Auction Design under Interdependent Values

Michal Feldman
Blavatnik School of Computer Science, Tel-Aviv University, Israel
michal.feldman@cs.tau.ac.il

Abstract
We study combinatorial auctions with interdependent valuations. In such settings, every agent has a private signal, and every agent has a valuation function that depends on the private signals of all the agents. Interdependent valuations capture settings where agents lack information to determine their own valuations. Examples include auctions for artwork or oil drilling rights. For single item auctions and assume some restrictive conditions (the so-called single-crossing condition), full welfare can be achieved. However, in general, there are strong impossibility results on welfare maximization in the interdependent setting. This is in contrast to settings where agents are aware of their own valuations, where the optimal welfare can always be obtained by an incentive compatible mechanism.

Motivated by these impossibility results, we study welfare maximization for interdependent valuations through the lens of approximation. We introduce two valuation properties that enable positive results. The first is a relaxed, parameterized version of single crossing; the second is a submodularity condition over the signals. We obtain a host of approximation guarantees under these two notions for various scenarios.

Related publications: [1, 2]

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechanism design

Keywords and phrases Combinatorial auctions, Interdependent values, Welfare approximation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.1

Category Invited Talk

References