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Abstract
Strong call by need is a reduction strategy for computing strong normal forms in the lambda calculus,
where terms are fully normalized inside the bodies of lambda abstractions and open terms are
allowed. As typical for a call-by-need strategy, the arguments of a function call are evaluated at
most once, only when they are needed. This strategy has been introduced recently by Balabonski et
al., who proved it complete with respect to full β-reduction and conservative over weak call by need.

We show a novel reduction semantics and the first abstract machine for the strong call-by-need
strategy. The reduction semantics incorporates syntactic distinction between strict and non-strict
let constructs and is geared towards an efficient implementation. It has been defined within the
framework of generalized refocusing, i.e., a generic method that allows to go from a reduction
semantics instrumented with context kinds to the corresponding abstract machine; the machine is
thus correct by construction. The format of the semantics that we use makes it explicit that strong
call by need is an example of a hybrid strategy with an infinite number of substrategies.
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1 Introduction

Call by need, or lazy evaluation, is a strategy to evaluate λ-terms based on two principles:
first, evaluation of an expression should be delayed until its value is needed; second, the
arguments of a function call should be evaluated at most once [32]. Lazy evaluation can be
considered as an optimization of call-by-name evaluation where the computation of arguments
is delayed but its results are not reused. A model implementation of lazy evaluation is
often given in the form of an abstract machine which typically includes a store to facilitate
memoization of intermediate results, as in the well-known STG machine of Peyton Jones
used in the Haskell compiler [26]. On the other hand, theoretical studies of lazy evaluation
stem from two canonical approaches: a store-based natural semantics of Launchbury [24, 28],
and a storeless, purely syntactic account of Ariola et al. [8, 25, 17, 21]. Lazy evaluation is an
example of a strategy realizing weak reduction, which is standard in functional programming
languages, where all λ-abstractions are considered to be values; consequently, evaluation
of a term always stops after reducing it to a λ-abstraction. In contrast, strong reduction
continues to reduce inside the bodies of λ-abstractions until a full β-normal form is reached;
consequently, it must reduce inside substitutions and it must be able to evaluate open
terms. Strong reduction and the corresponding reduction strategies have been gaining more
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attention due to the development of proof assistants based on dependent types, such as Agda
or Coq, whose implementation requires full term normalization for type-checking [23, 14]. In
particular, the current version of the Coq proof assistant [30] employs an abstract machine
that uses a lazy strategy to fully normalize terms, but the strategy has not been studied
formally. Recently, Balabonski et al. proposed a strong call-by-need reduction strategy as
a theoretical foundation for implementations of strong call by need [10]. Their strategy is
proved to be complete with respect to β-reduction in the λ-calculus and conservative over
the weak call-by-need strategy. Even though it has good theoretical properties, it is not clear
how the strategy can be efficiently implemented, because it lacks operational account.

The goal of this paper is twofold: to contribute to the study of strong call by need by
presenting a novel reduction semantics and an abstract machine for the strategy described
in [10], and to showcase the existing framework of generalized refocusing used to inter-derive
the two, quite complex, semantic artefacts. To this end, we first give a proper formulation of
reduction semantics for the strategy, one that fits the framework and thus directly enables
its implementation, and which can be seen as an operationalized variant of Balabonski et
al.’s semantics. Second, we derive an abstract machine from the strategy, by means of the
refocusing procedure [12] which takes as input a reduction semantics satisfying mild syntactic
conditions and produces a lower-level specification that is provably correct with respect to
the reduction semantics. The procedure is implemented in Coq and is fully automatic, once
the syntactic conditions are proved.

The reduction semantics we present is inspired by previous work on weak [9, 19] and
strong [10] call-by-need strategies. In particular, it builds on the concepts from [10] and
incorporates syntactic distinction between strict and non-strict let constructs from [19], and it
does not introduce an explicit store. However, in contrast to [10], we avoid collecting non-local
information in the process of decomposition of terms (such as traversing a term to identify all
its needed variables), but rather we thread the required information throughout. We prove
that our version of the reduction semantics is adequate with respect to that from [10]; the
formal correspondence between the two can be found in Section 6. The reduction semantics
is presented in a format recently developed in [12], based on contexts instrumented with
kinds that carry extra information. This format makes it explicit that strong call by need is
an example of a hybrid strategy with an infinite number of substrategies (which equals the
number of nonterminal symbols in the grammar).

Since the strong call-by-need semantics is quite sophisticated, as a warm-up we show a
reduction semantics and an abstract machine for weak call by need, which is much simpler
and presented in the same framework of generalized refocusing.

The rest of the paper is organized as follows. In Section 2 we recall the semantic
formats that we use throughout the paper. In Section 3 we show the reduction semantics for
the weak call-by-need strategy due to Danvy and Zerny, and we derive the corresponding
abstract machine in the framework of generalized refocusing. In Section 4 we present a
novel formulation of a reduction semantics for the strong call-by-need strategy, in Section 5
we discuss the derived abstract machine for this strategy. In Section 6 we show that our
semantics is equivalent to that of Balabonski et al. In Section 7 we discuss the closest related
work, and we conclude in Section 8.

2 Preliminaries

A reduction semantics is a kind of small-step operational semantics, where the positions
in a term that can be rewritten are explicitly defined by reduction contexts, rather than
implicit in inference rules [20]. By a context we mean a term with exactly one occurrence of
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a variable called a hole and denoted �. For a given term t and a context C, by C[t] we denote
the result of plugging t into C, i.e., the term obtained by substituting the hole in C with
t. We say that a pair 〈C, t〉 is a decomposition of the term C[t] into the context C and the
term t. The set of reduction contexts in a reduction semantics is often defined in form of a
grammar of contexts [18]. A contraction relation ⇀ of a reduction semantics specifies atomic
computation steps, typically given by a set of rewriting rules. Terms that can be rewritten
by ⇀ are called redices and those produced by it – contracta. In a reduction semantics, the
reduction relation → is defined as the compatible closure of the contraction: a term t reduces
in one step to t′ if it can be decomposed into a redex r in an evaluation context E, that is
t = E[r], the redex r can be rewritten in one step to t′′ by one of the contraction rules, and
t′ is obtained by the recomposition of E and t′′, that is t′ = E[t′′]. In Section 4 we use a
more general definition of reduction that accounts for more complex strategies.

