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—— Abstract

The most important task derived from the massive digital data accumulation in the world, is efficient

access to this data, hence the importance of indexing. In the last decade, many different types of
matching relations were defined, each requiring an efficient indexing scheme. Cole and Hariharan
in a ground breaking paper [Cole and Hariharan, SIAM J. Comput., 33(1):26-42, 2003], formulate
sufficient conditions for building an efficient indexing for quasi-suffiz collections, collections that
behave as suffixes. It was shown that known matchings, including parameterized, 2-D array and order
preserving matchings, fit their indexing settings. In this paper, we formulate more basic sufficient
conditions based on the order relation derived from the matching relation itself, our conditions are
more general than the previously known conditions.
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1 Introduction

Having grown accustomed to the presence of all the web data at our fingertips, it is easy
to forget that a mere 25 years ago, an encyclopedia on a CD was the height of information
technology. At the root of efficient access of this staggering amount of data is indexing. The
concept of indexing is that one spends time and effort preprocessing the entire data and
constructing auxiliary data structures that will make it possible to efficiently answer future
queries of the form: “does input instance I appear in our data?”.

The term “appear” is application dependent. It may be an exact matching of a word
in a text, it may be searching for a picture of a face in photographs, it may be seeking a
gene in the DNA sequence, looking for a tune in a music database, or many other needs in
various areas.

The simplest and earliest form of the problem is indexing texts for exact matching. Two
strings are said to be matched if and only if they are exactly the same string. This problem
has been heavily researched over the last decades and led to the development of two important
data structures — the suffiz tree and the suffiz array.

The suffix tree is a compacted trie of all the suffixes of T'. Its size is O(n) and, starting with
Weiner’s algorithm [28], various efficient construction algorithms with numerous properties
have been proposed (e.g. [23, 26, 11, 4, 18]).

The suffix array [22, 14] is the lexicographically sorted array of suffixes.
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The next step was considering more complex matching relations. Two such relations are
parameterized matching [5, 6, 3] and order-preserving matching [17, 19, 16].

Parameterized matching was introduced by Baker [5, 6]. Her main motivation lay in
software maintenance, where program fragments are to be considered “identical” even if
variable names are different. Baker developed an algorithm to build parameterized suffix
trees. Her algorithm essentially takes O(n(|II| 4+ log(|X| + |II|))) preprocessing time and
O(m + occ) subsequent query time, where ¥ and II are alphabets of fixed symbols and
parameter symbols respectively, m is the query’s length and occ is the number of pattern
occurrences in the text.

Order Preserving matching has been introduced independently by Kubica et al. [19] and
by Kim et al. [17]. Crochemore et al. [10] developed a direct suffix tree construction for the
order preserving matching, that works in O(ny/logn) preprocessing time and O(m) query
time if the pattern alphabet is of size poly(m), where m is the pattern length. Otherwise,
it can be made by sorting, i.e. in O(m+/loglogm) randomized time or in O(mloglogm)
deterministic time. Reporting the pattern occurrences requires adding an extra O(occ) time.

Another matching relation whose indexing problem has been rigorously researched lately
is the histogram matching (also called jumbled matching, Parikh matching, or permuted
matching). In that problem a text T is to be preprocessed. In subsequent queries, a pattern
P is given. All locations of T where a permutation of P occurs are sought. Amir et al. [2]
showed that this problem is unlikely to have an efficient indexing algorithm. By efficient
indexing, we mean that preprocessing the text is done in O(n?~€) time for some e > 0, which
then allowing for subsequent queries in time O(m 4 occ), where m is the length of P and occ
is the number of locations in 7' that match P. Recently, the block mass [24, 1] problem was
considered. It turns out to have an efficient indexing algorithm for constant-size alphabets,
but unlikely to have one for unbounded alphabets.

The history of indexing suggests a major difficulty: every matching relation required a
new, ad-hoc consideration for its indexing version. The desired situation is one where: (1)
There are necessary and sufficient conditions on the matching relation for having an efficient
indexing algorithm, and (2) when the conditions are sufficient, to have a generic indexing
algorithm, so that there will be no need to propose a data structure for every new relation.
Finding necessary conditions for efficient indexing is, perhaps, one of the biggest challenges
in the area, when the quest is for a generic indexing algorithm.

