
Towards the Average-Case Analysis of
Substitution Resolution in λ-Calculus
Maciej Bendkowski
Jagiellonian University, Faculty of Mathematics and Computer Science,
Theoretical Computer Science Department, ul. Prof. Łojasiewicza 6, 30–348 Kraków, Poland
maciej.bendkowski@tcs.uj.edu.pl

Abstract
Substitution resolution supports the computational character of β-reduction, complementing its
execution with a capture-avoiding exchange of terms for bound variables. Alas, the meta-level
definition of substitution, masking a non-trivial computation, turns β-reduction into an atomic
rewriting rule, despite its varying operational complexity. In the current paper we propose a
somewhat indirect average-case analysis of substitution resolution in the classic λ-calculus, based
on the quantitative analysis of substitution in λυ, an extension of λ-calculus internalising the
υ-calculus of explicit substitutions. Within this framework, we show that for any fixed n ≥ 0, the
probability that a uniformly random, conditioned on size, λυ-term υ-normalises in n normal-order
(i.e. leftmost-outermost) reduction steps tends to a computable limit as the term size tends to infinity.
For that purpose, we establish an effective hierarchy (Gn)n of regular tree grammars partitioning
υ-normalisable terms into classes of terms normalising in n normal-order rewriting steps. The main
technical ingredient in our construction is an inductive approach to the construction of Gn+1 out
of Gn based, in turn, on the algorithmic construction of finite intersection partitions, inspired by
Robinson’s unification algorithm. Finally, we briefly discuss applications of our approach to other
term rewriting systems, focusing on two closely related formalisms, i.e. the full λυ-calculus and
combinatory logic.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Mathematics of
computing → Generating functions

Keywords and phrases lambda calculus, explicit substitutions, complexity, combinatorics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.7

Funding Maciej Bendkowski: Maciej Bendkowski was partially supported within the Polish National
Science Center grant 2016/21/N/ST6/01032.

1 Introduction

Traditional, machine-based computational models, such as Turing machines or RAMs, admit
a natural notion of an atomic computation step, closely reflecting the actual operational
cost of executing the represented computations. Unfortunately, this is not quite the case
for computational models based on term rewriting systems with substitution, such as the
classic λ-calculus. Given the (traditionally) epitheoretic nature of substitution, the single
rewriting rule of β-reduction (λx.a)b →β a[x := b] masks a non-trivial computation of
resolving (i.e. executing) the pending substitution of b for occurrences of x in a. Moreover,
unlike machine-based models, λ-calculus (as other term rewriting systems) does not impose
a strict, deterministic evaluation mechanism. Consequently, various strategies for resolving
substitutions can be used, even more obfuscating the operational semantics of β-reduction
and hence also its operational cost. Those subtle nuances hidden behind the implementation
details of substitution resolution are in fact one of the core issues in establishing reasonable
cost models for the classic λ-calculus, relating it with other, machine-based computational
models, see [14].

© Maciej Bendkowski;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maciej.bendkowski@tcs.uj.edu.pl
https://doi.org/10.4230/LIPIcs.FSCD.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

In order to resolve this apparent inadequacy, Abadi et al. proposed to refine substitution
in the classic λ-calculus and decompose it into a series of atomic rewriting steps, internalising
in effect the calculus of executing substitutions [1]. Substitutions become first-class citizens
and so can be manipulated together with regular terms. Consequently, the general framework
of explicit substitutions provides a machine-independent setup for the operational semantics
of substitution, based on a finite set of unit rewriting primitives. Remarkably, with the help of
linear substitution calculus (a resource aware calculus of explicit substitutions) Accattoli and
Dal Lago showed recently that the leftmost-outermost β-reduction strategy is a reasonable
invariant cost model for λ-calculus, and hence it is able to simulate RAMs (or equivalent,
machine-based models) within a polynomial time overhead [2].

Various subtleties of substitution resolution, reflected in the variety of available calculi
of explicit substitutions, induce different operational semantics for executing substitutions
in λ-calculus. This abundance of approaches is perhaps the main barrier in establishing a
systematic, quantitative analysis of the operational complexity of substitution resolution and,
among other things, a term rewriting analogue of classic average-case complexity analysis.
In the current paper we propose a step towards filling this gap by offering a quantitative
approach to substitution resolution in Lescanne’s λυ-calculus of explicit substitutions [15].
In particular, we focus on the following, average-case analysis type of question. Having fixed
arbitrary non-negative n, what is the probability that a (uniformly) random λυ-term of given
size is υ-normalisable (i.e. can be reduced to a normal form without explicit substitutions)
in exactly n leftmost-outermost reduction steps? Furthermore, how does this probability
distribution change when the term size tends to infinity?

We address the above questions using a two-step approach. First, we exhibit an effective
(i.e. computable) hierarchy (Gn)n of unambiguous regular tree grammars with the property
that Gn describes the language of terms υ-normalising in precisely n leftmost-outermost
υ-rewriting steps. Next, borrowing techniques from analytic combinatorics, we analyse
the limit proportion of terms υ-normalising in n normal-order steps. To that end, we
construct appropriate generating functions and provide asymptotic estimates for the number
of λυ-terms υ-normalising in n normal-order reduction steps. As a result, we base our
approach on a direct quantitative analysis of the υ term rewriting system, measuring the
operational cost of evaluating substitution in terms of the number of leftmost-outermost
rewriting steps required to reach a (υ-)normal form.

The paper is structured as follows. In Section 2 we outline λυ-calculus and the framework
of regular tree grammars, establishing the necessary terminology for the remainder of the
paper. Next, in Section 3, we prepare the background for the construction of (Gn)n. In
particular, we sketch its general, intuitive scheme. In Section 4 we introduce the main tool
of finite intersection partitions and show that it is indeed constructible in the context of
generated reduction grammars. Afterwards, in Section 5, we show how finite intersection
partitions can be used in the construction of new productions in Gn+1 based on productions in
the grammar Gn. Having constructed (Gn)n we then proceed to the main quantitative analysis
of υ-calculus using methods of analytic combinatorics, see Section 6. Finally, in Section 7 we
discuss broader applications of our technique to other term rewriting systems, based on the
examples of λυ-calculus and combinatory logic, and conclude the paper in the final Section 8.

2 Preliminaries

2.1 Lambda upsilon calculus
λυ (lambda upsilon) is a simple, first-order term rewriting system extending the classic
λ-calculus based on de Bruijn indices [11] with the calculus of resolving pending substitu-
tions [15, 16]. Its formal terms, so-called λυ-terms, are comprised of de Bruijn indices n,

M. Bendkowski 7:3

application, abstraction, together with an additional, explicit closure operator [·] standing
for unresolved substitutions. De Bruijn indices are represented in unary base expansion.
In other words, n is encoded as an n-fold application of the successor operator S to zero 0.
Substitutions, in turn, consist of three primitives, i.e. a constant shift ↑, a unary lift operator
⇑, mapping substitutions onto substitutions, and a unary slash operator /, mapping terms
onto substitutions. Terms containing closures are called impure whereas terms without
them are said to be pure. Figure 1 summarises the formal specification of λυ-terms and the
corresponding rewriting system λυ.

t ::= n | λt | tt | t[s]
s ::= t/ | ⇑ (s) | ↑
n ::= 0 | S n.

(a) Terms of λυ-calculus.

(λa)b→ a[b/] (Beta)
(ab)[s]→ a[s](b[s]) (App)
(λa)[s]→ λ(a[⇑ (s)]) (Lambda)
0[a/]→ a (FVar)

(S n)[a/]→ n (RVar)
0[⇑ (s)]→ 0 (FVarLift)

(S n)[⇑ (s)]→ n[s][↑] (RVarLift)
n[↑]→ S n. (VarShift)

(b) Rewriting rules.

Figure 1 The λυ-calculus rewriting system.

I Example 2.1. Note that the well-known combinator K = λxy.x is represented in the
de Bruijn notation as λλ1. The reverse application term λxy.yx, on the other hand, is
represented as λλ01. Consequently, in a single β-reduction step, it holds (λλ01)K →β λ (0K).
In λυ-calculus, however, this single β-reduction is decomposed into a series of small rewriting
steps governing both the β-reduction as well as the subsequent substitution resolution. For
instance, we have

(λλ01)K → (λ01) [K/]→ (λ (01) [⇑ (K/)])→ λ (0[⇑ (K/)]) (1[⇑ (K/)])
→ λ (0 (1[⇑ (K/)]))→ λ (0 (0[K/][↑]))→ λ (0 (K[↑])) . (1)

Furthermore,

K[↑] = (λλ1) [↑]→ λ ((λ1)[⇑ (↑)])→ λλ (1[⇑ (⇑ (↑))])
→ λλ (0[⇑ (↑)][↑])→ λλ (0[↑])
→ λλ1 = K (2)

hence indeed (λλ01)K rewrites to λ (0K).
Let us notice that in the presence of the erasing (RVar) and duplicating (App) rewriting

rules, not all reduction sequences starting with the same term have to be of equal length.
Like in the classic λ-calculus, depending on the considered term, some rewriting strategies
might be more efficient then others.