When considering programs as closed terms (i.e., terms without free variables), evaluation
is defined as the reflexive-transitive closure of the reduction relation (written→∗), and values
are expected results of computation, chosen from the set of all normal forms (other normal
forms are often called stuck terms). All λ-abstractions are typically considered values and
evaluation does not enter λ-bodies. More generally, and when we consider reduction of open
terms, we often use the term normalization instead of evaluation, and normal form rather
than value. In this paper, we consider open terms and we use these terms interchangeably
(effectively, we treat all normal forms as values).

A grammar of contexts consists of a set N of nonterminal symbols, a starting nonterminal,
a set S of variables denoting syntactic categories and a set of productions. Productions have
the form C → τ where C ∈ N and τ is a term with free variables in N ∪ {�} ∪ S, with
exactly one occurrence of a variable from N ∪ {�}. If the grammar of reduction contexts
encoding a strategy contains just one nonterminal symbol, we call this strategy uniform;
intuitively, one always proceeds in the same way when decomposing a term into a reduction
context and a redex. On the other hand, strategies that require multiple nonterminals in
grammars are hybrid: it is necessary to use different substrategies for finding redices, one
substrategy for each nonterminal symbol.

Figure 1 contains an example of a grammar with two nonterminals C,E (where C is the
starting nonterminal) and syntactic categories t, n and v of terms, neutral terms and values.
Figure 2 contains an example of a grammar with one nonterminal E and syntactic categories
t, v of terms and values, and E[x] is a succinct notation for the category of needy terms, i.e.,
terms decomposable into a variable in context (an explicit definition of needy terms will be
given later in Figure 4).

C ::= �C | λx.C | E t | n C where t ::= λx. t | x | t t,
E ::= �E | E t | n C n ::= x | n v,

v ::= n | λx. v

(β−contraction) (λx.t1) t2 ⇀ t1[x 7→ t2]

Figure 1 Normal-order reduction semantics from [12].

Figure 1 shows the normal-order strategy, which is a hybrid strategy. This strategy
normalizes a term to its full β-normal form (if it exists) by first evaluating it to its weak-head
normal form with the call-by-name strategy, and only then reducing subterms of the resulting
weak-head normal form with the same normal-order strategy. There are two substrategies,
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one for each nonterminal symbol in the grammar. The E substrategy corresponds to call
by name and reduces to weak-head normal form; the C substrategy allows reduction in
bodies of λ-abstractions and in arguments to neutral terms. Each substrategy comes with
its own kind of hole – the subscript indicates the kind of context that can be built inside
the hole. In other words, if we want to extend a reduction context with a hole of kind k by
plugging another context in it, this new context has to be derivable from the nonterminal k.
The contraction rule (standard β-reduction) is here common to both substrategies, but in
Section 4 we show that the contraction relation may be parameterized by kinds.

Abstract machines abound in the literature. They may serve as theoretical artefacts that
facilitate reasoning about the strategy and the execution of programs, or provide the basis
for further transformations and optimizations in a principled way, possibly using known,
off-the-shelf techniques. Intuitively, abstract machines are just another form of operational
semantics, only defined at a lower level of abstraction. They typically provide reasonably
precise and efficient models of implementation. Ideally, each step of an abstract machine
should be done in constant time, which usually can be achieved by rewriting only topmost
symbols of machine configurations. Therefore complex operations such as finding a redex
in a term or substituting a term for a variable in another term should be divided into
smaller steps, making explicit the process of decomposition of terms. It is nontrivial how to
achieve this atomicity when the strategy requires non-local information to proceed – one
typically needs to thread some extra information in machine configurations. The strong
call-by-need strategy is an example where this happens and in this paper we show how we
solve this problem for finding redices. However, we do not deal with the decomposition of
the contraction rules into atomic steps, which is an orthogonal issue. In fact, decomposition
of contraction can also be handled by the refocusing methodology, as witnessed by previous
work deriving environment-based abstract machines from calculi of closures by refocusing [13].
We leave it for future work.

3 Weak call by need

As a gentle introduction we first review the simpler weak call-by-need strategy and discuss
some of the concepts we later extend to the strong case. We also summarize the main
idea behind the refocusing procedure that allows to derive an abstract machine from a
reduction semantics.

3.1 Reduction strategy
There is a wide range of theoretical studies of lazy evaluation in the λ-calculus, presenting
different semantic formats of the weak call-by-need strategy. Here we recall one: Danvy and
Zerny’s “revised storeless reduction semantics”, which is most relevant to our work and can
be seen as the basis for our strong variant of the call-by-need reduction semantics. This
strategy was derived in [19] from the standard call-by-need reduction for the λlet calculus
common to Ariola, Felleisen, Maraist, Odersky and Wadler [8, 9, 25] as part of a bigger
picture connecting the various approaches to the weak call-by-need strategy.

The strategy is presented in Figure 2. The grammar of terms extends lambda terms with
two forms of let-constructors declaring denotables. A strict let expression let x := t0 in t1
makes it syntactically explicit that the variable x is needed in the let-body t1 and its value
is still not known. Informally, we say that the variable x is needed in t1 whenever the
first thing to do when evaluating t1 is to establish the value of x, i.e., when t1 can be
uniquely decomposed as t1 = E[x], where E is a reduction context. In a non-strict version
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Syntax:

(terms) t ::= x | λx.t | t t | let x= t in t | let x := t in E[x]
(λ-values) v ::= λx. t

(answer contexts) A ::= � | let x= t in A
(evaluation contexts) E ::= � | E t | let x= t in E | let x :=E in E[x]

(redices) r ::= A[v] t | let x :=A[v] in E[x] | let x= t in E[x]

Contraction rules:

(1) A[λx.t] t1 ⇀ A[let x= t1 in t]
(2) let x= t in E[x] ⇀ let x := t in E[x]
(3) let x :=A[v] in E[x] ⇀ A[let x= v in E[v]]

Figure 2 The revised call-by-need λlet calculus from [19].

let x= t0 in t1 the variable x is possibly not needed or its value is already known. In other
words, evaluation of a strict expression let x := t0 in t1 starts with evaluation of t0 while
evaluation of a non-strict expression let x= t0 in t1 starts with evaluation of t1.

In Danvy and Zerny’s setting only closed terms are considered, values are arbitrary
λ-abstractions and the answers produced by evaluation are values possibly wrapped in a
number of let bindings – the answers are represented here as values plugged in answer contexts
A. Throughout this paper we assume the variable convention, i.e., that all the bound and
free variable names are pairwise distinct. The evaluation contexts E encode the strategy; in
an application we look for a redex in the operator position, and the strategy for the two let
constructs described informally above is encoded in the last two context constructors.