Cole and Hariharan [9] presented the first such algorithm. They showed that if the suffixes
satisfy some conditions, then an index can be built efficiently. In Sect. 3, we present these
conditions in more details.

Both parameterized matching [9] and order preserving matching [10] satisfy these condi-
tions, thus Cole and Hariharan made an important step on the way to generalizing indexing
algorithms. They showed a randomized algorithm that can construct the suffix tree in linear
time, for alphabets of polynomial size. In addition to being randomized, their algorithm is
based on McCreight’s suffix tree construction algorithm [23] and thus, is not online. The
online situation was solved by Lee et al. [21]. In this paper, we go a step further. Our
contributions are:

1. There is a more natural way of characterizing whether indexing is possible, is by considering
the matching relation. Thus we present a set of sufficient conditions on the matching
relation that, if satisfied, allow efficient indexing. Consequently, when presented with a
relation, all that is necessary is to check whether that relation satisfies these conditions.
We suggest sufficient conditions that are more natural and less strict than the Cole and
Hariharan conditions. We then show a reduction from Cole and Hariharan conditions to
our conditions. Moreover, we show a matching relation that satisfies our conditions but
not the Cole and Hariharan conditions.
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2. We present a very simple generic online, deterministic indexing algorithm whose worst
case times are O(n) time for preprocessing, and O(m + occ) time for query, where occ is
the number of pattern occurrences in the text, and O stands for the complexity up to
polynomial logarithmic factor, i.e. log®n for some constant c.

3. Our generic scheme allows for an easy algorithm for indexing a new matching which
we call jump forward for string matching. This will be seen in detail in Sect. 4.3. This
matching does not satisfy the Cole and Hariharan conditions.

The novelty of our algorithm is using the matching relation properties rather than using
the specific matching to enable us to construct the indexing. These properties allow us to sort
suffizes efficiently. Our algorithm is slower by a polylog factor than the specialized indexing
algorithms for the known non exact matching relations, e.g. order preserving matching or
parameterized matching. However, we were not driven by the goal of improving the indexing
complexity of a given matching relation. Our interest is in presenting a small number of basic
sufficient conditions that allows the construction of a generic algorithm that can be used
as an off-the-shelf efficient indexing algorithm (up to polylog factors) for any matching
relation that satisfies the conditions. An example of the effectiveness of our algorithm was
recently demonstrated. Some colleagues were discussing indexing a new matching relation —
Cartesian Tree Matching [25]. A quick check of the matching relation properties convinced
us that an efficient indexing exists. What remained was only shaving some powers off the
polylogarithmic factor.

2 Preliminaries

Let ¥ be an alphabet. A string T over ¥ is a finite sequence of letters from ¥. By T'[i], for
1 <i < |T|, we denote the i*" letter of T. The empty string is denoted by e. By T[i..j] we
denote the string T'[é] ... T[j] called a substring of T (if i > j, then the substring is an empty
string). A substring is called a prefiz if i = 1 and a suffiz if 7 = |T'|. The prefix of length j is
denoted by T7..j]. While by S; = T[i..] we denote the suffix which starts from index ¢ in T
By lep(S,S’) we denote the longest common prefiz (lep) of S and S’. In case S and S’ are
suffixes S; and S}, respectively, we denote lcp(i, j) = lep(S;, S;) for short. By T# we denote
the reversal (the mirror image) of T'.

A suffixz tree of a string T', denoted ST'(T'), is a compacted trie containing all the suffixes
of T'$, where $ is a unique character not occurring in X. In a compacted trie we define the
depth of a node to be its number of explicit ancestors, and the string depth to be the length
of the string it represents. The string of a node z, denoted by str(zx), represents the result of
reading the letters in path between trie’s root and z. In a suffix tree we define the suffix link
of a node representing the string a.S to be a pointer to the node representing S, where S is a
string and «a is a character. Every explicit node v stores such a link sl(v).