λυ enjoys a series of pleasing properties. Most notably, λυ is confluent, correctly
implements β-reduction of the classic λ-calculus, and preserves strong normalisation of
closed terms [3]. Moreover, the υ fragment, i.e. λυ without the (Beta) rule, is terminating. In

FSCD 2019

7:4 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

other words, each λυ-term is υ-normalising as can be shown using, for instance, polynomial
interpretations [9]. In the current paper we focus on the normal-order (i.e. leftmost-outermost)
evaluation strategy of υ-reduction. For convenience, we assume the following notational
conventions. We use lowercase letters a, b, c, . . . to denote arbitrary terms and s (with or
without subscripts) to denote substitutions. Moreover, we write a ↓n to denote the fact
that a normalises to its υ-normal form in n normal-order υ-reduction steps. Sometimes, for
further convenience, we also simply state that t normalises in n steps, without specifying the
assumed evaluation strategy nor the specific rewriting steps and normal form.

2.2 Regular tree languages
We base our main construction in the framework of regular tree languages. In what follows,
we outline their basic characteristics and that of corresponding regular tree grammars,
introducing necessary terminology. We refer the curious reader to [10, Chapter II] for a more
detailed exposition.

I Definition 2.2 (Ranked alphabet). A ranked alphabet F is a finite set of function symbols
endowed with a corresponding arity function arity : F → N. We use Fn to denote the set of
function symbols of arity n, i.e. function symbols f ∈ F such that arity(f) = n. Function
symbols of arity zero are called constants. As a notational convention, we use lowercase
letters f, g, h, . . . to denote arbitrary function symbols.

I Definition 2.3 (Terms). Let X be a finite set of variables. Then, the set TF(X) of terms
over F is defined inductively as follows:

X,F0 ⊂ TF(X);
If f ∈ Fn and α1, . . . , αn ∈ TF(X), then f(α1, . . . , αn) ∈ TF(X).

Terms not containing variables, in other words elements of TF(∅), are called ground terms.
As a notational convention, we use lowercase Greek letters α, β, γ, . . . to denote arbitrary

terms. Whenever it is clear from the context, we use the word term both to refer to the above
structures as well as to denote λυ-terms.

I Definition 2.4 (Regular tree grammars). A regular tree grammar G = (S,N,F,P) is a tuple
consisting of:

an axiom S ∈ N;
a finite set N of non-terminal symbols;
a ranked alphabet F of terminal symbols such that F ∩N = ∅; and
a finite set P of productions in form of N → α such that N ∈ N and α ∈ TF(N).

A production N → α is self-referencing if N occurs in α. Otherwise, if N does not
occur in α, we say that n→ α is regular. As a notational convention, we use capital letters
X,Y, Z . . . to denote arbitrary non-terminal symbols.

I Definition 2.5 (Derivation relation). The derivation relation →G associated with the
grammar G = (S,N,F,P) is a relation on pairs of terms in TF(N) satisfying α →G β if
and only if there exists a production N → γ in P such that after substituting γ for some
occurrence of N in α we obtain β. Following standard notational conventions, we use ∗−→G to
denote the transitive closure of →G. Moreover, if G is clear from the context, we omit it in
the subscript of the derivation relations and simply write → and ∗−→.

A regular tree grammar G with axiom S is said to be unambiguous if and only if for
each ground term α ∈ TF(∅) there exists at most one derivation sequence in form of
S → γ1 → · · · → γn = α. Likewise, N is said to be unambiguous in G if and only if
for each ground term α ∈ TF(∅) there exists at most one derivation sequence in form of
N → γ1 → · · · → γn = α.

M. Bendkowski 7:5

I Definition 2.6 (Regular tree languages). The language L(G) generated by G is the set of
all ground terms α such that S ∗−→ α where S is the axiom of G. Similarly, the language
generated by term α ∈ TF(N) in G, denoted as LG(α), is the set of all ground terms β such
that α ∗−→ β. Finally, a set L of ground terms is said to be a regular tree language if there
exists a regular tree grammar G such that L(G) = L.

I Example 2.7. The set of λυ-terms is an example of a regular tree language. The corres-
ponding regular tree grammar Λ = (T,N,F,P) consists of

a set N of three non-terminal symbols T , S, N intended to stand for λυ-terms, substitu-
tions, and de Bruijn indices, respectively, with T being the axiom of Λ;
a set F of terminal symbols, comprised of all the symbols of the λυ-calculus language,
i.e. term application and abstraction, closure ·[·], slash ·/, lift ⇑ (·) and shift ↑ operators,
and the successor S(·) with the constant 0; and
a set P of productions

T → N | λT | TT | T [S]
S → T/ | ⇑ (S) | ↑
N → 0 | SN. (3)

Let us notice that (3) consists of five self-referencing productions, three for T and one for
each S and N . Moreover, L(N) ⊂ L(T) as P includes a production T → N .

I Example 2.8. Each λυ-term admits a natural tree-like structure. The following example
depicts the tree representation of the term λ1[0[↑][⇑ (0/)]]. Note that the (conventionally)
implicit term application is represented as an explicit binary node (·).

λ

·

S

0

[·]

[·] ⇑

/

0

0 ↑

Figure 2 Tree representation of λ1[0[↑][⇑ (0/)]].

3 Reduction grammars

We conduct our construction of (Gn)n in an inductive, incremental fashion. Starting with G0
corresponding to the set of pure terms (i.e. λυ-terms without closures) we build the (n+ 1)st
grammar Gn+1 based on the structure of the nth grammar Gn. First-order rewriting rules
of λυ-calculus guarantee a close structural resemblance of both their left- and right-hand
sides, see Figure 1b. Consequently, with Gn at hand, we can analyse the right-hand sides of
υ rewriting rules and match them with productions of Gn. Based on their structure, we then
determine the structure of productions of Gn+1 which correspond to respective left-hand
sides. Although such a general idea of constructing Gn+1 out of Gn is quite straightforward,
its implementation requires some careful amount of detail.

FSCD 2019

7:6 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

For that reason, we make the following initial preparations. Each grammar Gn uses
the same, global, ranked alphabet F corresponding to λυ-calculus, see Example 2.7. The
standard non-terminal symbols T, S, and N , together with their respective productions (3),
are pre-defined in each grammar Gn. In addition, Gn includes n+ 1 non-terminal symbols
G0, . . . , Gn (the final one being the axiom of Gn) with the intended meaning that for all
0 ≤ k ≤ n, the language LGn(Gk) is equal to the set of terms υ-normalising in k normal-order
steps. In this manner, building (Gn)n amounts to a careful, incremental extension process,
starting with the initial grammar G0 comprised of the following extra, i.e. not included
in (3), productions:

G0 → N | λG0 | G0G0. (4)

In order to formalise the above preparations and the overall presentation of our construc-
tion, we introduce the following, abstract notions of υ-reduction grammar and later also
their simple variants.

I Definition 3.1 (υ-reduction grammars). Let Λ = (T,N,F,P) be the regular tree grammar
corresponding to λυ-terms, see Example 2.7. Then, the regular tree grammar

Gn = (Gn,Nn,F,Pn) (5)

with
Nn = N ∪ {G0, G1, . . . , Gn}; and
Pn being a set of productions such that P ⊂ Pn

is said to be a υ-reduction grammar, υ-RG in short, if all non-terminal symbols Nn are
unambiguous in Gn, for all 0 ≤ k ≤ n the language L(Gk) is equal to the set of λυ-terms
υ-normalising in k normal-order υ-steps, and finally L(T), L(S) and L(N) are equal to the
sets of λυ-terms, substitutions and de Bruijn indices, respectively.

I Definition 3.2 (Partial order of sorts). The partial order of sorts (Nn,�) is a partial order
(i.e. reflexive, transitive, and anti-symmetric relation) on non-terminal symbols Nn satisfying
X � Y if and only if LGn

(X) ⊆ LGn
(Y). For convenience, we write X 	 Y to denote the

greatest lower bound of {X,Y }. Figure 3 depicts the partial order (Nn,�).

T

G0

N

G1 G2 · · · Gn

Figure 3 Hasse diagram of the partial order (Nn,�).