Let us briefly discuss the contraction rules. Rule (1) implements delayed computation:
we delay the evaluation of the actual parameter t1 and instead start the computation of the
body t. This is because the contractum here is a non-strict let expression, where, by the
third production in the grammar of evaluation contexts, a reduction context is sought in
the subterm t. Rule (2) states that the computation of x can no longer be delayed. Rule
(3) implements memoization: when the value of the term bound to x is known, it not only
replaces x in the current context, but also it is stored in the answer substitution. The let
construct is no longer strict because we do not know if x will be needed again.1

I Example 3.1. To observe the benefits of the call-by-need strategy we should look at an
evaluation of a term of the form f t s where the terms t and s require some computation
and f contains two formal parameters: one that occurs at least twice and the other that
does not occur in the body. The simplest case is f = λx.λy.x x and t = id id where id = λz.z;
a definition of s is not relevant. Figure 3 shows this evaluation. In each step the redex is
underlined and the relevant contexts are marked with square brackets. In steps (i)− (ii) the
computations of x and y are delayed; in step (iii) x is needed. In steps (iv)− (vi) the value
of the term bound to x is computed and in step (vii) it is memoized. In step (x) x is needed
again and in step (xi) the computed value is reused thus avoiding the second computation
of t. Step (xii) finishes the computation in the body of f . The variable y is never needed, so
the value of s is not computed.

1 Danvy and Zerny also include a fourth rule which is a short-cut of rules (2) and (3) in the case when t
is a value. We do not consider it here since it does not constitute a different contraction step but can
be seen as an optimization of the reduction sequence.
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[(λx.λy.x x)] (id id) s
(i) (1)

 [let x= (id id) in λy.x x] s
(ii) (1)

 let x= (id id) in let y= s in [x]x
(iii) (2)

 let x := ([id] id) in let y= s in xx

(iv) (1)
 let x := (let z= id in [z]) in let y= s in xx

(v) (2)
 let x := (let z := [id] in [z]) in let y= s in xx

(vi) (3)
 let x := (let z= id in [id]) in let y= s in [x]x

(vii) (3)
 let z= id in let x= id in let y= s in [id]x

(viii) (1)
 let z= id in let x= id in let y= s in let z=x in [z]

(ix) (2)
 let z= id in let x= id in let y= s in let z := [x] in z

(x) (2)
 let z= id in let x := [id] in let y= s in let z := [x] in z

(xi) (3)
 let z= id in let x= id in let y= s in let z := [id] in [z]

(xii) (3)
 let z= id in let x= id in let y= s in let z= id in id

Figure 3 Evaluation of (λx.λy.x x) (id id) s in weak call-by-need.

3.2 Refocusing

Refocusing is a mechanical procedure for deriving abstract machines from reduction semantics.
It was introduced in [18], formalized [29] in the Coq proof assistant, and recently generalized
in [12]. The method was applied (both by hand and in Coq) to a number of reduction
semantics, to derive new machines as well as to establish the connection between existing
machines and their underlying reduction semantics [13, 21, 12].

A naive implementation of evaluation in a reduction semantics consists in repeating
the following steps until the processed term is a normal form: (a) decompose the given
term into a context and a redex, (b) contract the redex, and (c) recompose a new term
by plugging the contractum in the context. Consider, for example, step (iv) in Figure 3.
After contracting the redex id id, the contractum let z= id in z is wrapped in the context
let x :=� in let y= s in xx in the recomposition phase of step (iv) and immediately
unwrapped by removing the very same context in the decomposition phase of step (v).

Refocusing optimizes this naive implementation by avoiding the reconstruction of inter-
mediate terms in a reduction sequence. To make this optimization work as an automatic
procedure, the user must provide additional input – below we describe what is required by the
current implementation. Figure 4 shows the essential part of this input in our implementation
of weak call by need.

First, the user must define the set of values. The implementation requires all useful
normal forms to be considered values, where by “useful” we mean that such a normal form
put into some reduction context can potentially lead to further reduction. Under weak call
by need, values are answers and needy terms, which are used in contraction (3) in Figure 2,
and can be thought of as intermediate values. Their grammar is shown explicitly in Figure 4,
parameterized by the needed variable (we use dash symbol - in place of variable when it is
not relevant).

Second, the user must provide two functions, effectively defining the elementary contexts
of the strategy. The first of them, denoted ⇓, takes a term t and tells what to do when
this term is processed for the first time. The possible options are: decompose it (if t is
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(needy terms) nx ::= x | nx t | let y= t in nx | let y :=nx in ny

(answers) a ::= λx. t | let x= t in a

x ⇓ V

λx.t ⇓ V

t1 t2 ⇓ [t1] t2
let x= t1 in t2 ⇓ let x= t1 in [t2]
let x := t1 in t2 ⇓ let x := [t1] in t2

[n-] t ⇑ V

[a] t ⇑ R

let x= t in [nx] ⇑ R

let x= t in [ny] ⇑ V if x 6= y

let x= t in [a] ⇑ V

let x := [n-] in nx ⇑ V

let x := [a] in nx ⇑ R

Figure 4 Input to the refocusing procedure for weak call-by-need.

decomposable); reduce it (if t is not decomposable and a redex, denoted R) or report a value
(if t is not decomposable and a value, denoted V). In the decomposable case the function
returns a decomposition into an elementary context and a subterm. (The R option is not
used in the definition of ⇓ in the weak call-by-need strategy.)

The second function, denoted ⇑, tells how to process a term when we already know that
it is a value. In such a case we have to take into account the context surrounding the term.
Thus ⇑ takes an elementary context ec and a value v and informs how to process ec[v]; the
options are as in the case of ⇓.

Third, in the case when the grammar of contexts contains overlapping productions, the
user must also provide an order on these productions that prescribes which of the possible
decompositions of a given term should be tried first (there are overlapping production in
strong call by need, but not in weak call by need).

Finally, the user must prove that the defined semantics satisfies mild syntactic conditions
described in detail in [12]. An example of such a condition is that the order on productions
in the grammar is well-founded, which implies that all possible decompositions of a term
are checked in a finite number of steps. The complete formalization of the weak call by
need strategy can be found in the repository http://bitbucket.org/pl-uwr/generalized_
refocusing in the file examples/weak_cbnd.v.

The resulting abstract machine is presented in Figure 5. We show it in a simplified form
where some parts of configurations are omitted, e.g., the information about the kind of
contexts, since there is only one kind and it does not affect the strategy.