A matching M C ¥* x ¥* is a binary relation between strings, where X! is the set of all
l-length strings and * = J,2, %!, Two strings A and B are said to be matched if and only
if (A, B) € M. We consider matchings in which two matched strings are of the same length.

» Example 1 (Exact Matching). Two strings are matched, if they are exactly the same string.
Formally, Mg = {(A4,A4) | VA € ¥*}.

An order relation R C ¥* x ¥* is a binary relation between strings. String A is said to
be less or equal to string B if and only if (4, B) € R, ARB in short.

» Definition 2 (Total Order for M). Let R be an order relation, and M a matching. R C
3* x ¥* is total order for M if the following properties hold.

6:3
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Transitivity: VA, B,C ARB A BRC = ARC
Antisymmetry: VA, B ARBABRA < (A,B)e M
Completeness: VA, B ARBV BRA

An order relation R is said to be consistent with prefizes (consistent with suffizes) if for
all A, B such that ARB then VI =1,... min{|A|,|B|} A[..l] R B[..l] (A[l..] R B[l..]).

» Definition 3 (Lexicographic Order). Given two different strings A = ay,as,...,a, and
B =1by,ba, ... b, the first one is smaller than the second if a; < b; for the first i where a;
and b; differ, otherwise if no such i exists (happens when one of the strings is a prefiz of the
other) the shorter string is the smaller. The lexicographic order is a total order for Mg and
consistent with prefizes.

» Definition 4 (Quasi-Suffix Collections (QSC) [9]). An ordered collection of strings
51,82, ..., Sn 15 called a quasi-suffiz collection if and only if the following conditions hold.

1. |s1|=mn,ls2l=n—1,--|s,| =1.

2. No s; is prefix of another s;.

3. Iflep(ss,s5) =1 >0 then lep(siyi, sj41) > 1 — 1.

» Definition 5 (Character Oracles [9]). A data structure which supplies the j'* character of
the it string of the quasi-suffiz collection, in O(1) time, is called character oracle. Note that
the total length of the explicit strings for a quasi-suffiz collection of n strings is O(n?). While
character oracle allows holding the collection in smaller space and reading it on demand.
Cole and Hariharan reduce the amount of character oracle calls to be linear during the suffix
tree construction.

Our main contributions are the following.

» Theorem 6 (Order Relation based Sufficient Conditions). Let M be a matching. There is
an efficient indexing construction for the matching if there exists an order relation R and the
following conditions hold.
R is a total order for M and consistent with prefixes.
Order derivation: given lep(i, j), compute the order between suffiz i and j in O(1) time.
Lep derivation: assuming oracle access to lep(i/y j') fori', 3" > 1 compute lep(1,4) where
i',§" and i are indexes in the text in O(1) time.
Efficient extension by one character: maintaining lcp derivation and order derivation, to
support text extension by one new letter at the beginning. This operation takes amortized
O(1) time per extension.
Efficient extension by a pattern: extending the lcp derivation and order derivation, to
support lep derivation of lep(P,S;) and order between the pattern and a suffix, takes
overall O(|P|) time and space.

lep(i, j) is well defined when R is consistent with prefizes, because then M is hereditary
from right, i.e. dropping same length suffixes of matched strings leads to a matched pair of
strings. That is, the prefixes of S; and §; from length 1 to length Icp(i, j) are equal. And
lep(i, j) is the length of the longest common prefix.

» Theorem 7. (The Reduction) Let M be a matching. Assume a character oracle f such
that for every string S, {s;}"_, = {f(Si)}1; s a quasi-suffiz collection. Then the conditions
of Theorem 6 hold for M.
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3 Previous Results

Cole and Hariharan paper [9] guarantees the following. When one wants to index a string
T under some matching M, a quasi-suffix collection is required. A compacted trie is then
constructed for the supplied collection in O(n) time and space with a failure probability close
to inverse exponential. Later, this construction was generalized to be online using the same
time and space complexities by Lee et al. [21], by adding letters to the end.