I Remark 3.3. Let us notice that given the interpretation of L(G0), . . . , L(Gn), the partial
order of sorts (Nn,�) captures all the inclusions among the non-terminal languages within
Gn. However, in addition, if X and Y are not comparable through �, then L(X)∩L(Y) = ∅
as each term υ-normalises in a unique, determined number of steps.

M. Bendkowski 7:7

I Definition 3.4 (Simple υ-reduction grammars). A υ-RG Gn is said to be simple if all its
self-referencing productions are either productions of the regular tree grammar corresponding
to λυ-terms, see Example 2.7, or are of the form

Gk → λGk | G0Gk | GkG0 (6)

and moreover, for all regular productions in form of Gk → α in Gn, it holds α ∈ TF(N ∪
{G0, . . . , Gk−1}), i.e. α does not reference non-terminals other than G0, . . . , Gk−1.

I Remark 3.5. Let us note that, in general, υ-reduction grammars do not have to be simple.
Due to the erasing (RVar) rewriting rule, it is possible to construct, inter alia, more involved
self-referencing productions. Nonetheless, for technical convenience, we will maintain the
simplicity of constructed grammars (Gn)n.

Also, let us remark that the above definition of simple υ-reduction grammars asserts that
if Gn+1 is a simple υ-RG, then, by a suitable truncation, it is possible to obtain all of the
υ-reduction grammars G0 up to Gn. Consequently, Gn+1 contains, in a proper sense, all the
proceeding grammars G0, . . . ,Gn.

4 Finite intersection partitions

The main technical ingredient in our construction of (Gn)n are finite intersection partitions.

I Definition 4.1 (Finite intersection partition). Assume that α, β are two terms in TF(X).
Then, a finite intersection partition, FIP in short, of α and β is a finite set Π(α, β) =
{π1, . . . , πn} ⊂ TF(X) such that L(πi)∩L(πj) = ∅ whenever i 6= j, and moreover

⋃
i L(πi) =

L(α) ∩ L(β).

Let us note that, a priori, it is not immediately clear if Π(α, β) exists for α and β in the
term algebra T(Nn) associated with a simple υ-RG Gn nor whether there exists an algorithmic
method of its construction. The following result states that both questions can be settled in
the affirmative.

I Lemma 4.2 (Constructible finite intersection partitions). Let Gn be a simple υ-reduction
grammar. Assume that α, β are two (not necessarily ground) terms in T(Nn) where Nn is
the set of non-terminal symbols of Gn. Then, α and β have a computable finite intersection
partition Π(α, β).

Figure 4 provides a functional pseudocode description of fipk constructing Π(α, β) for
arbitrary terms α, β within the scope of a simple υ-RG Gk. A corresponding proof of
correctness is given in Appendix A.

Our finite intersection partition algorithm resembles a variant of Robinson’s unification
algorithm [17] applied to many-sorted term algebras with a tree hierarchy of sorts, as
investigated by Walther, cf. [19]. It becomes even more apparent once the correspondence
between sorts, as stated in the language of many-sorted term algebra, and the tree-like
hierarchy of non-terminal symbols in υ-reduction grammars is established, see Figure 3.

5 The construction of simple υ-reduction grammars

Equipped with constructible, finite intersection partitions, we are now ready to describe the
generation procedure for (Gn)n. We begin with establishing a convenient verbosity invariant
maintained during the construction of (Gn)n.

FSCD 2019

7:8 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

1 fun fipk α β :=
2 match α, β with
3 | f(α1, . . . , αn), g(β1, . . . , βm) ⇒
4 if f 6= g ∨ n 6= m then ∅ (* symbol clash *)
5 else if n = m = 0 then {f}
6 else let Πi := fipk αi βi, ∀ 1 ≤ i ≤ n
7 in {f(π1, . . . , πn) | (π1, . . . , πn) ∈ Π1 × · · · ×Πn}
8

9 | X, Y ⇒
10 {X 	 Y |X � Y ∨ Y � X}
11

12 | f(α1, . . . , αn), X ⇒
13 fipk X f(α1, . . . , αn) (* flip arguments *)
14

15 | X, f(α1, . . . , αn) ⇒
16 let Πγ := fipk γ f(α1, . . . , αn), ∀ (X → γ) ∈ Gk
17 in

⋃
(X→γ)∈Gk

Πγ

18 end.

Figure 4 Pseudocode of the fipk procedure computing Π(α, β).

I Definition 5.1 (Closure width). Let α be a term in TF(X) for some finite set X. Then,
α has closure width w, if w is the largest non-negative integer such that α is of form
χ[σ1] · · · [σw] for some term χ and substitutions σ1, . . . , σw. For convenience, we refer to χ
as the head of α and to σ1, . . . , σw as its tail.

I Definition 5.2 (Verbose υ-reduction grammars). A υ-RG Gn is said to be verbose if none
of its productions is of form X → Gk[σ1] · · · [σw] for some arbitrary non-negative w and k.

Simple, verbose υ-reduction grammars admit a neat structural feature. Specifically, their
productions preserve closure width of generated terms.

I Lemma 5.3. Assume that Gn is a simple, verbose υ-RG. Then, for each production
Gn → χ[σ1] · · · [σw] in Gn such that its right-hand side is of closure width w, either χ = N

or χ is in form χ = f(α1, . . . , αm) for some non-closure function symbol f of arity m.

Proof. See Appendix B. J

I Lemma 5.4. Assume that Gn is a simple, verbose υ-RG. Then, for each production
Gn → χ[σ1] · · · [σw] in Gn such that its right-hand side is of closure width w, and ground
term δ ∈ L(χ[σ1] · · · [σw]) it holds that δ is of closure width w.

Proof. Direct consequence of Lemma 5.3. J

The following ϕ-matchings are the central tool used in the construction of new reduction
grammars. Based on finite intersection partitions, ϕ-matchings provide a simple template
recognition mechanism which allows us to match productions in Gn with right-hand sides of
υ rewriting rules.

M. Bendkowski 7:9

I Definition 5.5 (ϕ-matchings). Let Gn be a simple, verbose υ-RG and ϕ = χ[τ1] · · · [τd] ∈
T(Nn) be a template (term) of closure width d. Assume that X → γ[σ1] · · · [σw] is a production
of Gn which right-hand side has closure width w ≥ d. Furthermore, let

∆ϕ(γ[σ1] · · · [σw]) = Π(γ[σ1] · · · [σw], χ[τ1] · · · [τd] [S] · · · [S]︸ ︷︷ ︸
w−d times

) (7)

be the set of ϕ-matchings of γ[σ1] · · · [σw].
Then, the set ∆n

ϕ of ϕ-matchings of Gn is defined as

∆n
ϕ =

⋃
{∆ϕ(γ) | Gn → γ ∈ Gn}. (8)

For further convenience, we write ϕ〈i〉 to denote the template ϕ = χ[τ1] · · · [τd] with i copies
of [S] appended to its original tail, i.e. ϕ〈i〉 = χ[τ1] · · · [τd] [S] · · · [S]︸ ︷︷ ︸

i times

.

Table 1 υ-rewriting rules with respective templates and production schemes.

Rewriting rule Template ϕ Production scheme ∆n
ϕ 7→ γ

(App) (ab)[s]→ a[s](b[s]) T [S](T [S]) α[τ1](β[τ2])[σ1] · · · [σw] 7→ (αβ)[τ][σ1] · · · [σw]†

(Lambda) (λa)[s]→ λ(a[⇑ (s)]) λ(T [⇑ (S)]) λ(α[⇑ (σ)])[σ1] · · · [σw] 7→ (λα)[σ][σ1] · · · [σw]
(FVar) 0[a/]→ a T see Remark 5.8
(RVar) (S n)[a/]→ n N α[σ1] · · · [σw] 7→ (Sα)[T/][σ1] · · · [σw]

(FVarLift) 0[⇑ (s)]→ 0 0 0[σ1] · · · [σw] 7→ 0[⇑ (S)][σ1] · · · [σw]
(RVarLift) (S n)[⇑ (s)]→ n[s][↑] N [S][↑] α[σ][↑][σ1] · · · [σw] 7→ (Sα)[⇑ (σ)][σ1] · · · [σw]
(VarShift) n[↑]→ S n SN (Sα)[σ1] · · · [σw] 7→ α[↑][σ1] · · · [σw]

†For each τ ∈ Π(τ1, τ2), see Remark 5.7.

In what follows we use computable intersection partitions in our iterative construction of
(Gn)n. Recall that if Gn is simple then, inter alia, self-referencing productions starting with
the non-terminal Gn take the form

Gn → λGn | G0Gn | GnG0. (9)

If t ↓n (for n ≥ 1) but it does not start with a head υ-redex, then it must be of form t = λa

or t = ab. In the former case, it must hold a ↓n; hence the pre-defined production Gn → λGn
in Gn. In the latter case, it must hold a ↓k whereas b ↓n−k for some 0 ≤ k ≤ n. And so, it
means that we have to include productions in form of Gn → GkGn−k for all 0 ≤ k ≤ n in
Gn; in particular, the already mentioned two self-referencing productions, see (9).