The machine uses two kinds of configurations: an E-configuration represents a term
in a context, and the transition for these configurations correspond to the ⇓ function. A
C-configuration represents a value plugged in a context, and the transitions correspond to the
⇑ function. The evaluation of a term t starts in a configuration 〈t,�〉E . In particular, the last
two E-transitions show the difference in the treatment of strict and non-strict let constructors.
The third C-transition makes it explicit when a let constructor should be treated as strict –
exactly when the let-body is a term that needs the value of x. Since we admit open terms, it
is possible that a let-body needs a different variable to proceed – in that case we treat such
a term as an intermediate value (cf. the fourth C-transition). The notation nx 7→v in the last
transition stands for the result of substitution of the value v for the needed occurrence of the
variable x in the needy term nx.
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〈x,C〉E −→ 〈C, x〉C
〈λx.t, C〉E −→ 〈C, λx.t〉C
〈t1 t2, C〉E −→ 〈t1,� t2 ◦ C〉E
〈let x= t1 in t2, C〉E −→ 〈t2, let x= t1 in � ◦ C〉E
〈let x := t1 in t2, C〉E −→ 〈t1, let x :=� in t2 ◦ C〉E

〈� t ◦ C, n-〉C −→ 〈C, n- t〉C
〈� t1 ◦ C,A[λx.t]〉C −→ 〈A[let x= t1 in t], C〉E
〈let x= t in � ◦ C, nx〉C −→ 〈let x := t in nx, C〉E
〈let x= t in � ◦ C, ny〉C −→ 〈C, let x= t in ny〉C for x 6= y

〈let x= t in � ◦ C, a〉C −→ 〈C, let x= t in a〉C
〈let x :=� in nx ◦ C, n-〉C −→ 〈C, let x :=n- in nx〉C
〈let x :=� in nx ◦ C,A[v]〉C −→ 〈A[let x= v in nx 7→v], C〉E

Figure 5 Abstract machine for weak call by need.

This machine differs from Danvy and Zerny’s machine corresponding to the reduction
semantics from Figure 2 in that it handles open terms and that it is not optimized, and not all
steps can be executed in constant time. In particular, since terms of the form A[t] are coerced
to terms, each time we encounter a term of this form it will be decomposed from scratch,
even though we know we could directly consider t in a context where all the surrounding let
bindings are on the context stack. However, the structure of the resulting machine is amenable
to off-the-shelf transformations leading to more efficient variants, e.g., following Danvy and
Zerny’s approach that allows to transform it into a store-based abstract machine [19].

Generalized refocusing. The distinction between uniform and hybrid strategies was first
introduced in [22]. The refocusing procedure developed in [18] and formalized in [29] was
limited to uniform strategies. Recently it has been generalized to hybrid strategies in [12] –
the authors show several examples of strategies based on grammars with a few (usually two
or three) nonterminal symbols, including the normal-order strategy shown in Figure 1.

Strong call by need is probably the first natural example of a reduction strategy with
an unbounded number of nonterminals in the underlying grammar. In the remainder of the
paper we present this strategy and the abstract machine derived by generalized refocusing.

4 Reduction semantics for strong call by need

We now present the reduction semantics for the strong call-by-need strategy. It is strongly
inspired by the semantics from [10] in that it realizes exactly the same strategy, but is
designed so that it fits in the refocusing framework, which facilitates the derivation of an
abstract machine. The formal correspondence between our semantics and that of [10] is
outlined in Section 6.

Terms. As in the case of weak call by need, the grammar of terms extends lambda terms
with strict and non-strict let-constructors:

(terms) t ::= x | λx. t | t t | let x= t in t | let x := t in t
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The reduction semantics depends crucially on the notion of frozen variables introduced in
[10]. A free variable is classified as frozen if it can never be substituted, either because it is
not a let-bound variable (like x in x t), or if it is bound to a term that cannot become an
answer (like x in let x= z z in x t). If a variable is not frozen, then we call it active. The
status of variables depends on the context of evaluation: for example, when we consider the
term x t in the empty context, then x is frozen; but when the same term is plugged in the
context let x=λz.z in � then x is no longer frozen. Intuitively, the latter context defrosts
the variable and makes it active and substitutable.

In the process of evaluation we consider terms of particular shapes: structures S, normal
forms N , and needy terms N -

- . Structures and normal forms are defined by mutual recursion.
Needy terms are parameterized by the variable they need and additionally by a context kind,
which will be defined later. Whether a term falls into one of these categories depends on
the status of its free variables, therefore each category is further parameterized by a set of
variables containing exactly the frozen variables of a term.

The grammar of structures is shown in Figure 6. Informally, a structure is a normal
form formed around a frozen variable, e.g., let x= y in z (λy.y) belongs to S{z} and is a
structure formed around the frozen variable z. Structures here are almost equivalent to
structures in [10], with the difference that here we parameterize them precisely with sets of
frozen variables, while in [10] any superset of frozen variables is a good parameter.

x ∈ S{x}

s ∈ Sφ n ∈ Nψ
s n ∈ Sφ ∪ ψ

s ∈ Sφ x /∈ φ
let x= t in s ∈ Sφ

s1 ∈ Sφ s2 ∈ Sψ x ∈ ψ
let x := s1 in s2 ∈ S(φ ∪ ψ) \ {x}

Figure 6 Grammar of structures.

Normal forms in N (with respect to strong call-by-need reduction) are either structures
or irreducible terms built around a normal λ-abstraction in Nλ (see Figure 7). They can be
seen as natural generalizations of weak call-by-need normal forms that arise when structures
are introduced. The last two rules impose restrictions on the sets φ and ψ: first, x cannot
be a member of φ because otherwise contexts let x= t in � and let x := s in � defrost it;
second, n in the last rule occurs in a position of a needy term with needed variable x, so x
must be a member of ψ.

s ∈ Sφ
s ∈ Nφ

n ∈ Nφ

λx.n ∈ Nλ
φ \ {x}

n ∈ Nλ
φ

n ∈ Nφ

n ∈ Nλ
φ x /∈ φ

let x= t in n ∈ Nλ
φ

s ∈ Sφ n ∈ Nλ
ψ x ∈ ψ \ φ

let x := s in n ∈ Nλ
(φ ∪ ψ) \ {x}

Figure 7 Grammar of normal forms.

