2 \) be fixed. For every \(n \geq 2 \), there exist \(n \)-element sets \(Y_i \subseteq \mathbb{R} \) for \(i = 1, \ldots, d \), such that the Cartesian product \(Y = \prod_{i=1}^d Y_i \) contains at most \(O(\log^{d-1} n) \) points in convex position.

Proof. We construct point sets recursively. For \(d = 2 \), the result follows from Lemma 4. For \(d \geq 3 \) and \(0 \leq i \leq j \), we define \(S_d(i, j) \) as a Cartesian product of \(d \) sets, where the first \(d-1 \) sets have \(2^j \) elements and the last set has \(2^i \) elements. We then show that \(S_d(i, j) \) does not contain the vertex set of any full-dimensional convex polyhedron with more than \(2^{d-1}i \cdot j^{d-2} \) vertices (there is no restriction on lower-dimensional convex polyhedra).

To initialize the recursion, we define boundary values as follows: For every \(j \geq 0 \), let \(S_d(j, j) \) be the \(2^j \times 2^j \) grid defined in the proof of Lemma 4 that does not contain more than \(4(j+1) \) points in convex position. Note that every line that contains 3 or more points from \(S_d(j, j) \) is axis-parallel (this property was not needed in the proof of Lemma 4). Assume now that \(d \geq 3 \), and \(S_d(j, j) \) has been defined for all \(j \geq 0 \); and for all \(k = 1, \ldots, d \), every \(k \)-dimensional flat containing \(2^k + 1 \) or more points is parallel to at least one coordinate axis. We now construct \(S_d(i, j) \) for all \(0 \leq i \leq j \) as follows.

Let \(S_d(0, j) = S_{d-1}(j, j) \times \{0\} \). For \(i = 1, \ldots, j \), we define \(S_d(i, j) \) as the disjoint union of two translates of \(S_d(i-1, j) \). Specifically, let \(S_d(i, j) = A \cup B \), where \(A = S_d(i-1, j) \) and \(B = A + \lambda e_d \), where \(\lambda > 0 \) is sufficiently large (as specified below) and algebraically independent from the coordinates of \(S_d(i-1, j) \), and for all \(k = 1, \ldots, d \), every \(k \)-dimensional flat containing \(2^k + 1 \) or more points is parallel to at least one coordinate axis.

Figure 3 A polyhedron \(\text{conv}(P) \) in \(\mathbb{R}^3 \), whose projection \(\text{conv}(P)^{proj} \) is a rectangle. Seven points in \(P \) are projected onto the four vertices of \(\text{conv}(P)^{proj} \). Overall the silhouette of \(P \) contains 12 points. Red (blue) vertices are upper (lower); the purple point is both upper and lower.

Let \(P \subseteq S_d(i, j) \) be a full-dimensional set in convex position. The orthogonal projection of \(\text{conv}(P) \) to the horizontal hyperplane \(x_d = 0 \) is a convex polytope in \(\mathbb{R}^{d-1} \) that we denote by \(\text{conv}(P)^{proj} \); refer to Fig. 3. The silhouette of \(P \) is the subset of vertices whose orthogonal
projection to \(x_d = 0 \) lies on the boundary of \(\text{conv}(P)^{\text{proj}} \). Since no three points in \(P \) are collinear, at most two points in \(P \) are projected to the same point. A point \(p \in P \) is an upper (resp., lower) vertex if \(P \) lies in the closed halfspace below (resp., above) some tangent hyperplane of \(\text{conv}(P) \) at \(p \) (a point in \(P \) may be both upper and lower vertex).

We prove, by double induction on \(d \) and \(i \), the following:

\textbf{Claim 6.} If \(P \subset S_d(i,j) \) is a full-dimensional set in convex position, then \(P \) contains at most \(2^{d(d-1)} \cdot i \cdot j^{d-2} \) upper (resp., lower) vertices of \(\text{conv}(P) \).