Remaining terms have to start with head redexes. Each of these head υ-redexes is covered
by a dedicated set of productions. The following Lemma 5.6 demonstrates how ϕ-matchings
and, in particular, finite intersection partitions can be used for that purpose.

I Lemma 5.6. Let ϕ = λ(T [⇑ (S)]) be the template corresponding to the (Lambda) rewriting
rule, see Table 1, and t = (λa)[s][s1] · · · [sw]. Then, t ↓n+1 if and only if there exists a unique
term π = (λ(α[⇑ (σ)])) [σ1] · · · [σw] ∈ ∆n

ϕ such that t ∈ L((λα)[σ][σ1] · · · [σw]).

Proof. See Appendix B. J

FSCD 2019

7:10 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

Let us remark that almost all of the rewriting rules of λυ exhibit a similar construction
scheme; the exceptional (App) and (FVar) rewriting rules are discussed in Remark 5.7
and Remark 5.8, respectively. Given a rewriting rule, we start with the respective template
ϕ (see Table 1) and generate all possible ϕ-matchings in Gn. Intuitively, such an operation
extracts unambiguous sublanguages out of each production in Gn which match the right-hand
side of the considered rewriting rule. Next, we consider each term π ∈ ∆n

ϕ and establish
new productions Gn+1 → γ in Gn+1 out of π. Assuming that Gn is a simple and verbose
υ-RG, the novel productions generated by means of ∆n

ϕ cover all the λυ-terms reducing
in n + 1 normal-order steps, starting with the prescribed head rewriting rule. Since the
head of each so constructed production either starts with a function symbol or is equal to
N , cf. Table 1, the outcome grammar is necessarily verbose. Moreover, if we complete the
production generation for all rewriting rules, by construction, the grammar Gn+1 must be, at
the same time, simple. Consequently, the construction of the hierarchy (Gn)n amounts to an
inductive application of the above construction scheme.
I Remark 5.7. While following the same pattern for the (App) rule, we notice that the
corresponding construction requires a slight modification. Specifically, while matching
ϕ = T [S](T [S]) with a right-hand side γ of a production Gn → γ in Gn we cannot conclude
that π ∈ ∆n

ϕ takes the form π = α[σ](β[σ])[σ1] · · · [σw]. Note that, in fact, we know that π =
α[τ1](β[τ2])[σ1] · · · [σw] however perhaps τ1 6= τ2. Nonetheless, we can still compute Π(τ1, τ2)
and use τ ∈ Π(τ1, τ2) to generate a finite set of terms in form of π = α[τ](β[τ])[σ1] · · · [σw].
Using those terms, we can continue with our construction and establish a set of new
productions in form of Gn → (αβ)[τ][σ1] · · · [σw] meant to be included in Gn+1.
I Remark 5.8. Let us also remark that the single rewriting rule which has a template ϕ
not retaining closure width is (FVar). In consequence, the utility of ∆T (γ) is substantially
limited. If t = 0[a/][s1] · · · [sw] ↓n+1, then t→ t′ = a[s1] · · · [sw] which, in turn, satisfies t′ ↓n.
Note that if γ is the right-hand side of a unique production Gn → γ in Gn generating t′, then
we can match T with any non-empty prefix of γ. The length of the chosen prefix influences
what initial part α of γ is going to be placed under the closure in Gn+1 → 0[α/][σ1] · · · [σw].

This motivates the following approach. Let Gn → γ′ = χ[σ1] · · · [σw] be an arbitrary
production in Gn of closure width w. If t′ ∈ L(γ′) and t→ t′ in a single head (FVar)-reduction,
then t ∈ L(0[χ[σ1] · · · [σd]/][σd+1] · · · [σw] for some 0 ≤ d ≤ w. Therefore, in order to generate
all productions in Gn+1 corresponding to λυ-terms υ-normalising in n + 1 steps, starting
with a head (FVar)-reduction, we have to include all productions in form of Gn+1 →
0[χ[σ1] · · · [σd]/][σd+1] · · · [σw] for each production Gn → γ′ in Gn.

Finally, note that it is, again, possible to optimise the (FVar) construction scheme with
respect to the number of generated productions. For each Gn → γ in Gn the above scheme
produces, inter alia, a production Gn+1 → 0[γ/]. Note that we can easily merge them into a
single production Gn+1 → 0[Gn/] instead.

Such a construction leads us to the following conclusion.

I Theorem 5.9. For all n ≥ 0 there exists a constructible, simple υ-RG Gn.

I Example 5.10. The following example demonstrates the construction of G1 out of G0.
Note that G1 includes the following productions associated with the axiom G1:

G1 → λG1 | G0G1 | G1G0

| 0[(G0G0)/] | 0[λG0/] | 0[N/]
| (SN)[T/] | 0[⇑ (S)] | N [↑]. (10)

M. Bendkowski 7:11

The first three productions are included by default. The next three productions are derived
from the (FVar) rule applied to all the productions of G0 → γ in G0. The final three
productions are obtained by (RVar), (FVarLift), and (VarShift), respectively.

6 Analytic combinatorics and simple υ-reduction grammars

Having established an effective hierarchy (Gk)k of simple υ-reduction grammars, we can now
proceed with their quantitative analysis. Given the fact that regular tree grammars represent
well-known algebraic tree-like structures, our analysis is in fact a standard application of
algebraic singularity analysis of respective generating functions [12, 13]. The following result
provides the main tool of the current section.

I Proposition 6.1 (Algebraic singularity analysis, see [13], Theorem VII.8). Assume that
f(z) =

(√
1− z/ζ

)
g(z) + h(z) is an algebraic function, analytic at 0, and has a unique

dominant singularity z = ζ. Moreover, assume that g(z) and h(z) are analytic in the disk
|z| < ζ + ε for some ε > 0. Then, the coefficients [zn]f(z) in the series expansion of f(z)
around the origin, satisfy the following asymptotic estimate

[zn]f(z) ∼ ζ−nn
−3/2g(ζ)
Γ(− 1

2)
. (11)

In order to analyse the number of λυ-terms normalising in k steps, we execute the
following plan. First, we use the structure (and unambiguity) of Gk to convert it by means
of symbolic methods into a corresponding generating function Gk(z) =

∑
g

(k)
n zn in which

the integer coefficient g(k)
n standing by zn in the series expansion of Gk(z), also denoted as

[zn]Gk(z), is equal to the number of λυ-terms of size n normalising in k steps. Next, we
show that so obtained generating functions fit the premises of Proposition 6.1. We start with
establishing an appropriate size notion for λυ-terms. For technical convenience, we assume
the following natural size notion, equivalent to the number of constructors in the associated
term algebra TF(∅), see Figure 5.

|n| = n+ 1
λa	= 1 +	a		
ab	= 1 +	a	+	b
a[s]	= 1 +	a	+	s

|a/| = 1 + |a|
| ⇑ (s)| = 1 + |s|
| ↑ | = 1.

Figure 5 Natural size notion for λυ-terms, cf. Figure 2.

The following results exhibit the closed-form of generating functions corresponding to
pure terms as well as the general class of λυ-terms and explicit substitutions.

I Proposition 6.2 (see [5]). Let L∞(z) denote the generating function corresponding to the
set of λ-terms in υ-normal form (i.e. without υ-redexes). Then,

L∞(z) =
1− z −

√
1−3z−z2−z3

1−z

2z . (12)

I Proposition 6.3 (see [7]). Let T (z), S(z) and N(z) denote the generating functions
corresponding to λυ-terms, substitutions, and de Bruijn indices, respectively. Then,

T (z) = 1−
√

1− 4z
2z − 1, S(z) = 1−

√
1− 4z

2z

(
z

1− z

)
and N(z) = z

1− z . (13)

FSCD 2019

7:12 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

With the above basic generating functions, we can now proceed with the construction of
generating functions corresponding to simple υ-reduction grammars. See Appendix C for
respective proofs.

I Proposition 6.4 (Constructible generating functions). Let Φk denote the set of regular
productions in Gk. Then, for all k ≥ 1 there exists a generating function Gk(z) such that
[zn]Gk(z) (i.e. the coefficient standing by zn in the power series expansion of Gk(z)) is equal
to the number of terms of size n which υ-normalise in k normal-order reduction steps, and
moreover Gk(z) admits a closed-form of the following shape:

Gk(z) = 1
1− z − 2zL∞(z)

∑
Gk→γ∈Φk

Gγ(z) (14)

where

Gγ(z) = zζ(γ)T (z)τ(γ)
S(z)σ(γ)

N(z)ν(γ) ∏
0≤i<k

Gi(z)ρi(γ) (15)

and all ζ(γ), τ(γ), σ(γ), ν(γ), and ρi(γ) are non-negative integers depending on γ.