Finally, needy terms are terms uniquely decomposable into a reduction context and an
active variable. Such terms can be seen as intermediate normal forms that arise in the
normalization process when we try to establish if a given let-bound variable is needed. The
grammar of needy terms is shown in Figure 8. It is important to note that the same term
can be either a structure, or a needy term depending on the status of its free variables, e.g.,
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8:10 An Abstract Machine for Strong Call by Need

x ∈ Nx
k·∅

nx ∈ Nx
E·φ x /∈ φ

nx t ∈ Nx
k·φ

s ∈ Sφ nx ∈ Nx
C·ψ x /∈ (φ ∪ ψ)

s nx ∈ Nx
k·φ ∪ ψ

nx ∈ Nx
k·φ x 6= y y /∈ φ

let y= t in nx ∈ Nx
k·φ

s ∈ Sψ nx ∈ Nx
k·φ x 6= y x /∈ ψ

let y := s in nx ∈ Nx
k·((φ ∪ ψ) \ {y})

nx ∈ Nx
E·φ

let y :=nx in ny ∈ Nx
k·φ

nx ∈ Nx
C·φ x 6= y

λy.nx ∈ Nx
C·φ

Figure 8 Grammar of needy terms.

x ∈ S{x} (here x is frozen) and x ∈ Nx
k·∅ (here x is active). The latter term denotes the

variable x, which is needed in the empty context (k denotes the kind of context) and active
in terms of the form let x := t in x.

Reduction contexts. The strong call-by-need reduction strategy generalizes the weak call-
by-need strategy – informally, it first tries to evaluate terms with the weak strategy and after
reaching a weak value it attempts to normalize it further (i.e., inside a lambda abstraction or a
neutral term). This pattern is analogous to the normal-order strategy, which can be adequately
described using hybrid reduction contexts whose grammar defines the interconnection between
the weak and the strong strategy (see Figure 1). To define strong contexts for normal order
we need to use two kinds: E - for weak contexts (realizing call by name), and C - for strong
contexts. When we consider call by need, we need to further instrument these kinds – they
are parameterized by a set of frozen variables. Given a raw kind k ∈ {E, C} and a set of
frozen variables φ we write k · φ for the kind k parameterized by φ. The union {x} ∪ φ is
abbreviated x, φ.

Reduction contexts are built from elementary contexts parameterized by two kinds; ECk1
k2

denotes an elementary context of kind k1 whose hole is of kind k2. Figure 9 describes all the
elementary contexts. In particular, λx.� is an elementary context of raw kind C (it is only
available under the strong strategy), and when reducing under the lambda the same strong
strategy is used with the λ-bound variable treated as frozen inside the body. In both the
weak and the strong variant the context � t can be used, but its hole always forces the weak
strategy to be used inside (i.e., when we decompose the left-hand-side of an application we
always use the weak strategy). The context s� enforces strong reduction of the argument
of an application – in case when the operand is a structure (therefore, irreducible and not
creating a β-redex). The condition ψ ⊆ φ ensures that s is indeed a structure (and not a
needy term) in the given context, see Example 4.1 at the end of this section.

The context let x= t in � is used when first processing a let term, it considers the
let-bound variable active inside the let-body – next we need to establish if it is needed there.
The context let x :=� in nx is available when we already know that x is needed in the
let-body and it is necessary to compute the value of the term bound to the variable (using
the weak strategy). Finally, the context let x := s in � handles situations when the term
bound to x does not evaluate to a weak λ-value but normalizes to a structure. In this case
we go back to evaluating the let-body, this time with the let-bound variable treated as frozen
because it will never be substituted (note that this is the second time the let-body will
be decomposed but the decomposition will be different this time because the set of frozen
variables has changed). Example 4.1 illustrates the last three rules.
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x /∈ φ
λx.� ∈ ECC·φ

C·x,φ � t ∈ ECk·φE·φ

s ∈ Sψ ψ ⊆ φ
s� ∈ ECk·φC·φ

x /∈ φ
let x= t in � ∈ ECk·φk·φ let x :=� in nx ∈ ECk·φE·φ

s ∈ Sψ ψ ⊆ φ x /∈ φ
let x := s in � ∈ ECk·φE·x,φ

Figure 9 Elementary contexts for strong call by need.

General reduction contexts are composed from elementary ones with matching kinds:

� ∈ Ckk

ec ∈ ECk2
k3

c ∈ Ck1
k2

ec ◦ c ∈ Ck1
k3

This is a representation of contexts inside-out (the hole of the context c matches the kind of
the elementary context ec placed inside it).

Grammar. The grammar of reduction contexts contains nonterminals of the form k · φ,
where k ∈ {C, E} and φ is an arbitrary (finite) set of variables, with starting nonterminal
C · ∅. The productions in this grammar have either the form k · φ→ C[k′ · ψ] where C is an
elementary context in ECk·φk′·ψ, or the form k ·φ→ �. Note that since there are no restrictions
on the number of variables in terms, the grammar contains an infinite number of productions.

Values. Because the strong call-by-need strategy mixes weak and strong normalization, the
notion of value depends on the kind of the context.

n ∈ Nφ φ ⊆ ψ
n ∈ VC·ψ a ∈ VE·ψ

s ∈ Sφ φ ⊆ ψ
s ∈ VE·ψ

nx ∈ Nx
k·φ x /∈ ψ φ ⊆ ψ
nx ∈ Vk·ψ

Strong values VC·- are all strong normal forms that match the kind. Weak values VE·- are
answers, defined as in weak call by need (i.e., as lambda values in answer contexts, a ::= A[v]),
and structures. The set of frozen variables dictated by the kind must be a superset of the set
of frozen variables of the value (here again it ensures that s is indeed a structure in a given
context). The strategy that we are describing works both for closed and for open terms – in
the latter case we treat free variables as frozen. During normalization it happens that we
produce intermediate values containing active variables – these are exactly the needy terms.
The condition x /∈ ψ ensures that nx is indeed a needy term, and not a structure under the
given kind.

Contraction. Just like values, certain terms become redices (i.e., atomic reducible terms)
only in a specific context. Therefore, the type of redices is parameterized by the kind.