For \(d = 2 \) and \(i = j \), this holds by definition (cf. Lemma 4). For \(i = 0 \), the set \(S_d(0,j) = S_{d-1}(j,j) \times \{0\} \) lies in a horizontal hyperplane in \(\mathbb{R}^d \), and so it is not full-dimensional, hence the claim vacuously holds. By induction, \(S_{d-1}(j,j) \) contains at most \(2^{(d-1)(d-2)} \cdot j \cdot j^{d-3} \) upper (resp., lower) vertices in \(\mathbb{R}^{d-1} \), hence \(S_d(0,j) \) has at most \(2 \cdot 2^{(d-1)(d-2)} \cdot j \cdot j^{d-3} \) extreme points in \(\mathbb{R}^d \). Assume that \(d \geq 3 \), \(1 = i \leq j \), and the claim holds for \(S_{d-1}(j,j) \). We prove the claim for \(S_d(i,j) \). The set \(S_d(1,j) \) is the disjoint union of \(A = S_d(0,j) \) and \(B = S_d(0,j) + x_e^j \). Every upper (resp., lower) vertex of \(S_d(1,j) \) is an extreme vertex in \(A \) or \(B \), hence \(S_d(1,j) \) contains at most \(4 \cdot 2^{(d-1)(d-2)} \cdot j^{d-2} \geq 2^{d^2-3d+4} \cdot j^{d-2} \leq 2^{d^2-d}, \quad 1 \cdot j^{d-2} \) upper (resp., lower) vertices, as required, where we used that \(d \geq 3 \).

In the general case, we assume that \(d \geq 3 \), \(2 \leq i \leq j \), and the claim holds for \(S_{d-1}(j,j) \) and \(S_d(i-1,j) \). We prove the claim for \(S_d(i,j) \). Recall that \(S_d(i,j) \) is the disjoint union of two translates of \(S_d(i-1,j) \), namely \(A = S_d(i-1,j) \) and \(B = S_d(i-1,j) + x_e^j \). Let \(P \subset S_d(i,j) \) be a full-dimensional set in convex position. We partition the upper vertices in \(P \) as follows. Let \(P_0 \subset P \) be the set of upper vertices whose orthogonal projections to \(x_d = 0 \) are vertices of \(\text{conv}(P)^{\text{proj}} \). For \(k = 1, \ldots, d-1 \), let \(P_k \subset P \) be the set of upper vertices whose orthogonal projections to \(x_d = 0 \) lie in the relative interior of a \(k \)-face of \(\text{conv}(P)^{\text{proj}} \). By construction, only axis-aligned faces can contain interior points. For the \((d-1)\)-dimensional polytope \(\text{conv}(P)^{\text{proj}} \), the axis-aligned \(k \)-faces \((k = 1, \ldots, d-1)\) can be partitioned into \(\binom{d-1}{k} \) equivalence classes, based on the set of parallel coordinate axes.

The orthogonal projection of \(S_d(i,j) \) to \(x_d = 0 \) is \(S_{d-1}(j,j) \), and the orthogonal projection of \(P_0 \), denoted \(P_0^{\text{proj}} \), is the vertex set of a \((d-1)\)-dimensional convex polyhedron in \(S_{d-1}(j,j) \). By induction, \(|P_0| \leq 2 \cdot 2^{(d-1)(d-2)} \cdot j \cdot j^{d-3} = 2^{d^2-3d+3}j^{d-2} \). We show the following.

\textbf{Claim 7.} For every axis-aligned face \(F \) of \(\text{conv}(P)^{\text{proj}} \), the set of upper vertices that project to the interior of \(F \) is contained in either \(A \) or \(B \).

Let \(F \) be an axis-aligned \(k \)-face of \(\text{conv}(P)^{\text{proj}} \) for \(k \in \{1, 2, \ldots, d-1\} \). Let \(P(F) \subset P \) be the set of upper vertices whose orthogonal projections lie in the interior of \(F \), and let \(P(\partial F) \) be the set of upper vertices whose orthogonal projections lie in the boundary of \(F \). Let \(P(\partial F)^{\text{proj}} \) be the orthogonal projection of \(P(\partial F) \) to the hyperplane \(x_d = 0 \). Consider the point set \(P' = P(\partial F)^{\text{proj}} \cup P(F) \), and observe that if \(P(F) \neq \emptyset \), then it is a vertex set of a \((k+1)\)-dimensional polytope in which all vertices are upper. It remains to show that \(P(F) \subset A \) or \(P(F) \subset B \). Suppose, for the sake of contradiction, that \(P(F) \) contains points from both \(A \) and \(B \). Let \(p_a \) be a vertex in \(P(F) \) with the maximum \(x_d \)-coordinate. The 1-skeleton of \(\text{conv}(P') \) contains a \(x_d \)-monotonically decreasing path from \(p_a \) to an \(x_d \)-minimal vertex in \(P' \). Let \(p_b \) be the neighbor of \(p_a \) along such a path. Then \(p_b \in B \) by the choice of \(p_a \). Every hyperplane containing \(p_a \) and \(p_b \), in particular the tangent hyperplane of \(P' \) containing the edge \(p_ap_b \), partitions \(P(\partial F)^{\text{proj}} \), which is a contradiction.
We can now finish the proof of Claim 6. By induction on $S_d(i-1, j)$, we have