Character oracles are a general abstraction for accessing the quasi-suffix collection’s
elements. Previously studied character oracles are for parameterized matching [5, 6, 9, 21],
2D matching [13, 9] and order preserving matching [19, 7, 10]. In practice, they are built
directly from some transformation f. Each suffix of T" might be transformed to a string
which is not related to the other suffixes’ transformations, these are the {s;}_ ;. Based on
these transformations the quasi-suffix collection is defined as s; = f(.S;). It is necessary that
the prefixes of any string S be consistent after the transformation, i.e. f(S[..i]) = f(9)[..7],
to ensure that the search is well defined, locating the pattern as a prefix of some s;.

» Example 8 (Parameterized Matching). Let ¥ and II be the alphabets of fixed symbols and
parameters symbols respectively. Two strings are said to parameterized match, if one string
can be transformed into the other by renaming the characters via a one to one function on
their parameter alphabet.

A predecessor string of a string 7" has at each location ¢ the distance between ¢ and the
location containing the previous appearance of the symbol T'[i]. The first appearance of
each symbol is replaced with a 0. The transformation is defined by the predecessor string
and denoted by f(T). The predecessor string is consistent with prefixes because dropping
letters from the end of the string does not affect the distances to previous occurrences of the
remaining letters.

Let S = ababb, where II = {a, b}, then the quasi-suffix collection is {00221$,0021$, 00183,
01$,08,$}. A special $ is appended to each transformed suffix to fit Condition 2 of QSC.

The character oracle is based on an observation about the predecessor string. Each time
a character is removed from the beginning of S; it might affect at most one character in
the transformation of S;41. This happens because at most one position distance is replaced
by 0. Therefore, by maintaining for each index the distance to the previous occurrence of
the same character it is possible to answer f(S;)[j] in constant time. If j — pv[j] > ¢ then
F(S)F] = pvlj], otherwise f(S;)[j] = 0, where pv is the distance of each character to its
previous occurrence in 7.

The power behind the previous results is the optimization of character oracle calls. The
amount of oracle calls turns out to be linear even though the quasi-suffix collection size might

be quadratic. The revolutionary idea is to create additional nodes during the construction.

These nodes are used for every new suffix insertion to locate where to insert the new suffix

in efficient time. Their implementation uses amortized constant time per suffix insertion.

Condition 3 of QSC guarantees the correctness of suffix links. Let x be a node which is an
ancestor of both s; and s; and |str(x)| = lep(s;, s;). Removing the first character results
in equal strings. By Condition 3 of QSC, lep(si+1,Sj+1) > |str(z)] — 1 = |str(y)| where
y = sl(x). However, without this condition it is impossible to define correctly the suffix link
because we might have two suffixes whose beginnings are equal, but dropping their first
letters would not preserve the equality and we would not be able to search down from the
node pointed to by the suffix link.

Two major problems that had been solved by the Cole and Hariharan algorithm are
the branching problem and the missing suffix links problem. In the first, we might have a
logarithmic factor due to linear number of children for a certain internal node in the suffix
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tree. Thus, a perfect hash was introduced in Cole and Hariharan to overcome this logarithmic
factor. Next, some internal node suffix links might point to a middle of an edge. This was
solved by introducing new nodes called imaginary nodes which are added to allow explicit
pointing by the suffix links.

4  Our Conditions

We wish to consider the problem of supplying an indexing construction for different matchings
from a more general perspective. We would like to know whether, just by looking at the
matching relation, it is possible to decide whether it can be indexed efficiently. We decided
to go about this by first observing existent indexing constructions and then trying to identify
a set of matching properties that are sufficient for constructing an indexing data structure.
Afterwords, we introduce two additional conditions which are necessary for construction
efficiency. Our conditions are proven to be more general than the ones previously studied.
We discuss the connection between sufficient conditions used in previous papers for efficient
indexing construction compared to our proposed conditions.

4.1 The Intuition Behind The Choice of Sufficient Conditions

Known indexing data structures, including the Suffix Tree (ST), the Suffix Array (SA) and the
Burrows Wheeler Transform (BWT), sort the suffixes lexicographically in their construction
procedures, resulting in an index data structure that answers queries using efficient search
algorithms. Examples of these algorithms are: a binary search in the SA, search by first
letter in the edges of a suffix tree, and search by reducing ranges in BWT using the FM
indez [12]. We observe that all efficient indexes needed both a fast sorting technique and an
efficient search algorithm.