I Theorem 6.5. For all k ≥ 1, the coefficients [zn]Gk(z) satisfy the asymptotic estimate

[zn]Gk(z) ∼ ck · 4nn−3/2. (16)

Consider the following asymptotic density of λυ-terms υ-normalisable in k normal-order
reduction steps in the set of all λυ-terms:

µk = lim
n→∞

[zn]Gk(z)
[zn]T (z) . (17)

In other words, the limit µk of the probability that a uniformly random λυ-term of size
n normalises in k steps as n tends to infinity. Note that for each k ≥ 1, the asymptotic
density µk is positive as both [zn]Gk(z) and [zn]T (z) admit the same (up to a multiplicative
constant) asymptotic estimate. Moreover, it holds µk −−−−→

k→∞
0 as the sum

∑
k µk is increasing

and necessarily bounded above by one.
Figure 6 provides the specific asymptotic densities µ0, . . . , µ10 obtained by means of a

direct construction and symbolic computations1 (numerical values are rounded up to the
fifth decimal point).
I Remark 6.6. Theorem 5.9 and Theorem 6.5 are effective in the sense that both the
symbolic representation and the symbolic asymptotic estimate of respective coefficients are
computable. Since Γ(−1/2) = −2

√
π is the sole transcendental number occurring in the

asymptotic estimates, and cancels out when asymptotic densities are considered, cf. (17), we
immediately note that for each k ≥ 0, the asymptotic density of terms υ-normalising in k
steps is necessarily an algebraic number.
I Remark 6.7. Each λυ-term is υ-normalising in some (determined) number of normal-order
reduction steps. However, it is not clear whether

∑
k µk = 1 as asymptotic density is, in

general, not countably additive. Let us remark that if this sum converges to one, then
the random variable Xn denoting the number of normal-order υ-reduction steps required
to normalise a random λυ-term of size n (i.e. the average-case cost of resolving pending
substitutions in a random term of size n) converges pointwise to a discrete random variable
X defined as P(X = k) = µk. Alas, our current analysis does not determine an answer to
this problem.

1 Corresponding software is available at https://github.com/maciej-bendkowski/towards-acasrlc.

https://github.com/maciej-bendkowski/towards-acasrlc

M. Bendkowski 7:13

0 2 4 6 8 100

0.5

1

1.5

2

2.5 ·10−2

Number of υ-reduction steps

A
sy
m
pt
ot
ic

de
ns
ity

µk
k µk
0 0.
1 0.02176
2 0.02054
3 0.01200
4 0.01306
5 0.00920
6 0.00915
7 0.00700
8 0.00710
9 0.00600
10 0.00585

Figure 6 Asymptotic densities of terms υ-normalising in k normal-order reduction steps. In
particular, we have µ0 + · · ·+ µ10 ≈ 0.11162.

7 Applications to other term rewriting systems

Let us note that the presented construction of reduction grammars does not depend on
specific traits immanent to λυ, but rather on certain more general features of its rewriting
rules. The key ingredient in our approach is the ability to compute finite intersection
partitions for arbitrary terms within the scope of established reduction grammars, which
themselves admit certain neat structural properties. Using finite intersection partitions, it
becomes possible to generate new productions based on the structural resemblance of both
the left-hand and right-hand sides of associated rewriting rules. In what follows we sketch
the application of the presented approach to other term rewriting systems, focusing on two
examples, i.e. λυ-calculus and combinatory logic. Although the technique is similar, some
careful amount of details is required.

7.1 λυ-calculus
In order to characterise the full λυ-calculus, we need a few adjustments to the already
established construction of (Gk)k corresponding to the υ fragment. Clearly, we have to
establish a new production construction scheme associated with the (Beta) rewriting rule.
Consider the corresponding template ϕ = T [T/]. Like the respective template for (FVar),
cf. Remark 5.8, the current template ϕ does not retain closure width of generated ground
terms. However, at the same time it is also amenable to similar treatment as (FVar).

Let t = (λa)b[s1] · · · [sw] ↓n+1. Note that t → a[b/][s1] · · · [sw] ↓n. Consequently, one
should attempt to match ϕ with all possible prefixes of γ in all productions Gn → γ instead
of merely their heads, as in the case of ∆n

ϕ. Let γ = χ[σ1] · · · [σd] be of closure width d and
δ = χ[σ1] · · · [σi] be its prefix (1 ≤ i ≤ d). Note that, effectively, Π(δ, T [T/]) checks if [σi] takes
form β/ for some term β. Hence, for each π ∈ Π(δ, T [T/]) we have π = α[τ1] · · · [τi−1][β/]
for some terms α, τ1, . . . , τi−1, and β. Out of such a partition π we can then construct the
production Gn+1 → (λα[τ1] · · · [τi−1])β[τi+1] · · · [τd] in Gn+1.

However, with the new scheme for (Beta) we are not yet done with our construction. Note
that due to the new head redex type, we are, inter alia, forced to change the pre-defined set
of productions corresponding to λυ-terms without a head redex. Indeed, note that if t does
not start with a head redex, then it must be of form (λa) or (ab) where in the latter case

FSCD 2019

7:14 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

a cannot start with a leading abstraction. This constraint suggests the following approach.
We split the set of productions in form of Gn → γ into two categories, i.e. productions
whose right-hand sides are of form λγ′ and the remainder ones. Since both sets are disjoint,
we can group them separately and introduce two auxiliary non-terminal symbols G(λ)

n and
G

(¬λ)
n for terms starting with a head abstraction and for those without a head abstraction,

respectively, with the additional productions Gn → G
(λ)
n | G(¬λ)

n . In doing so, it is possible
to pre-define the all the productions corresponding to terms without head redexes using
productions in form of

Gn → λGn | G(¬λ)
k Gn−k where 0 ≤ k ≤ n. (18)

This operation, however, requires a minor adjustment in the formal argument concerning the
termination and correctness of constructed finite intersection partitions, see Appendix A and,
in particular, Definition A.1). Afterwards, it becomes possible to reuse already established
techniques in the construction of new productions in Gn+1 out of Gn.

7.2 SK-combinators
Using a similar approach, it becomes possible to construct appropriate reduction grammars
for SK-combinators. In particular, our current technique (partially) subsumes, and also
simplifies, the results of [6, 4]. With merely two rewriting rules in form of Kxy → x and
Sxyz → xz(yz) we can use the developed finite intersection partitions and ϕ-matchings to
construct a hierarchy (Gn)n of normal-order reduction grammars for SK-combinators. The
rewriting rule corresponding to K is similar to (FVar) whereas the respective rule for S
resembles the (App) rule; as in this case, we have to deal with variable duplication on the
right-hand side of the rewriting rule. Instead of closure width, we use a different normal form
of terms, and so also productions, based on the sole binary constructor of term application.
Consequently, a combinator is of application width w if it takes the form Xα1 . . . αw for
some primitive combinator X ∈ {S,K}. Consider the more involved case of productions
corresponding to head S-redexes. Let t = Sxyzα1 . . . αw be a term of application width
w + 3 where w ≥ 0. Note that

Sxyzδ1 . . . δw → xz(yz)δ1 . . . δw. (19)

Let us rewrite the right-hand side of (19) as t′ = Xx1 . . . xkz(yz)δ1 . . . δw where x =
Xx1 . . . xk and X is a primitive combinator. Assume that γ is the right-hand side of the
unique production Gn → γ in Gn such that t′ ∈ L(γ). Note that the shape of t′ suggests a
construction scheme similar to the already discussed (App), see Remark 5.7, where we first
have to match the pattern ϕ = T (TT) with some arguments of γ and subsequently attempt
to extract a finite intersection partition Π(α, β) of respective subterms α and β so that for
each π ∈ Π(α, β) we have z ∈ L(π). With appropriate terms at hand, we can then construct
corresponding productions in the next grammar Gn+1.

8 Conclusions

Quantitative aspects of term rewriting systems are not well studied. A general complexity
analysis was undertaken by Choppy, Kaplan, and Soria who considered a class of confluent,
terminating term rewriting systems in which the evaluation cost, measured in the number of
rewriting steps required to reach the normal form, is independent of the assumed evaluation
strategy [8]. More recently, typical evaluation cost of normal-order reduction in combinatory

M. Bendkowski 7:15

logic was studied by Bendkowski, Grygiel and Zaionc [6, 4]. Using quite different, non-analytic
methods, Sin’Ya, Asada, Kobayashi and Tsukada considered certain asymptotic aspects of
β-reduction in the simply-typed variant of λ-calculus showing that, typically, λ-terms of
order k have (k − 1)-fold exponentially long β-reduction sequences [18].