$$|P_k| \leq \binom{d-1}{k} \cdot 2^{(d-k+1)(d-k-2)+1} j^{d-k-1} \cdot 2^{k(k-1)} \cdot (i-1) \cdot j^{k-1}$$

$$\leq \binom{d-1}{k} \cdot 2^{(d-1)(d-2)} \cdot (i-1) \cdot j^{d-2}.$$

Altogether, the number of upper vertices is

$$\sum_{k=0}^{d-1} |P_k| \leq 2^{d^2-3d+3} j^{d-2} + \sum_{k=1}^{d-1} \binom{d-1}{k} 2^{(d-1)(d-2)} \cdot (i-1) \cdot j^{d-2} < 2^{d(d-1)} \cdot i \cdot j^{d-2},$$

as required, where we used the binomial theorem and the inequality $d \geq 3.$

2.4 Lower bounds in higher dimensions

The proof technique in Section 2.1 is insufficient for establishing a lower bound of $\Omega(\log^{d-1} n)$ for $d \geq 3$. Whereas a d-dimensional $n \times \ldots \times n$ grid contains $\Omega(n^d)$ points in general position for some $\delta = \delta(d) > 0$ [6], the current best lower bound on the number of points in convex position in any set of n points in general position in \mathbb{R}^d is $\Omega(\log n)$; the conjectured value is $\Omega(\log^{d-1} n)$. Instead, we rely on the structure of Cartesian products and induction on d.

Our main result in this section is the following.

Theorem 8. Every d-dimensional Cartesian product $\prod_{i=1}^{d} Y_i$, where $|Y_i| = n$ and d is fixed, contains $\Omega(\log^{d-1} n)$ points in convex position.

We say that a strictly increasing sequence of real numbers $A = (a_1, \ldots, a_n)$, has the monotone differences property (for short, A is MD), if either $a_{i+1} - a_i > a_i - a_{i-1}$, or $a_{i+1} - a_i < a_i - a_{i-1}$ for $i = 2, \ldots, n-1$. Furthermore, the sequence A is r-MD for some $r > 1$ if either $a_{i+1} - a_i \geq r (a_i - a_{i-1})$, or $a_{i+1} - a_i \leq (a_i - a_{i-1})/r$ for $i = 2, \ldots, n-1$.

A finite set $X \subseteq \mathbb{R}$ is MD (resp., r-MD) if its elements arranged in increasing order form an MD (resp., r-MD) sequence. These sequences are intimately related to convexity: a strictly increasing sequence $A = (a_1, \ldots, a_n)$ is MD if and only if there exists a monotone (increasing or decreasing) convex function $f : \mathbb{R} \to \mathbb{R}$ such that $a_i = f(i)$ for all $i = 1, \ldots, n$. MD sets have been studied in additive combinatorics [11, 18, 23, 27].

We first show that every n-element set $X \subseteq \mathbb{R}$ contains an MD subset of size $\Omega(\log n)$, and this bound is the best possible (Lemma 9). In contrast, every n-term arithmetic progression contains an MD subsequence of $\Theta(\sqrt{n})$ terms: for example $(0, \ldots, n-1)$ contains the subsequence $(i^2 : i = 0, \ldots, \lfloor \sqrt{n-1} \rfloor)$. We then show that for constant $d \geq 2$, the d-dimensional Cartesian product of MD sets of size n contains $\Theta(n^{d-1})$ points in convex position. The combination of these results immediately implies that every $n \times \ldots \times n$ Cartesian product in \mathbb{R}^d contains $\Omega(\log^{d-1} n)$ points in convex position.

The following lemma gives a lower bound for MD sequences. It is known that a monotone sequence of n reals contains a 2-MD sequence (satisfying the so-called doubling differences condition [26]) of size $\Omega(\log n)$ [5, Lemma 4.1]; see also [8] for related recent results.