(A[λx.t]) t′ ⇀k·φA[let x= t′ in t] (β)
nx ∈ Nx

k·φ

let x :=A[v] in nx ⇀k·φA[let x= v in nx7→v] (lsv)

nx ∈ Nx
k·φ φ ⊆ ψ

let x= t in nx ⇀k·ψ let x := t in nx
(ls)

s ∈ Sk·φ φ ⊆ ψ
let x := s in A[v] ⇀E·ψ let x= s in A[v] (lns)

The first three rules are generalizations of weak call-by-need contractions from Section 2,
whereas the fourth one is added to handle open terms (structures). The first two rules
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8:12 An Abstract Machine for Strong Call by Need

encode the usual call-by-need computation steps and they coincide with the contractions
in [10], and the last two can be seen as “administrative” reductions that are responsible for
marking/unmarking strict lets. The first rule creates a new let-binding whenever a lambda
abstraction is applied to an argument (this binding will be processed lazily). The second rule
is triggered in a situation when a needed let-bound variable has a value ready to be used
in the let-body; the value is then substituted for the variable and the variable ceases to be
needed. The third rule consists in marking the let-bound variable as needed when we know
that the let-body is needy of this variable. The last rule is used to convert a strict let to an
answer – when the variable is not really needed (it cannot happen if we start reducing with
a term not containing strict lets).

Reduction. The reduction relation is defined as usual, with the restriction that the kind
of contraction must match the kind of the hole in the reduction context: a term t reduces
in one step to t′ if it can be decomposed as t = E[r] for some redex r and an evaluation
context E ∈ C-

k·φ, the redex r can be rewritten in one step to t′′ by contraction ⇀k·φ, and t′
is obtained by the recomposition of E and t′′, that is t′ = E[t′′].

I Example 4.1. Consider an evaluation of a term of the form let x= y y in x t, where y
is the only free (and frozen) variable, with the strong strategy C · {y}. We first decompose
the term to the context let x= y y in � ∈ ECC·{y}

C·{y} and the let-body x t. Here x t ∈ Nx
C·∅ is

a needy term, so the input term is rewritten to let x := y y in x t, using the (ls) rule and
contraction ⇀C·{y}. Since y y is a structure in S{y} and {y} ⊆ {x, y}, the obtained term can
be decomposed using the last rule in Fig. 9 to the context let x := y y in � ∈ ECC·{y}

E·{x,y} and
the term x t, which we now visit for the second time. Note that the inclusion ψ ⊆ φ from
Fig. 9 forces us to change the evaluation strategy here by adding x to the parameter set, so
x becomes frozen. Since x ∈ S{x} and {x} ⊆ {x, y}, the third rule in Fig. 9 prescribes now
to evaluate t using the strong strategy C · {x, y}.

5 An abstract machine for strong call by need

In this section we present an abstract machine for strong call by need derived in the framework
of generalized refocusing. The Coq development can be found in the repository http:
//bitbucket.org/pl-uwr/generalized_refocusing in the file examples/strong_cbnd.v.
The machine (with some technical clutter removed) is presented in Figure 10. We assume
implicit α-renaming of bound variables in order to avoid name clashes (cf. side conditions in
transitions (3),(8),(21)).

The machine has two kinds of configurations. An E-configuration of the form 〈t, C, k, φ〉E
consists of a term, a surrounding context, and the kind of the context hole represented by the
last two components of the configuration. In turn, a C-configuration of the form 〈C, v, k, φ〉C
consists of a context, a value plugged in this context, and the kind of the context hole.
Because both contexts and values are parameterized by kinds, a configuration is considered
correct if the last two components match the kind of the context component (in both E
and C-configurations) and of the value component (in C-configurations). If we start the
machine with a correct configuration, then all the configurations in the machine run are
correct by construction.

The values computed by the machine (and used in C-configurations) coincide with those
in the reduction semantics. In Figure 10 we use notation n for arbitrary normal forms, s for
structures, nλ for lambda values, nx and ny for needy terms. Sometimes it is not obvious to

http://bitbucket.org/pl-uwr/generalized_refocusing
http://bitbucket.org/pl-uwr/generalized_refocusing
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1 : t −→ 〈t,�, C, ∅〉E

2 : 〈t1 t2, C, k, φ〉E −→ 〈t1,� t2 ◦ Ck·φ, E, φ〉E

3 : 〈let x= t1 in t2, C, k, φ〉E −→ 〈t2, let x= t in � ◦ Ck·φ, k, φ〉E if x /∈ φ

4 : 〈let x := t in nx, C, k, φ〉E −→ 〈t, let x :=� in nx ◦ Ck·φ, E, φ〉E

5 : 〈x,C, k, φ〉E −→ 〈C, str(x), k, φ〉C if x ∈ φ

6 : 〈x,C, k, φ〉E −→ 〈C,nd(x), k, φ〉C if x /∈ φ

7 : 〈λx.t, C, E, φ〉E −→ 〈C,ans(λx.t), E, φ〉C
8 : 〈λx.t, C, C, φ〉E −→ 〈t, λx.� ◦ CC·φ, C, x · φ〉E if x /∈ φ

9 : 〈λx.� ◦ C, n, C, φ〉C −→ 〈C, λx.n, C, φ \ {x}〉C

10 : 〈� t ◦ Ck·ψ,ans(A[λx.r]), E, φ〉C −→ 〈A[let x= t in r], C, k, ψ〉E
11 : 〈� t ◦ Ck·ψ,nd(ny), E, φ〉C −→

〈C,nd(ny t), k, ψ〉C if y /∈ φ

12 : 〈� t ◦ Ck·ψ, str(s), E, φ〉C −→ 〈t, s� ◦ Ck·ψ, C, φ〉E

13 : 〈s� ◦ Ck·ψ, n, C, φ〉C −→ 〈C, str(s n), k, ψ〉C
14 : 〈let x= t in � ◦ Ck·ψ,ans(A[v]), E, φ〉C −→ 〈C,ans(let x= t in A[v]), k, ψ〉C
15 : 〈let x= t in � ◦ Ck·ψ,nd(nx), k′, φ〉C −→

〈let x := t in nx, C, k, ψ〉E if x /∈ φ

16 : 〈let x= t in � ◦ Ck·ψ,nd(ny), k′, φ〉C −→
〈C,nd(let x= t in ny), k, ψ〉C if y 6= x, y /∈ φ

17 : 〈let x= t in � ◦ Ck·ψ, str(s), k′, φ〉C −→ 〈C, str(let x= t in s), k, ψ〉C
18 : 〈let x= t in � ◦ Ck·ψ, lnf(nλ), C, φ〉C −→ 〈C, lnf(let x= t in nλ), k, ψ〉C
19 : 〈let x :=� in nx◦ Ck·ψ,ans(A[v]), E, φ〉C −→ 〈A[let x= v in nx7→v], C, k, ψ〉E
20 : 〈let x :=� in nx◦ Ck·ψ,nd(ny), E, φ〉C −→