Arguably, the main novelty in the presented approach lies in the algorithmic construction
of reduction grammars (Gk)k based on finite intersection partitions, assembled using a
general technique reminiscent of Robinson’s unification algorithm applied to many-sorted
term algebras, cf. [17, 19]. Equipped with finite intersection partitions, the construction
of Gk+1 out of Gk follows a stepwise approach, in which new productions are established
on a per rewriting rule basis. Consequently, the general technique of generating reduction
grammars does not depend on specific features of λυ, but rather on more general traits
of certain first-order rewriting systems. Nonetheless, the full scope of our technique is yet
to be determined.

Although the presented construction is based on the leftmost-outermost reduction scheme,
it does not depend on the specific size notion associated with λυ-terms; in principle, more
involved size models can be assumed and analysed. The assumed evaluation strategy, size
notion, as well as the specific choice of λυ are clearly arbitrary and other, equally perfect
choices for modelling substitution resolution could have been made. However, due to merely
eight rewriting rules forming λυ, it is one of the conceptually simplest calculus of explicit
substitutions. Together with the normal-order evaluation tactic, it is therefore one of the
simplest to investigate in quantitative terms and to demonstrate the finite intersection
partitions technique.

Due to the unambiguity of constructed grammars (Gk)k it is possible to automatically es-
tablish their corresponding combinatorial specifications and, in consequence, obtain respective
generating functions encoding sequences

(
g

(k)
n

)
n
comprised of numbers g(k)

n associated with
λυ-terms of size n which reduce in k normal-order rewriting steps to their υ-normal forms.
Singularity analysis provides then the means for systematic, quantitative investigations into
the properties of substitution resolution in λυ, as well as its machine-independent operational
complexity. Finally, with generating functions at hand, it is possible to undertake a more
sophisticated statistical analysis of substitution (in particular υ-normalisation) using available
techniques of analytic combinatorics, effectively analysing the average-case cost of λ-calculus
and related term rewriting systems.

It should be noted that such an analysis might provide some novel insight into the combin-
atorial structure of substitution and, in the long-term perspective, provide a theoretical model
for the operational, average-case analysis of substitution in modern functional programming
languages. In view of these objectives, we conclude the paper with the following conjecture,
postulating the existence of a limit distribution associated with the average-case cost of
substitution resolution, and its close relation with the constructible hierarchy of reduction
grammars and established series of asymptotic densities.

I Conjecture. Let µk denote the asymptotic density of λυ-terms υ-normalising in k leftmost-
outermost υ-reduction steps, cf. Remark 6.7. Then, it holds∑

k≥0
µk = 1. (20)

Consequently, the sequence (Xn)n of random variables corresponding to the number of
υ-reductions required to normalise a uniformly random λυ-term of size n (i.e. the average-
case cost of resolving all pending substitutions in a random λυ-term of size n) converges
pointwise to a random variable X satisfying P(X = k) := µk.

FSCD 2019

7:16 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

References

1 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of
Functional Programming, 1(4):375–416, 1991. doi:10.1017/S0956796800000186.

2 B. Accattoli and U. Dal Lago. (Leftmost-Outermost) Beta Reduction is Invariant, Indeed.
Logical Methods in Computer Science, 12(1), 2016. doi:10.2168/LMCS-12(1:4)2016.

3 Z.-E.-A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit
substitutions which preserves strong normalisation. Journal of Functional Programming,
6(5):699–722, 1996. doi:10.1017/S0956796800001945.

4 M. Bendkowski. Normal-order reduction grammars. Journal of Functional Programming, 27,
2017. doi:10.1017/S0956796816000332.

5 M. Bendkowski, K. Grygiel, P. Lescanne, and M. Zaionc. Combinatorics of λ-terms: a natural
approach. Journal of Logic and Computation, 27(8):2611–2630, 2017. doi:10.1093/logcom/
exx018.

6 M. Bendkowski, K. Grygiel, and M. Zaionc. On the likelihood of normalization in combinatory
logic. Journal of Logic and Computation, 2017. doi:10.1093/logcom/exx005.

7 M. Bendkowski and P. Lescanne. Combinatorics of Explicit Substitutions. In Proceedings of
the 20th International Symposium on Principles and Practice of Declarative Programming,
PPDP ’18, pages 7:1–7:12. ACM, 2018. doi:10.1145/3236950.3236951.

8 C. Choppy, S. Kaplan, and M. Soria. Complexity Analysis of Term-Rewriting Systems.
Theoretical Computer Science, 67(2&3):261–282, 1989. doi:10.1016/0304-3975(89)90005-4.

9 A. Cichon and P. Lescanne. Polynomial interpretations and the complexity of algorithms. In
Automated Deduction—CADE-11, pages 139–147. Springer Berlin Heidelberg, 1992.

10 H. Comon, M. Dauchet, R. Gilleron, Ch. Löding, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications, 2007. Release October, 12th 2007.
URL: http://www.grappa.univ-lille3.fr/tata.

11 N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, 1972.

12 Ph. Flajolet and A. M. Odlyzko. Singularity Analysis of Generating Functions. SIAM Journal
on Discrete Mathematics, 3(2):216–240, 1990.

13 Ph. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 1 edition,
2009.

14 J. L. Lawall and H. G. Mairson. Optimality and Inefficiency: What Isn’t a Cost Model of the
Lambda Calculus? In Proceedings of the 1st ACM SIGPLAN International Conference on
Functional Programming, ICFP ’96, pages 92–101. ACM, 1996. doi:10.1145/232627.232639.

15 P. Lescanne. From λσ to λυ: A Journey Through Calculi of Explicit Substitutions. In
Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 60–69. ACM, 1994.

16 P. Lescanne. The lambda calculus as an abstract data type. In M. Haveraaen, O. Owe, and
O.-J. Dahl, editors, Recent Trends in Data Type Specification, pages 74–80. Springer Berlin
Heidelberg, 1996.

17 J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM,
12(1):23–41, January 1965. doi:10.1145/321250.321253.

18 R. Sin’Ya, K. Asada, N. Kobayashi, and T. Tsukada. Almost Every Simply Typed λ-Term
Has a Long β-Reduction Sequence. In Proceedings of the 20th International Conference on
Foundations of Software Science and Computation Structures, volume 10203, pages 53–68.
Springer-Verlag New York, Inc., 2017. doi:10.1007/978-3-662-54458-7_4.

19 Ch. Walther. Many-sorted Unification. J. ACM, 35(1):1–17, January 1988. doi:10.1145/
42267.45071.

http://dx.doi.org/10.1017/S0956796800000186
http://dx.doi.org/10.2168/LMCS-12(1:4)2016
http://dx.doi.org/10.1017/S0956796800001945
http://dx.doi.org/10.1017/S0956796816000332
http://dx.doi.org/10.1093/logcom/exx018
http://dx.doi.org/10.1093/logcom/exx018
http://dx.doi.org/10.1093/logcom/exx005
http://dx.doi.org/10.1145/3236950.3236951
http://dx.doi.org/10.1016/0304-3975(89)90005-4
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1145/232627.232639
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/978-3-662-54458-7_4
http://dx.doi.org/10.1145/42267.45071
http://dx.doi.org/10.1145/42267.45071

M. Bendkowski 7:17

A Correctness of the finite intersection partition algorithm

In order to prove the correctness of fipk constructing Π(α, β) for arbitrary terms α, β within
the scope of a simple υ-RG Gk, see Lemma 4.2, we resort to the following technical notion of
term potential used to embed terms into the well-founded set of natural numbers.

I Definition A.1 (Term potential). Let α ∈ T(Nn) be a term and Gn be a simple υ-RG. Let
ProdGn

(X) denote the set consisting of right-hand sides of regular productions in form of
X → β in Gn. Then, the potential π(α) of α in Gn is defined inductively as follows:

If α = f(α1, . . . , αm), then π(α) = 1 +
m∑
i=1

π(αi);

If α = X ∈ {T, S,N}, then π(α) = 1 + max{π(γ) | γ ∈ ProdGn
(X)};

If α = Gk for some 0 ≤ k ≤ n, then π(α) = 1 + max{π(γ) | γ ∈
k⋃
i=0

ProdGn
(Gi)}.