Lemma 9. Every set of n real numbers contains an MD subset of size $\lfloor (\log n)/2 \rfloor + 1$. For every $n \in \mathbb{N}$, there exists a set of n real numbers in which the size of every MD subset is at most $\lfloor \log n \rfloor + 1$.

Proof. Let $X = (x_0, \ldots, x_{n-1})$ be a strictly increasing sequence. Assume w.l.o.g. that $n = 2^\ell + 1$ for some $\ell \in \mathbb{N}$. We construct a sequence of nested intervals

$$[a_0, b_0] \supset [a_1, b_1] \supset \ldots \supset [a_r, b_r]$$
Consequently, every MD subset of $\{a_i, b_i\}$ supported by m_1 or m_2 is a convex position.

As required, this yields

$$\text{Lemma 10.}$$ The Cartesian product of two MD sets, each of size n, supports n points in convex position.

Proof. Let $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$ be MD sets such that $a_i < a_{i+1}$ and $b_i < b_{i+1}$ for $i = 1, \ldots, n-1$. We may assume, by applying a reflection if necessary, that $a_{i+1} - a_i < a_i - a_{i+1}$ and $b_{i+1} - b_i < b_i - b_{i+1}$, for $i = 2, \ldots, n-1$ (see Fig. 5).

We define $P \subset A \times B$ as the set of n points (a_i, b_j) such that $i + j = n + 1$. By construction, every horizontal (vertical) line contains at most one point in P. Since the differences $a_i - a_{i-1}$ are positive and strictly decrease in i; and the differences $b_{i-1} - b_{i-1}$ are negative and their absolute values strictly increase in i, the slopes $(b_{i-1} - b_{i-1})/(a_i - a_{i-1})$ strictly decrease, which proves the convexity of P. ▶
Lemma 11. The Cartesian product of three MD sets, each of size n, contains $\binom{n+1}{2}$ points in convex position.

Proof. Let $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_n\}$, and $C = \{c_1, \ldots, c_n\}$ be MD sets, where the elements are labeled in increasing order. We may assume, by applying a reflection in the x-, y-, or z-axis if necessary, that $a_{i+1} - a_i < a_i - a_{i-1}$, $b_{i+1} - b_i < b_i - b_{i-1}$, and $c_{i+1} - c_i < c_i - c_{i-1}$, for $i = 2, \ldots, n-1$. For $i, j, k \in \{1, \ldots, n\}$, let $p_{i,j,k} = (a_i, b_j, c_k) \in A \times B \times C$. We now let $P = \{p_{i,j,k} : i + j + k = n+2\}$. It is clear that $|P| = \sum_{i=1}^{n} i = \binom{n+1}{2}$. We let $P' = P \cup \{(1,1,1)\}$ and show that the points in P' are in convex position.

By Lemma 10, the points in P' lying in the planes $x = a_1$, $y = b_1$, and $z = c_1$ are each in convex position. These convex $(n+1)$-gons are faces of the convex hull of P, denoted conv(P). We show that the remaining faces of conv(P) are the triangles $T'_{i,j,k}$ spanned by $p_{i,j,k}$, $p_{i,j+1,k-1}$, and $p_{i+1,j,k-1}$; and the triangles $T''_{i,j,k}$ spanned by $p_{i,j,k}$, $p_{i,j-1,k+1}$, and $p_{i-1,j,k+1}$.

The projection of these triangles to the xy-plane is shown in Fig. 5. By construction, the union of these faces is homeomorphic to a sphere. It suffices to show that the dihedral angle between any two adjacent triangles is convex. Without loss of generality, consider the triangle $T'_{i,j,k}$, which is adjacent to at most three other triangles: $T'_{i+1,j,k-1}$, $T'_{i,j+1,k-1}$, and $T''_{i+1,j+1,k-2}$ (if they exist). Consider first the triangles $T'_{i,j,k}$ and $T''_{i+1,j+1,k-2}$. They share the edge $p_{i+1,j-1,k+1}p_{i-1,j+1,k+1}$, which lies in the plane $z = c_{k+1}$. The orthogonal projections of these triangles to this plane are congruent, however their extents in the z-axis are $c_{i+1} - c_i$ and $c_i - c_{i-1}$, respectively. Since $c_{i+1} - c_i < c_i - c_{i-1}$, their dihedral angle is convex. Similarly, the dihedral angles between $T'_{i,j,k}$ and $T''_{i+1,j,k-1}$ (resp., $T''_{i,j+1,k-1}$) is convex because $a_{i+1} - a_i < a_i - a_{i-1}$ and $b_{i+1} - b_i < b_i - b_{i-1}$. ◀
The proof technique of Lemma 11 generalizes to higher dimensions (details are provided in the full version):