〈C,nd(let x :=ny in nx), k, ψ〉C if y /∈ φ

21 : 〈let x :=� in nx ◦ Ck·ψ, str(s), E, φ〉C −→
〈nx, let x := s in � ◦ Ck·ψ, E, x · φ〉E if x /∈ φ

22 : 〈let x := s in � ◦ Ck·ψ,nd(ny), k′, φ〉C −→
〈C,nd(let x := s in ny), k, ψ〉C if y /∈ φ

23 : 〈let x := s in � ◦ Ck·ψ,ans(A[v]), E, φ〉C −→ 〈C,ans(let x= s inA[v]), k, ψ〉C
24 : 〈let x := s in � ◦ Ck·ψ, str(s′), k′, φ〉C −→ 〈C, str(let x := s in s′), k, ψ〉C
25 : 〈let x := s in � ◦ Ck·ψ, lnf(nλ), C, φ〉C −→ 〈C, lnf(let x := s in nλ), k, ψ〉C
26 : 〈�, n, C, φ〉C −→ n

Figure 10 An abstract machine for strong call by need.
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8:14 An Abstract Machine for Strong Call by Need

which category a given value falls; for example x in the configuration 〈C, x, k, φ〉C is either
a structure or a needy term, depending on whether x ∈ φ. To ease reading the transition
rules, we attach tags to the different value constructors in the machine:

n ::= ans(A[λx.t]) | str(s) | nd(nx) | lnf(nλ)

writing respectively 〈C, str(x), k, φ〉C and 〈C,nd(x), k, φ〉C instead of 〈C, x, k, φ〉C .
An E-configuration either decomposes a term by pushing a new elementary context on

the existing context (in such a way that their kinds match) and proceeds with evaluation of
a subterm, or it calls a C-configuration if the term is a value. In particular, transition (4)
prescribes that if a term is a strict let, then we need to evaluate (to weak value) the term
t1 bound to the variable. If the term happens to be a variable, it is a value but its status
depends on the kind, more specifically on the set of frozen variables φ in the configuration:
if the variable is not in this set, then it will be treated as active (cf. transitions (5) and (6)).
A lambda abstraction is a value in a E-hole but it is further decomposed in a C-hole.

A C-configuration dispatches on the context when a (matching) value is plugged in
its hole. For example, transition (10) encodes β-contraction, transition (15) encodes the
ls-contraction, transition (19) encodes the lsv-contraction, and transition (23) encodes the
lns-contraction.

The machine correctly realizes the strong call-by-need strategy, it decomposes terms
based on local information given in a configuration, but it still could be optimized in various
directions, in particular, using insights from existing work on abstract machines for weak
lazy evaluation [3, 19]. It is future work to check which of the transformations discussed
there generalize to the strong case, in particular how to systematically obtain an efficient
store-based machine.

6 Correctness

In this section we show how our reduction semantics relates to the Balabonski et al.’s. To this
end, we need to introduce some of the notions they use in their work. In the following, we refer
to the their language as Λ, to our language as Λs, and to standard lambda calculus as Λβ .

Balabonski et al. do not distinguish between strict and non-strict let syntactically, they
only have one form of let-construct. In order to discover the difference, they have to traverse
the term to check if the let-bound variable is really needed, i.e., if it is in the set of non-garbage
variables of the body. Non-garbage variables are defined as follows:

ngv(x) = {x}
ngv(λx.t) = ngv(t) \ {x}
ngv(t1 t2) = ngv(t1) ∪ ngv(t2)

ngv(t2[x\t1]) = ngv(t2) \ {x} ∪
{

ngv(t1), if x ∈ ngv(t2)
∅, otherwise

where the notation t2[x\t1] denotes an explicit substitution of t1 for x in t2.
In contrast, our intermediate language makes this distinction effective just as soon as

decomposition of the term reveals it.
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We define an erasure operation |·| : Λs → Λ:

|x| = x

|λx.t| = λx.|t|
|t1 t2| = |t1| |t2|

|let x= t1 in t2| = |t2|[x\|t1|]
|let x := t1 in t2| = |t2|[x\|t1|]

This operation gives us a translation from Λs to Λ. A translation from Λ to Λs is trivial: every
term in Λ is a term in Λs (modulo the notation; t2[x\t1] is represented as let x= t1 in t2
in Λ).

We can show that the set of frozen variables of Λs-normal forms coincides with the
non-garbage variables. All lemmas below have routine inductive proofs, which we omit here.

I Lemma 6.1. For all Λs-normal forms n ∈ Nφ and for all variables x ∈ φ, x ∈ ngv(|n|).

The following two lemmas give a correspondence between normal forms in Λ and Λs.
Here Nφ denotes the set of normal terms (in Λ) under the set of frozen variables φ.

I Lemma 6.2. For all Λs-normal forms n ∈ Nφ, |n| ∈ Nφ (it is a Λ-normal term).

I Lemma 6.3. For all Λ-normal forms n ∈ Nψ, there exist n0 and φ ⊆ ψ such that |n0| = n

and n0 ∈ Nφ.

The next lemma states that needy terms correspond to Λ-contexts with holes filled with
a designated variable. The notation C[[x]] comes from [10] and denotes the variable x plugged
in the context C that does not capture the variable (there are no abstractions or explicit
substitutions that bind x in C). Similarly, notation Eφ (respectively, E@

φ ) is introduced in [10]
and denotes evaluation contexts (respectively, inert evaluation contexts) under the set of
frozen variables φ, both defined in [10].

I Lemma 6.4. For every needy term nx ∈ Nx
E·φ (nx ∈ Nx

C·φ, resp.) there exists a Λ-context
C ∈ E@

φ (C ∈ Eφ, resp.) such that |nx| = C[[x]].

In order to relate contexts, we need to introduce the conversion operator that transforms
Λs-elementary contexts into Λ-contexts.

|λx.�|c = λx.�

|� t|c = � |t|

|s�|c = |s|�

|let x= t in �|c = �[x\|t|]

|let x :=� in nx|c = C[[x]][x\�] where C[[x]] = |nx|

|let x := s in �|c = �[x\|s|]

Based on this definition and the composition of contexts in Λ, we can translate between
Λs-contexts and Λ-contexts. Here ECk·φ- is the union

⋃
k′,ψ EC

k·φ
k′·ψ.