Let us note that π is well-defined as, by assumption, ProdGn
(X) 6= ∅ for all simple

υ-reduction grammars Gn; otherwise L(Gk) could not span the whole set of λυ-terms
υ-normalising in k normal-order steps. Moreover, π has the following crucial properties:

For each term α we have π(α) ≥ 1;
If α is a proper subterm of β, then π(α) < π(β);
If X → α is a regular production, then π(α) < π(X); and
For each Gi and Gj, it holds π(Gi) ≤ π(Gj) whenever i ≤ j.

I Example A.2. Note that the term potential of N associated with de Bruijn indices is
equal to π(N) = 2 as π(0) = 1. Since T → N is the single regular production starting with
T on its left-hand side, the potential π(T) is therefore equal to 3. Consequently, we also have
π(S) = 5 as witnessed by the regular production S → T/. Finally, since π(N) = 2 it holds
π(G0) = 3 and so, for instance, we also have π(G0G0) = 7.

Productions of a simple Gn cannot reference non-terminals other than G0, . . . , Gn. Since
the potential of Gk+1 is defined in terms of the potential of its regular productions, this
means that π(Gk+1) depends, in an implicit manner, on the potentials π(G0), . . . , π(Gk).
Note that this constitutes a traditional inductive definition. In order to compute the potential
of a given term α, we start with computing the potential of associated non-terminals. In
particular, we find the values π(G0), . . . , π(Gn) in ascending order. Afterwards, we can
recursively decompose α and calculate its potential based on the potential of non-terminal
symbols occurring in α. Note that the same scheme holds, in particular, for the right-hand
sides of self-referencing productions.

IDefinition A.3 (Conservative productions). A self-referencing production X → f(α1, . . . , αn)
is said to be conservative if π(αi) ≤ π(X) for all 1 ≤ i ≤ n.

I Remark A.4. Conservative productions play a central role in the algorithmic construction
of finite intersection partitions Π(α, β). In particular, let us remark that all self-referencing
productions of a simple υ-RG Gn, as listed in Figure 7, are at the same time conservative.

With the technical notions of term potential and conservative productions, we are now
ready to prove the correctness of fipk, see Figure 4.

Proof of Lemma 4.2. Induction over the total potential of α and β.
Let us start with the base case π(α) + π(β) = 2. Note that both α and β have to be

constant ground terms (the potential of non-terminals in Nk is at least 2). If α 6= β, then
certainly L(α) ∩ L(β) = ∅ and so Π(α, β) = ∅, see Line 4. Otherwise if α = β, then both

FSCD 2019

7:18 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

Gk → λGk | G0Gk | GkG0

T → λT | TT | T [S]
S → ⇑ (S)
N → SN

Figure 7 Self-referencing productions of simple υ-reduction grammars.

L(α) ∩ L(β) = Π(α, β) = {α} = {β}; hence, fipk returns a correct intersection partition
Π(α, β), see Line 5. And so, assume that π(α) + π(β) > 2. Depending on the joint structure
of both α and β we have to consider three cases.

Case 1. Suppose that α = f(α1, . . . , αn) and β = g(β1, . . . , βm) for some function symbols
f and g with n,m ≥ 0. Certainly, if either f 6= g or n 6= m, then L(α) ∩ L(β) = ∅. In
consequence, ∅ is the sole valid FIP of both α and β, see Line 4.
So, let us assume that both f = g and n = m. Moreover, we can also assume that
n,m ≥ 1 as the trivial case n = m = 0 cannot occur under the working assumption
π(α) + π(β) > 2. Take an arbitrary δ ∈ L(α) ∩ L(β). Note that δ takes the form of
δ = f(δ1, . . . , δn) for some ground terms δ1, . . . , δn. By induction, for all 1 ≤ i ≤ n, the
recursive call fipk αi βi yields a finite intersection partition Π(αi, βi) of αi and βi. Since
δi ∈ L(αi) ∩ L(βi) there exists a unique πi ∈ Π(αi, βi) such that δi ∈ L(πi). Accordingly,
for δ = f(δ1, . . . , δn) there exists a unique term π = f(π1, . . . , πn) in fipk αβ such that
δ ∈ L(π).
Conversely, take an arbitrary ground term δ = f(δ1, . . . , δn) ∈ L(π) for some π ∈ fipk αβ.
Note that π takes the form π = f(π1, . . . , πn), see Line 7. Since δ ∈ L(π), we know
that δi ∈ L(πi), for each 1 ≤ i ≤ n. Moreover, πi ∈ Πi by the construction of fipk αβ,
see Line 6. Following the inductive hypothesis that Πi is a FIP of αi and βi, we notice
that L(πi) ⊆ L(αi) ∩ L(βi). Consequently, δi ∈ L(αi) ∩ L(βi) and so δ ∈ L(α) ∩ L(β).

Case 2. Suppose that α = X and β = Y are two non-terminal symbols in Nk, see Line 9.
Let us consider the sort poset (Nk,�) associated with Gk. Assume that X and Y

are comparable through � (w.l.o.g. let X � Y). Consequently, L(X) ⊆ L(Y) and so
X 	 Y = X. Clearly, {X} is a valid FIP, see Line 10. On the other hand, if X and Y are
incomparable in the sort poset associated with Gk, it means that L(X) ∩ L(Y) = ∅ and
so Π(α, β) = ∅, see Remark 3.3.

Case 3. Suppose w.l.o.g that α = X and β takes the form β = f(β1, . . . , βn) with n ≥ 0. Note
that fipk flips its arguments if necessary, see Line 13. Take an arbitrary δ ∈ L(α)∩L(β).
Note that from the form of β we know that δ = f(δ1, . . . , δn) for some ground terms
δ1, . . . , δn (n ≥ 0). Since α = X is a non-terminal symbol which, by assumption, is
unambiguous in Gk, there exists a unique production X → γ such that δ ∈ L(γ).
If X → γ is regular (i.e. X does not occur in γ), then π(γ) < π(X) and so π(γ) + π(β) <
π(X) + π(β). Hence, by induction, fipk γ β constructs a finite intersection partition
Π(γ, β) with a unique π ∈ Π(γ, β) ⊂ Π(X,β) such that δ ∈ L(π), see Line 17.
Let us therefore assume that X → γ is not regular, but instead self-referencing (i.e. X
occurs in γ). In such a case π(X) ≤ π(γ) and so we cannot directly apply the induction
hypothesis to fipk γ β. Note however, that since δ ∈ L(γ) ∩ L(β) and γ 6= X, the term
γ must be of form γ = f(γ1, . . . , γn) as otherwise δ 6∈ L(γ). Furthermore if n = 0, then
trivially γ = β = f , see Line 5. Hence, let us assume that n ≥ 1. It follows that fipk
proceeds to construct finite intersection partitions for respective pairs of arguments γi
and βi. However, since X → f(γ1, . . . , γn) is conservative (see Remark A.4), it holds
π(γi) ≤ π(X). At the same time, π(βi) < π(β); hence, by induction we can argue

M. Bendkowski 7:19

that fipk γi βi constructs a proper intersection partition Π(γi, βi) for each 1 ≤ i ≤ n,
see Line 7. There exists therefore a unique term π = f(π1, . . . , πn) ∈ fipkX β such that
δ ∈ L(π), see Line 7 and Line 17.
Conversely, take an arbitrary ground term δ = f(δ1, . . . , δn) ∈ L(π) for some π ∈ fipkX β

(n ≥ 0). By definition, fipk proceeds to invoke itself on pairs of arguments γ and β

where γ is the right-hand side of a production X → γ in Gk, see Line 16, and returns
the set-theoretic union of recursively obtained outcomes. There exists therefore some γ
such that π ∈ fipk γ β. If X → γ is regular, then by induction, fipk γ β constructs a
FIP for both γ and β. Consequently, it holds δ ∈ L(π) ⊂ L(γ) ∩ L(β) ⊂ L(X) ∩ L(β).
Assume therefore that X → γ is not regular, but instead self-referencing. As before,
we cannot directly argue about fipk γ β since the total potential of γ and β exceeds
the potential of X and β. However, since π ∈ fipk γ β and γ 6= X, we note that γ
takes form γ = f(γ1, . . . , γn), see Line 4. If f is a constant symbol, then certainly
fipk γ β outputs a proper FIP. Otherwise, fipk proceeds to invoke itself recursively on
respective pairs of arguments γi and βi. Since X → f(γ1, . . . , γn) is conservative, we
know that, by induction, fipk γi βi constructs finite intersection partitions Π(γi, βi) for
all pairs γi and βi. Certainly, δi ∈ L(πi) for some πi ∈ Π(γi, βi); hence δ ∈ L(π) where
π = f(π1, . . . , πn) ∈ fipk γ β. It follows that δ ∈ L(π) ∩ L(β) ⊂ L(X) ∩ L(β), which
finishes the proof. J

I Remark A.5. Note that the termination of fipk is based on the fact that all self-referencing
productions of simple υ-reduction grammars are at the same time conservative. Indeed,
fipk does not terminate in the presence of non-conservative productions. Consider the
non-conservative production X → f(f(X)). Note that

fipk(f(f(X)), f(X))→ fipk(f(X), X)
→ fipk(X, f(X))
→ fipk(f(f(X)), f(X))
→ · · · (21)

B The construction of (Gn)n
Simple, verbose υ-reduction grammars satisfy the neat structural property of retaining closure
width of generated terms. For that reason, we maintain both simplicity and verbosity as an
invariant during the construction of (Gn)n.