Lemma 12. For every constant $d \geq 2$, the Cartesian product of d MD sets, each of size n, contains $\Omega(n^{d-1})$ points in convex position.

Now Theorem 8 follows from Lemma 9 and Lemma 12.

3 Algorithms

In this section, we describe polynomial-time algorithms for (i) finding convex chains and caps of maximum size; and (ii) approximating the maximum size of a convex polygon; where these structures are supported by a given grid. The main challenge is to ensure that the vertices of the convex polygon (resp., cap or chain) have distinct x- and y-coordinates. The coordinates of a point $p \in X \times Y$ are denoted by $x(p)$ and $y(p)$.

As noted in Section 1, efficient algorithms are available for finding a largest convex polygon or convex cap contained in a planar point set. Edelsbrunner and Guibas [10, Thm. 5.1.2] use the dual line arrangement of N points in the plane and dynamic programming to find the maximum size of a convex cap in \mathcal{C} in $O(N^2)$ time and $O(N)$ space; the same bounds hold for \mathcal{C}, \mathcal{C}, and \mathcal{C}. A longest convex cap can be also returned in $O(N^2 \log N)$ time and $O(N \log N)$ space. It is straightforward to adapt their algorithm to find the maximum size of a convex cap in \mathcal{C}, and report a longest such chain within the same time and space bounds. Since x- and y-coordinates do not repeat in a convex chain, we obtain the following.

Theorem 13. In a given $n \times n$ grid, the maximum size of a supported convex chain can be computed in $O(n^4)$ time and $O(n^2)$ space; and a supported convex chain of maximum size can be computed in $O(n^4 \log n)$ time and $O(n^2 \log n)$ space.

We make use of the following general observation:

Observation 14. If a supported convex polygon P is in a set \mathcal{C}, \mathcal{C}, \mathcal{C}, \mathcal{C}, \mathcal{C}, or \mathcal{C}, then every subsequence of P is in the same set. That is, these classes are hereditary.

3.1 Convex caps

For computing the maximum size of a convex cap in \mathcal{C}, we need to be careful to use each y-coordinate at most once. We design an algorithm that finds the maximum size of *two* convex chains that use distinct y-coordinates by dynamic programming. Specifically, for two edges $l = (l_1, l_2)$ and $r = (r_1, r_2)$, we compute the maximum total size $C(l, r)$ of a pair of chains $A \in \mathcal{C}$ and $B \in \mathcal{C}$ such that their vertices use distinct y-coordinates and such that the last two vertices of A are l_1 and l_2 (or $A = (l_1)$ if $l_1 = l_2$), and the first two vertices of B are r_1 and r_2 (or $B = (r_1)$ if $r_1 = r_2$). We use the dynamic programming algorithm of [10] to find $L(p_1, p_2)$ (resp., $R(p_1, p_2)$), the size of a largest convex chain P in \mathcal{C} (resp., \mathcal{C}), ending (resp., starting) with vertices p_1 and p_2, or $P = (p_1)$ if $p_1 = p_2$.

The desired quantity $C(l, r)$ can be computed by dynamic programming. By Observation 14, we can always safely eliminate the highest vertex of the union of the two chains, to find a smaller subproblem, as this vertex cannot be (implicitly) part of the optimal solution to a subproblem. In particular, if l is a single vertex and it is highest, we can simply use the value of $R(r_1, r_2)$, incrementing it by one for the one vertex of l. Analogously, we handle the case if r is or both l and r are a single vertex. The interesting case is when both chains end in an edge. Here, we observe that we can easily check whether l and r use unique coordinates.
If not, then this subproblem is invalid; otherwise, we may find a smaller subproblem by eliminating the highest vertex and comparing all possible subchains that could lead to it.