For the sake of being able to sort the suffixes, we need to have some order defined on
them. This order is required to be a total order. Transitivity allows sorting the suffixes in a
well-defined order. Antisymmetry is the property that if a pair of elements are related to
each other then they are matched. Hence, antisymmetry connects the order relation to its
matching. Finally, completeness allows comparing the pattern with the prefixes of any suffix.

The ability to search efficiently for a pattern P relies on comparison of the pattern with
| P|-length prefixes of the suffixes. This is possible if the sorting is consistent with prefixes,
otherwise a pre-sorting of the suffixes will not aid in finding prefixes of a certain length
|P|. Formally, let @ and b be two strings such that min{|a|, |b|} > |P|. If w.l.o.g. aRb then
all..|P|] R b[1..|P]].

It is not enough to have a total order consistent with prefixes for a fast indexing
construction. The reason is that the algorithm needs a way to quickly check if xRy is true
in order to sort the suffixes. In addition, it is necessary to know during the searching if a
pattern P is located at the beginning of some suffix. We use two properties to fill this gap,
order derivation and Ilcp derivation. Order derivation inputs two suffixes ¢ and j and outputs
the order between them. Lcp derivation receives as input two suffixes ¢ and j and outputs
their longest common prefix length. We also want these derivations to be implementable
online, supporting extensions by letters added to the beginning of the text. Using the lcp
derivation we extend the text from the left by P. Then we can use lcp derivation queries to
check if P occurs at any suffix. When finishing the search we undo all the changes that we
made to the construction. Note that the extension by P should be achieved in O(|P|) time
and space to ensure pattern search efficiency.
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However, implementing lcp and order derivation in sublinear time is not a trivial task
even for exact matching.

» Example 9. Let i, j be two suffixes. The order derivation of those suffixes can be determined
from comparing T'[i + lep(, j) + 1] with T'[j + lep(4, j) + 1], while answering lep(i, j) might
require a complex data structure such as Range-Minimum queries [15] on the LCP Array or
LCA construction [20] on a suffix tree.

Indeed, computing the lcp without any previous knowledge is a hard task. But a
modification of the properties can simplify the calculation to be neat and efficient.

» Example 10. Lcp derivation for exact matching can be calculated in constant time based
on previous knowledge of lep(i + 1,7 + 1).

lep(i+1,j+1)+1, if T[] = T[j]

0, otherwise.

lep(i, §) = {

Moreover, order derivation can be answered in constant time when lep(i, j) is supplied.

The above intuition results in Theorem 6 - our sufficient conditions for efficient indexing.

We prove Theorem 6 in Sect. 5, by providing an indexing construction.

» Theorem 11. Let M be a matching relation and R a total order that is consistent with
prefixes. Based on R’s properties, the following properties hold for M.
Reflexivity: Va (a,a) € M
Symmetry: VYa,b (a,b) € M <= (b,a) € M
Transitivity: Va,b,c (a,b) € M A (b,c) € M = (a,c) € M
Heredity from right (prefix consistency): Vz,y n-length strings (z,y) € M = (z[l..n —
1,yl.n—=1)) e M

Proof. Reflexivity is hold, from completeness, aRa and from antisymmetry, (a,a) € M.
Symmetry is hold, from antisymmetry, aRb A bRa, thus from antisymmetry, (b,a) € M.
Transitivity is hold, from antisymmetry, aRb A bRa A bRc A cRb, thus from transitivity,

aRc A cRa, and from antisymmetry, (a,c) € M.

Hereditary from right is hold, from antisymmetry, x Ry Ay Rz, from consistent with prefizes,
z[..n—=1]Ry[..n—1]Ay[..n—1]Rz[..n—1], and finally, from antisymmetry, (z[.n—1],y[..n—1])

e M. <

When presented with a new matching relation, we recommend checking these conditions

first because they do not need to use the total order but are depended on the matching itself.