Proof of Lemma 5.3. Suppose that neither χ = N nor χ = f(α1, . . . , αm). Since Gn is
simple, it follows that either χ = T or χ = Gk for some 0 ≤ k ≤ n. However, due to the
verbosity of Gn we know that χ 6= Gk and so it must hold χ = T . Consider the following
inductive family of terms:

δ1 = 0[⇑ (↑)] whereas δn+1 = 0[δn/]. (22)

By construction, we note that δn ↓n. Let s1, . . . , sw be substitutions satisfying si ∈ L(σi).
Note that δ := δn+1[s1] · · · [sw] ∈ L(T [σ1] · · · [σw]); hence, simultaneously δ reduces in n

steps, as δ ∈ L(Gn), and in at least n+ 1 steps, contradiction. J

The following result demonstrates a simple scheme of how ϕ-matchings can be exploited
during the construction of new productions generating terms with specific head redexes.

Proof of Lemma 5.6. Let t = (λa)[s][s1] · · · [sw] ↓n+1 where w ≥ 0. Since t admits a head
υ-redex, we note that t → t′ = (λ(a[⇑ (s)])) [s1] · · · [sw] ↓n. By assumption, Gn is simple,

FSCD 2019

7:20 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

hence there exists a unique production Gn → γ in Gn such that t′ ∈ L(γ). Consider the set
∆n
ϕ. Since Gn → γ is the unique production satisfying t′ ∈ L(γ), it follows that for each

production Gn → γ′ in Gn such that γ′ 6= γ and all π ∈ ∆ϕ(γ′) it holds t′ 6∈ L(π). Let us
therefore focus on the set ∆ϕ(γ) of ϕ-matchings limited to γ.

By assumption, Gn is not only simple but also verbose. Consequently, we know that
γ retains the closure width of generated terms, see Lemma 5.4. It follows that γ has
closure width w and takes the form γ = χ[τ1] · · · [τw]. Certainly, t′ ∈ L(ϕ〈w〉). Moreover,
∆ϕ(γ) = Π(γ, ϕ〈w〉). There exists therefore a unique π ∈ Π(γ, ϕ〈w〉) such that t′ ∈ L(π).
Given the fact that the head of ϕ〈w〉 is equal to ϕ = λ(T [⇑ (S)]) we note that π must
be of form π = λ(α[⇑ (σ)])[σ1] · · · [σw]. However, since t′ = (λa[⇑ (s)][s1] · · · [sw]) ∈ L(π)
it also means that a ∈ L(α), s ∈ L(σ), and si ∈ L(σi) for all 1 ≤ i ≤ w. Consequently,
t ∈ L((λα)[σ][σ1] · · · [σw]) as required.

Conversely, let π = λ(α[⇑ (σ)])[σ1] · · · [σw] be the unique term in the ϕ-matching family
∆n
ϕ such that t ∈ L((λα)[σ][σ1] · · · [σw]). Note that a ∈ L(α), s ∈ L(σ), and si ∈ L(σi)

for all 1 ≤ i ≤ w. Since t has a head υ-redex, after a single reduction step t reduces to
t′ = λ(a[⇑ (s)])[s1] · · · [sw] ∈ L(π). By construction of ∆n

ϕ, it means that there exists a
production Gn → γ in Gn such that L(π) ⊂ L(γ) and hence t′ ↓n. Certainly, it follows that
t ↓n+1. J

C Quantitative analysis of (Gn)n

Techniques of analytic combinatorics provide systematic means of investigating various
discrete structures through a direct analysis of their corresponding generating functions [12,
13]. Although the presented analysis is quite straightforward, it requires a fair amount of
background knowledge. We refer the unfamiliar reader to Flajolet and Sedgewick’s excellent
textbook [13] for a thorough introduction to the subject.

Proof of Proposition 6.4. Let Gk → γ be a regular production in Gk. Since by construction
Gk is simple, we know that γ ∈ TF(N∪{G0, . . . , Gk−1}). Following symbolic methods [13, Part
A, Symbolic Methods] we can therefore convert each non-terminal X ∈ N ∪ {G0, . . . , Gk−1}
occurring in γ into an appropriate generating function X(z). Likewise, we can convert each
function symbol occurrence f into an appropriate monomial z, see Figure 5. Finally, we group
respective monomials together, and note that the generating function Gγ(z) corresponding
to γ takes the form (15). Respective exponents denote the number of occurrences of their
associated symbols.

Consider the remaining self-referencing productions Gk → δ. Again, since Gk is simple, we
know that δ takes the form λGk, G0Gk or (symmetrically) GkG0. And so, as each X ∈ Nn
is unambiguous in Gk, by symbolic methods, it follows that Gk(z) satisfies the following
functional equation:

Gk(z) = zGk(z) + 2zG0(z)Gk(z) +
∑

Gk→γ∈Φk

Gγ(z). (23)

Note that as no Gγ(z) references the left-hand side Gk(z), equation (23) is in fact linear
in Gk(z). Furthermore, as G0(z) = L∞(z) we finally obtain the requested form of Gk(z),
see (14). J

Equipped with Proposition 6.4 we are now ready to prove the main quantitative result of
the current paper.

M. Bendkowski 7:21

Proof of Theorem 6.5. We claim that for each k ≥ 1 the generating function Gk(z) can
be represented as Gk(z) =

√
1− 4zP (z) + Q(z) where both P (z) and Q(z) are functions

analytic in the disk |z| < 1
4 + ε for some positive ε. The asserted asymptotic estimate follows

then as a straightforward application of algebraic singularity analysis, see Proposition 6.1.
We start with showing that each Gk(z) includes a summand in form of

√
1− 4z P (z)+Q(z)

such that both P (z) and Q(z) are analytic in a large enough disk containing (properly)
|z| < 1

4 . Afterwards, we argue that no summand has singularities in |z| < 1
4 . Standard

closure properties of analytic functions with single dominant, square-root type singularities
guarantee the required representation of Gk(z).

Let ϕ = N be the template corresponding to the (RVar) rule, see Table 1. Note that since
G0 includes the production G0 → N , the set of ϕ-matchings ∆0

ϕ consists of the single term
N . Hence, due to the respective production construction, it means that G1 → (SN)[T/] is a
production of G1, cf. Example 5.10. Moreover, as a consequence of the construction associated
with the (FVar) rule, for each Gk → γ in Gk there exists a production Gk+1 → 0[γ/] in the
subsequent grammar Gk+1. And so, each Gk includes among its productions one production
in form of

Gk → 0[0[. . . 0︸ ︷︷ ︸
k−1 times

[(SN)[T/]/] . . . /]/] (24)

Denote the right-hand side of the above production as γ. Note that the associated generating
function Gγ(z), cf. (23), must therefore take form

Gγ(z) = zζ(γ)T (z)N(z) and so Gγ(z) =
√

1− 4z P (z) +Q(z) (25)

where both P (z) and Q(z) are analytic in |z| < 1
4 + ε for some (determined) ε > 0.

In order to show that no production admits a corresponding generating function with
singularities in the disk |z| < 1

4 we note that the single dominant singularity of G0(z), and so
at the same time L∞(z), is equal to the smallest positive real root ρ of 1− 3z− z2− z3 which
satisfies 1

4 < ρ ≈ 0.295598, see Proposition 6.2. Due to the form of basic generating functions
corresponding to T , S and N , see Proposition 6.3, we further note that other singularities
must lie on the unit circle |z| = 1. And so, each Gk(z) admits the asserted form

Gk(z) =
√

1− 4zP (z) +Q(z) (26)

for some functions analytic in a disk |z| < 1
4 + ε. J

FSCD 2019

	Introduction
	Preliminaries
	Lambda upsilon calculus
	Regular tree languages

	Reduction grammars
	Finite intersection partitions
	The construction of simple v-reduction grammars
	Analytic combinatorics and simple v-reduction grammars
	Applications to other term rewriting systems
	lambda v-calculus
	S K-combinators

	Conclusions
	Correctness of the finite intersection partition algorithm
	The construction of (G_n)_n
	Quantitative analysis of (G_n)_n