With the reasoning above, we obtain the recurrence below; see Fig. 6(a–c) for illustration. The first case eliminates invalid edges, and edge pairs that use a y-coordinate more than once. In all remaining cases, we assume that $l \in \mathcal{C}$, $r \in \infty$, and l and r use distinct y-coordinates.

$$C(l, r) = \begin{cases}
-\infty & \text{if } l_1 \neq l_2 \text{ and } l \notin \mathcal{C}, \text{ or } \ r_1 \neq r_2 \text{ and } r \notin \infty, \text{ or } \{y(l_1), y(l_2)\} \cap \{y(r_1), y(r_2)\} \neq \emptyset \
2 & \text{otherwise, if } l_1 = l_2 \text{ and } r_1 = r_2 \\
L(l_1, l_2) + 1 & \text{otherwise, if } r_1 = r_2 \text{ and } y(l_2) < y(r_1) \\
R(r_1, r_2) + 1 & \text{otherwise, if } y(l_2) > y(r_1) \\
\max_{(v, l_1, l_2) \in \mathcal{P}} C((v, l_1), r) + 1 & \text{otherwise, if } y(l_2) > y(r_1) \
\max_{(r_1, r_2, v) \in \infty} C(l, (r_2, v)) + 1 & \text{otherwise, if } y(l_2) < y(r_1) \
\end{cases}$$

Let $E = (X \times Y)^2$ denote the number of pairs (edges) in the grid, from which we take l and r. As $|E| = O(n^4)$, we can compute $C(l, r)$ for all l and r in $O(|E|^2 |X \times Y|) = O(n^{10})$ time and $O(|E|^2) = O(n^8)$ space. With $C(l, r)$, we can easily find the size of a maximum size cap P in \mathcal{C}, using the observation below, and analogous observations for the special case $k = 1$ and/or $\ell = 1$ (see Fig. 6(d)).
Observation 15. If \(A = (a_1, \ldots, a_k) \in \mathcal{A} \) and \(B = (b_1, \ldots, b_\ell) \in \mathcal{A} \) with \(k \geq 2, \ell \geq 2 \) and \((a_{k-1}, a_k, b_1, b_2) \in \mathcal{A}\) and \(A \) and \(B \) use distinct y-coordinates, then \((a_1, \ldots, a_k, b_1, \ldots, b_\ell)\) lies in \(\mathcal{A} \) and has size \(k + \ell \).

Note that the condition \((a_{k-1}, a_k, b_1, b_2) \in \mathcal{A}\) implies that the x-coordinates are disjoint.

Theorem 16. For a given \(n \times n \) grid, a supported convex cap of maximum size can be computed in \(O(n^{10}) \) time and \(O(n^8) \) space.

Although computing the maximum size of a supported convex polygon remains elusive, we can easily devise a constant-factor approximation algorithm by eliminating duplicate coordinates as described in Section 3.3 of the full version.

4 The maximum number of convex polygons

Let \(F(n) \) be the maximum number of convex polygons that can be present in an \(n \times n \) grid, with no restriction on the number of times each coordinate is used. Let \(G(n) \) be this number where all \(2n \) grid lines are used (i.e., each grid line contains at least one vertex of the polygon). Let \(\bar{F}(n) \) and \(\bar{G}(n) \) be the corresponding numbers where each grid line is used at most once (so \(\bar{F}(n) \) counts the maximum number of supported convex polygons). By definition, we have \(F(n) \geq G(n) \geq \bar{G}(n) \) and \(F(n) \geq \bar{F}(n) \geq \bar{G}(n) \) for all \(n \geq 2 \). We prove the following theorem, in which the \(\Theta^*(\cdot) \) notation hides polynomial factors in \(n \).

Theorem 17. The following bounds hold:
\[
F(n) = \Theta^*(16^n), \quad \bar{F}(n) = \Theta^*(9^n), \quad G(n) = \Theta^*(9^n), \quad \bar{G}(n) = \Theta^*(4^n).
\]