If the matching M is reflexive, symmetric, transitive and hereditary from the right, devise a
total order for the matching. Finally, provide order and lcp derivation properties.

4.2 The Connection To Quasi-Suffix Collections

» Lemma 12. Let M be a matching which is an equivalence relation, i.e. reflective, symmetric

and transitive. Then the following conditions are equivalent.

1. There exists a transformation f, consistent with prefives, such that ¥S,T f(S) =
f(T) < (5,T) e M.

2. The matching is hereditary from right.

6:7
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Proof. 1 = 2. It is trivial because the transformation f is consistent with prefixes. Thus,
the matching is also consistent with prefixes.

2 = 1. We will show a construction of f. It is still an open problem if it is possible to
calculate a character in f in 0(1) time. As a consequence of the reflexive, symmetric, and
transitive properties of M, an equivalence relation provides a partition of ¥X* into disjoint
equivalence classes. The empty string is transformed into an empty string. We observe the
equivalence classes of single characters. Each of those class is transferred to an identical
number. This identical number is chosen from [1,n], because there are at most n identical
characters. Then we observe substrings of length equals to 2. Each disjoint equivalence classes
of those strings is marked with an identical number from [1,n]. And the transformation
is defined to be the transformation of the string without the last character to which the
identical number that corresponds to the full string equivalence class is appended at the end.
It is easy to see that this transformation is consistent with prefixes. To support the QSC
definition it is required to append $ at the end to each transformed suffix. <

» Lemma 13. Let M be a matching which is an equivalence relation. Then the following

two conditions are equivalent.

1. For every string S, Vi,j lep(i,j)=1>0 = lep(i +1,j+1) >1—1.

2. The matching is hereditary from left, i.e. dropping some amount of characters from the
beginning of two matched strings results in a matched pair.

4.3 The Jump Forward Matching

In this section we show a matching that does not satisfy the Cole and Hariharan conditions,
yet satisfies our properties.

From Lemma 12, heredity from right implies that a character oracle exists, although it
does not necessarily follow that such an oracle answers the query in sublinear time. On the
other hand, Condition 3 of QSC stipulates that

Vi, j lep(i,j)=1>0 = lep(i+1,j+1)>1—1 (1)

By Lemma 13, this condition is equivalent to heredity from left, i.e. dropping the characters
from the beginnings of two matched strings results in matched pair of strings.

Thus, we wish to create a matching where heredity from the left is not satisfied but our
conditions hold. This leads to the following matching definition.

» Definition 14 (Jump Forward Matching). Let S € N", and let i € {1,...,n}. A forward
jump of index i s index j =i + S[i], if i + S[i] < n, and is out if i + S[i] > n.

The jumps sequence till out of index i is the sequence i1, ...,1,, where i1 =1, i; is the
forward jump of ij_1, for j =2,...,k, and the forward jump of iy, is out. We denote the main
Jumps sequence to be the jumps sequence till out of index 1 by f(S). Two strings are said to
be matched if their main jumps sequences are equal.

The search of a pattern turns to be a search of the main jumps sequence of the pattern.

A normalization of string S is the replacement of bigger jumps than n by jumps of size n.
The normalized string is defined on ¥ = {1,...,n} and is equivalent to the original string.

» Example 15. Let S =222 2and T =2 3 2 2. These two strings are matched because
their main jumps sequences are f(S) =1 3 and similarly, f(7) =1 3.

In this example, S[2..] and T[2..] are not matched because f(S[2..]) = 1 3 while
f(T[2..]) = 1. Thus, heredity from left does not hold and the matching does not fit
the Cole and Hariharan conditions.
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» Lemma 16. Theorem 6 conditions hold for the jump forward matching.