I Lemma 6.5. For every elementary context ec ∈ ECC·φ
_ there is a Λ-context |ec|c ∈ Eφ, and

for every elementary context ec ∈ ECE·φ
_ there is a Λ-context |ec|c ∈ E@

φ and such that

∀t, |ec[t]| = |ec|c[t].
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I Lemma 6.6. For every Λ-context C ∈ Eφ (C ∈ E@
φ , resp.) there is a Λs-context c ∈ CC·ψ

_
(c ∈ CE·ψ

_ , resp.) such that ψ ⊆ φ and |c|c = C.

Having the ability to translate between both terms and contexts in the two languages,
we can prove that Λs correctly simulates reductions in Λ. The reduction in Λs possibly
uses more steps then the reduction in Λ because of switching between strict and non-strict
versions of let constructs.

I Definition 6.7. We say that a term t ∈ Λs is proper if all its subterms of the form
let x := t1 in t2 are such that t2 = nx for some needy term nx, i.e., that strict let’s are
correctly marked.

I Proposition 6.8. For all Λ-terms t1 and t2, if t1 →Λ t2 then there exists a proper ts ∈ Λs
such that t1 →∗Λs ts and |ts| = t2. Moreover, for all proper ts ∈ Λs, t ∈ Λ, if |ts| = t then
t→∗Λs ts.

I Proposition 6.9. For all t1, t2 ∈ Λs, if t1 →Λs t2 then |t1| = |t2| or |t1| →Λ |t2|. There is
no infinite sequence t1 →Λs t2 →Λs . . .→Λs tn →Λs . . . such that |t1| = |tn| for all n.

As a consequence of the correct simulation result we obtain that Λs achieves the same
normal forms as Λ.

I Lemma 6.10. For all φ and for all t, r ∈ Λ such that t→∗Λ r and r ∈ Nφ,

t→∗Λs rs

for some rs ∈ Nψ with ψ ⊆ φ, and such that |rs| = r.

I Lemma 6.11. For all φ, and for all t ∈ Λ, rs ∈ Λs such that t→∗Λs rs and rs ∈ Nφ,

t→∗Λ |rs| holds and |rs| ∈ Nφ.

Now the completeness and conservativity results propagate from [10] to our setting. Here
(·)� denotes the unfolding function defined in [10], which is a translation from Λ to Λβ .
The completeness result expresses that whenever a pure lambda term reduces to a normal
form, the same normal form can be reached by the strong call-by-need strategy followed by
unfolding the substitutions wrapping the obtained value.

I Corollary 6.12 (Completeness). For all lambda terms t ∈ Λβ, if t reduces to a normal form
r in Λβ (in symbols, t→∗Λβ r), then there exists a normal form rs in Λs such that

t→∗Λs rs

and |rs|� = r.

The conservativity result expresses that any strong call-by-need reduction has a weak call-
by-need reduction as a prefix.

I Corollary 6.13 (Conservativity). For all lambda terms t ∈ Λs, if

t = t0 →Λs t1 →Λs t2 →Λs . . .→Λs tn

is a sequence of reductions ending with a normal form tn, then there exists an i ≤ n such
that t0 → . . .→ ti is a reduction with weak call-by-need strategy.
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7 Related work

Operational accounts for lazy evaluation are numerous, coming both from the practical and
the theoretical considerations. The common implementation models include a canonical
store-based abstract machine, where the store component is used to memoize the computed
values and facilitate their reuse [26], as well as graph reduction machines devised on a principle
of sharing of subgraphs representing argument terms [31]. On the other hand, theoretical
investigations of call by need focus on establishing equational reasoning principles for lazy
evaluation and various calculi have been developed for this purpose, with the canonical
store-based natural semantics [24], and a storeless calculus based on let-constructs [8, 25].
These two worlds cross-fertilize, and there exist machines derived in an ad hoc manner from
calculi, e.g., Sestoft’s machine obtained from Launchbury’s semantics [28].

A more principled approach to interderiving semantic artefacts has been advocated by
Danvy and his collaborators; it consists in mechanizing derivations by identifying common
transformation patterns that can be applied generically and provide guidance in the derivation
process. In particular, they have used the functional correspondence to connect evaluators
with abstract machines – including weak call by need [6, 7, 27], and the syntactic correspond-
ence (based on refocusing) to connect reduction semantics and abstract machines [13].

Specific to call by need is an operational account of Danvy and Zerny who unify the
various operational artefacts for lazy evaluation and provide a systematic approach to go
from the canonical let-calculus of Ariola et al. through a series of refined reduction semantics
and the corresponding abstract machines to a canonical store-based abstract machine (lazy
Krivine machine) [19].

Strong reduction has been less studied operationally. The prominent examples of abstract
machines for strong normalization include Crégut’s abstract machine extending the Krivine
machine [15, 16], which has later been derived more systematically by Nogueira and Garcia-
Perez from the normal-order reduction strategy [22]; another variant has been devised using
Linear Substitution Calculus [2] and useful sharing [1]. A different approach has been taken by
Gregoire and Leroy whose normalization strategy uses call by value rather than call by name
as a substrategy and was motivated by Coq implementation [23], and has later been refined
as an instance of normalization by evaluation [14]. Efficient abstract machines for strong
call by value have been recently devised by Accattoli et al. using Fireball Calculus [4, 5].
The only work on strong call by need seems to be Balabonski et al.’s strategy which we
build on [10], recently extended to the Calculus of Inductive Constructions [11], focused on
ensuring completeness of the strong call-by-need strategy.

The framework we work with is based on generalized refocusing that generalizes the
syntactic correspondence used for weak strategies in that it allows for more complex strategies
to be expressed (ones that can be seen as compositions of several substrategies), and the
corresponding abstract machines to be derived [12].

8 Conclusion

We presented a systematic approach to defining reduction semantics for the call-by-need
strategies, both weak and strong, in the framework of generalized refocusing. Within this
framework we derived the corresponding abstract machines that are correct by construction.
We observed that this approach is very effective – the requirements posed by the framework
provide just enough structure and constraints to guide us in the process; in contrast, devising
a machine from scratch would be much more a trial-and-error process, and quite tedious.
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The derived machine is not optimized and thus not as effective as it might be. Our
approach opens the possibility to systematically transform and optimize it. We leave it to the
future work to further connect it to other semantic formats and models of implementation
(in particular, a store-based abstract machine), in the spirit of the derivational approach of
Danvy and Zerny [19], and to analyse its complexity as in the line of work of Accattoli [3].
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