4.1 Upper bounds

We first prove that \(F(n) = O(n \cdot 16^n) \) by encoding each convex polygon in a unique way, so that the total number of convex polygons is bounded by the total number of encodings. Recall that a convex polygon \(P \) can be decomposed into four convex chains \(\mathcal{A}_P, \mathcal{A}_P, \mathcal{A}_P, \mathcal{A}_P \), with only extreme vertices of \(P \) appearing in multiple chains. Let \(\mathcal{A}_P = \mathcal{A}_P \cup \mathcal{A}_P \) and \(\mathcal{A}_P = \mathcal{A}_P \cup \mathcal{A}_P \). To encode \(P \), we assign the following number to each of the \(2n \) grid lines \(\ell \) (see Fig. 7): 0 if \(\ell \) is not incident on any vertex of \(P \), 3 if \(\ell \) is incident on multiple vertices of \(P \), 1 if \(\ell \) is incident on one vertex of \(P \) and that vertex lies on \(\mathcal{A}_P \) if \(\ell \) is horizontal, or on \(\mathcal{A}_P \) if \(\ell \) is vertical, and 2 otherwise. We also record the index of the horizontal line containing the leftmost vertex of \(P \) (pick the topmost of these if there are multiple leftmost points).

Figure 7 Encoding the grid lines.
Since each of the $2n$ grid lines is assigned one of 4 possible values, and there are n horizontal lines, the total number of encodings is $O(n \cdot 4^{2n}) = O(n \cdot 16^n)$. All that is left to show is that each encoding corresponds to at most one convex polygon.

First, observe that if P is a convex chain, say in r^*, then the set of grid lines containing a vertex of P uniquely defines P: since both coordinates change monotonically, the i-th vertex of P must be the intersection of the i-th horizontal and vertical lines. So all we need to do to reconstruct P is to identify the set of lines that make up each convex chain.

Since we know the location of the (topmost) leftmost vertex of P, we know where r^*_P starts. Every horizontal line above this point labelled with a 1 or 3 must contain a vertex of r^*_P; let k be the number of such lines. Since the x-coordinates are monotonic as well, r^*_P ends at the k-th vertical line labelled with a 2 or 3. The next chain, γ_P, starts either at the horizontal line labelled with a 1, or at the intersection of this horizontal line with the next vertical line labelled with a 2 or 3, if this horizontal line is labelled with a 3. We can find the rest of the chains in a similar way. Thus, $F(n) = O(n \cdot 16^n)$.

The upper bounds for $\bar{F}(n)$, $\bar{G}(n)$, and $\hat{G}(n)$ are analogous, except that certain labels are excluded. For the number of supported convex polygons $F(n)$, each grid line is used at most once, which means that the label 3 cannot be used. Thus, $\bar{F}(n) = O(n \cdot 3^{2n}) = O(n \cdot 9^n)$.

Similarly, for $\bar{G}(n)$, all grid lines contain at least one vertex of the polygon, so the label 0 cannot be used. Therefore $\bar{G}(n) = O(n \cdot 3^{2n}) = O(n \cdot 9^n)$. Finally, for $\hat{G}(n)$, every grid line contains exactly one vertex of the polygon, so neither 0 nor 3 can be used as labels. This gives $\hat{G}(n) = O(n \cdot 2^{2n}) = O(n \cdot 4^n)$ possibilities.

4.2 Lower bounds

Assume that $n = 2m + 3$, where $m \in \mathbb{N}$ satisfies suitable divisibility conditions, as needed. All four lower bounds use the same grid, constructed as follows (see Fig. 8).

$$
X = \{1, \ldots, n-1\} \quad Y^- = \{y_1, \ldots, y_{m+2}\}, \text{ where } y_i = n^i \\
Y^+ = Y^- \cup Y^+ \quad Z^+ = \{z_1, \ldots, z_{m+2}\}, \text{ where } z_i = 2 \cdot y_{m+2} - y_i
$$

Note that this results in an $(n-1) \times (n-1)$ grid, since $y_{m+2} = z_{m+2}$. To obtain an $n \times n$ grid, we duplicate the median grid lines in both directions and offset them by a sufficiently small distance $\varepsilon > 0$. The resulting grid has the property that any three points p, q, r in the lower half $X \times Y^-$ with $x(p) < x(q) < x(r)$ and $y(p) < y(q) < y(r)$ make a left turn at q. To see this, suppose that $y(p) = n^i$, $y(q) = n^j$, and $y(r) = n^k$, for some $1 \leq i < j < k \leq n$. Then the slope of pq is strictly smaller than the slope of qr, since

$$
slope(qr) = \frac{n^k - n^j}{x(r) - x(q)} \geq \frac{n^j+1 - n^j}{n - 1} = n^j \frac{n^j - n^1}{n - 1} \geq \frac{n^j - n^1}{x(q) - x(p)} = \text{slope}(pq).
$$