Proof. Let R = {(X,Y)|f(X) < f(Y)} be the order relation, where the comparison between
f(X) and f(Y) is using the lexicographic order. This order relation is a total order, it
is transitive, reflexive and complete. Moreover, it is consistent with prefixes because the
transformation is consistent with prefixes, i.e. V.S f(S5[..i]) is a prefix of f(S), where 7 is an
index in the string S.
Note that the lcp is defined to be the longest prefix for which the main sequences are
equal. A straightforward approach can be used to implement the lcp derivation property.
o Jlep(i+ ST+ SU) + 1, if S[i) = S[)
lep(i, j) = {1

otherwise.

b

The order derivation property is satisfied by returning f(S[i..])[lcp + 1] compared to
f(S[7.D[lep + 1], where lep = lep(i, ). We construct a forest based on the forward jumps,
each character is represented by a node in the forest. Its value, the jump, is represented by an
edge to its parent node in a tree. In such a way, the maximal jumps sequences are beginning
from the leafs, where maximal stands for a jumps sequence that cannot be extended to a
longer jumps sequence. Each leaf stores the jumps sequence that begins from its index in
the text. For a node, which corresponds to index ¢, we store a pointer to one the leafs in its
subtree. Then f(S;)[j] is calculated by the leaf’s jumps sequence. First, we search to find

the position pos in which i is located. Afterwards, we return the content at position pos + j.

The search is implemented by van-Emde Boas data structure [27] in O(loglogn) time and
O(n) preprocessing. The indices are stored in the data structure related to the end position
of the text, i.e. n —1i for an index i. That is, extending the text at the beginning does not
affect on existent indices.

Extension of the order and lcp derivations by the pattern are done by constructing of the
above data structure on the pattern in O(m) time. <

4.4 The Reduction

To complete the claim that our conditions are more general than Cole and Hariharan’s, we
present a reduction from their conditions to our conditions.

» Theorem 7. (The Reduction) Let M be a matching. Assume a character oracle f such
that for every string S, {s; 'y = {f(S:)}, is a quasi-suffiz collection. Then the conditions
of Theorem 6 hold for M.

Proof.

Order definition. The order relation is the lexicographic order and is a total order, it is
transitive, reflexive and complete. The quasi-suffix collection is a collection of strings
between which the comparison is done using the lexicographic order.

Order consistence with prefixes. Immediate from the order definition.

Lcp derivation. Let S be some string, we create an indexing construction based on Cole
and Hariharan [9]. This construction results in a suffix tree of the quasi-suffix collection
{s:}1_;. We then process the suffix tree to support LCA queries [8]. These queries allow
the calculation of lep(s;, s;). Thus the lep query is supported in constant time.

Order derivation. Order derivation is supported based on the character oracle. We compare
si[l + 1] with s;[l 4+ 1] to determine the order, where I = lep(i, 7).

Efficient extension by P. We add P to the suffix tree construction. lep(P,S;) is calculated
using an LCA query between the pattern and the leaf represented by the suffix S;. The

order is computed by a comparison between P[l + 1] and s;[l + 1], where [ = lep(P, S;).

Both lcp and order derivations are supplied in constant time. <
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5 The Construction

In this section, we prove Theorem 6 by providing an efficient indexing construction for a
matching M which satisfies the theorem’s conditions. Without consistency of the suffixes,
suffix links are not well defined during the suffix tree construction and a different structure
is required. We use a balanced binary search tree (BST) to store the suffixes in sorted order
defined by R. At each phase, a new suffix is inserted from the shortest to the longest. We
can also handle text symbols that arrive by prepending to the beginning of the text. The
calculation of lcp derivation relies on previous knowledge about other lcp values between
suffixes which have already been inserted to the BST. We maintain at each node both the
lep of its suffix with the next suffix in the sort, and its lcp with the previous suffix in the
sort. The following lemma helps calculate the lcp between every two suffixes in logarithmic
time and constant space.

» Lemma 17. Let S;,,..., S, be a sorted group of suffizes by some total order R which is
consistent with prefives. Assume w.l.o.g. i < j, and i =1i,, j = iq, then

lep(iy j) = pglqu{lcp(sm Sipa)} (2)

An identical lemma was proven for exact matching by Manber and Myers [22]. The order
there is assumed to be the lexicographic order. Their proof is correct for our case without
any modification because it is based on transitivity and consistency with prefixes.

Answering lcp(i, j) for every two suffixes that exist in the BST is possible based on the
above lemma.