![Figure 8](image-url) The $n \times n$ grid defined in Section 4.2, with $n = 9 = 2m + 3$ for $m = 3$, before doubling the median lines. The segments (parts of grid lines) incident to vertices are drawn in blue.
Thus, any sequence of points with increasing \(x \)- and \(y \)-coordinates in the lower half is in \(\mathcal{P} \). By symmetry, such a sequence in the upper half \(X \times Y^+ \) is in \(\mathcal{P} \). Analogously, points with increasing \(x \)-coordinates and decreasing \(y \)-coordinates are in \(\mathcal{P} \), if they are in the lower half and \(\mathcal{P} \) if they are in the upper half.

We first derive lower bounds on \(\bar{G}(n) \) and \(G(n) \) by constructing a large set of convex polygons that use each grid line at least once. Then we use these bounds to derive the bounds on \(\bar{F}(n) \) and \(F(n) \). The polygons we construct all share the same four extreme vertices, which lie on the intersections of the grid boundary with the duplicated median grid lines. Specifically, the leftmost and rightmost vertices are the intersections of the duplicate horizontal medians with the left and right boundary, and the highest and lowest vertices are the intersections of the duplicate vertical medians with the top and bottom boundary. Since each of these median lines now contains a vertex, we can choose additional vertices from the remaining \(2m \) grid lines in each direction.

To construct each polygon, select \(m/2 \) vertical grid lines left of the median to participate in the bottom chain, and do the same right of the median. Likewise, select \(m/2 \) horizontal grid lines above and below the median, respectively, to participate in the left chain. The remaining grid lines participate in the other chain (top or right). This results in a polygon with \(m/2 \) vertices in each quadrant of the grid (excluding the extreme vertices). The convexity follows from our earlier observations. The total number of such polygons is

\[
\binom{m}{m/2}^4 = \Theta \left((m - \frac{1}{2}2m)^4 \right) = \Theta(m^{-2}2^{4m}) = \Theta(n^{-2}2^{2n}) = \Theta(n^{-2}4^n) = \Theta^*(4^n).
\]

The first step uses the following estimate, which can be derived from Stirling’s formula for the factorial [9]. Let \(0 < \alpha < 1 \), then

\[
\binom{n}{\alpha n} = \Theta(n^{-\frac{1}{2}}2^{H(\alpha)n}), \text{ where } H(\alpha) = -\alpha \log \alpha - (1 - \alpha) \log(1 - \alpha).
\]

For the lower bound on \(G(n) \), the only difference is that we now allow grid lines to contain vertices in two chains. We obtain a maximum when we divide the grid lines evenly between the three groups (bottom chain, top chain, both chains). Thus, we select \(m/3 \) vertical grid lines left of the median to participate in the bottom chain, another \(m/3 \) to participate in the top chain and the remaining \(m/3 \) participate in both. We repeat this selection to the right of the median and on both sides of the median horizontal line. As before, this results in a convex polygon with the same number of vertices in each quadrant of the grid – exactly \(2m/3 \) this time. The number of such polygons is

\[
\binom{m}{m/3}^4 = \Theta \left((m - \frac{1}{2}2^{H(\frac{1}{3})m}, m - \frac{1}{2}2^{H(\frac{1}{3})\frac{2m}{3}})^4 \right)
\]

\[
= \Theta \left(n^{-\frac{1}{2}}2^{4m(\log 3 - \frac{2}{3} + \frac{1}{2})} \right) = \Theta \left(n^{-4}2^{2n \log 3} \right) = \Theta \left(n^{-4}4^n \right) = \Theta^*(9^n).
\]

We translate these bounds to bounds on \(\bar{F}(n) \) and \(F(n) \) in the full version.

4.3 The maximum number of weakly convex polygons

A polygon \(P \) in \(\mathbb{R}^2 \) is weakly convex if all of its internal angles are less than or equal to \(\pi \). We summarize the bounds we obtain in the following (details are provided in the full version):

\[\blacktriangleleft \textbf{Theorem 18.} \text{ Let } W(n) \text{ denote the maximum number of weakly convex polygons that can be present in an } n \times n \text{ grid. Then } W(n) = \Omega(16^n) \text{ and } W(n) = O^*(16^n).\]
References