At each node, we maintain the minimal value of the lcp values in its rooted subtree, by
taking into account both lcp with previous and next suffixes. When observing the path
between suffixes i and j in the BST, all the suffixes {.5; }{_, could be iterated to calculate
miny<,<q{lep(iy,ir+1)}. The iteration over the whole subtree can be replaced by constant
time accessing of the minimal lcp value stored at each node. This improvement implies a
logarithmic time calculation because the BST height is O(logn).

We are now ready to present how to search for a pattern P. First, we extend the lcp and
order derivation, using the efficient extension property, to support lep derivation of lep(P, S;)
and order between P and S;. Then, similarly to binary search, we wish to find the range
bounds S;, and S; , where S; < S, , inside the sorted group of suffixes {Si, }1_, in which
P is located at the beginning of all elements, and P matches neither a prefix of S;,_, nor a
prefix of S;_ .

W.l.o.g. assume that we search for the left corner suffix S; _,. Let S;; be the root of
the BST. If lcp(P, S;;) < |P| then the next node in the search is the root child followed to
the direction of the order between P and S;,. Otherwise, if lep(P, S;;) = |P|, P is a prefix
of S;;, and we should check if S;; is the left corner of the range. Similarly, we check also
for lep(P, S;;_,). If this value is smaller than |P| then we finish, otherwise we continue to
search to the left. We store a bi-linked list between all suffixes in the sort. It allows to access
predecessor and successor suffixes in the sort in constant time.

Note that lep(P, S;; ) is calculated in the following way. Its value is derived from a constant

number of lep values of the form lep(P[i'..], S for some offsets 4', j'. If lcp(P, S;;) value

i)
is derived from a single lcp value, its calculati(;l is done in O(m) time and constant space
by a recursion, where m = |P|. Otherwise, because the dependency on 7', j/ might cause
a quadratic amount of lcp calculations, another search algorithm is purposed. We insert
each suffix of P to the sorted group of suffixes. In such a way lep(P,S;) is calculated in

logarithmic time based on Lemma 17.
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Time.

Search for matchings with simple Icp derivation. The search time complexity is O(logn -
(Toa +m - Tia)) + O(m).

Search for matchings with complex Icp derivation. The search time complexity is O(m
logn - (Toq + Tia +logn) +logn - (Tog + Tia + logn)) + O(m).

Construction time. O(nlogn - (Toq + Tiq + logn)) using O(n) space.

In all above time formulae, T,4; and T4 are the time to perform a single order derivation

and an lcp derivation query, respectively. Simple lcp derivation stands for lcp derivation

calculation which requires at most a single lcp query, otherwise the lcp derivation property is

called complex.

6 Conclusions and Open Problems

Assuming a matching relation on strings and an order relation of the form smaller or equal
(<) which holds A < Band B< A < A = B . We identified a small set of sufficient
conditions on the order relation that allows indexing: (1) is total order (2) consistent with
prefixes, i.e. the order between two strings is preserved for any pair of equal-length prefixes
of them. We presented an efficient indexing algorithm for any matching that fulfills these
conditions. Our algorithm relies on four properties: lcp derivation, the ability to calculate
lep(i, j) based on other lep values; order derivation, the ability to retrieve the order between
suffixes 7 and j based on lcp(i, j); efficient extension by one letter, the ability to extend both
lep and order derivation after text extension by one letter at the beginning, in amortized
O(l) time; and efficient extension by the pattern, the ability to extend both lcp and order
derivation, to support lep(P, S;) and order between the pattern and a suffix, in overall O(m)
time and space. An important open problem is to also provide the necessary conditions for
indexing.

We show that our conditions for indexing are more general than previous known conditions.

We prove that the consistency with prefixes is equivalent to a character oracle existence.

We also define a new matching where the previous conditions, in particular consistency
with suffizes, do not hold but where our conditions hold. When consistency with suffixes
means that dropping equal length prefixes from two matched strings result in a matched pair
of strings. We show an efficient indexing construction which does not rely on suffix links,
which cannot be used when there is no heredity from left. An interesting future direction is
to define suffix trees that support these kinds of matchings.
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