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Abstract
We consider the online problem of scheduling jobs on identical machines, where jobs have precedence
constraints. We are interested in the demanding setting where the jobs sizes are not known up-front,
but are revealed only upon completion (the non-clairvoyant setting). Such precedence-constrained
scheduling problems routinely arise in map-reduce and large-scale optimization. For minimizing the
total weighted completion time, we give a constant-competitive algorithm. And for total weighted
flow-time, we give an O(1/ε2)-competitive algorithm under (1+ε)-speed augmentation and a natural
“no-surprises” assumption on release dates of jobs (which we show is necessary in this context).

Our algorithm proceeds by assigning virtual rates to all waiting jobs, including the ones which are
dependent on other uncompleted jobs. We then use these virtual rates to decide on the actual rates of
minimal jobs (i.e., jobs which do not have dependencies and hence are eligible to run). Interestingly,
the virtual rates are obtained by allocating time in a fair manner, using a Eisenberg-Gale-type convex
program (which we can solve optimally using a primal-dual scheme). The optimality condition
of this convex program allows us to show dual-fitting proofs more easily, without having to guess
and hand-craft the duals. This idea of using fair virtual rates may have broader applicability in
scheduling problems.
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1 Introduction

We consider the problem of online scheduling of jobs under precedence constraints. We seek
to minimize the average weighted flow time of the jobs on multiple parallel machines, in
the online non-clairvoyant setting. Formally, there are m identical machines, each capable
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63:2 Non-Clairvoyant Precedence Constrained Scheduling

of one unit of processing per unit of time. A set of [n] jobs arrive online. Each job has
a processing requirement pj and a weight wj , and is released at some time rj . If the job
finishes at time Cj , its flow or response time is defined to be Cj − rj . The goal is to give
a preemptive schedule that minimizes the total (or, equivalently, the average) weighted
flow-time

∑
j∈[n] wj · (Cj − rj). The main constraints of our model are the following: (i) the

scheduling is done online, so the scheduler does not know of the jobs before they are released;
(ii) the scheduler is non-clairvoyant – when a job arrives, the scheduler knows its weight but
not its processing time pj . (It is only when the job finishes its processing that the scheduler
knows the job is done, and hence knows pj .); And (iii) there are precedence constraints
between jobs given by a partial order ([n],≺): j ≺ j′ means job j′ cannot be started until j
is finished. Naturally, the partial order should respect release dates: if j ≺ j′ then rj ≤ r′j .
(We will require a stronger assumption for some of our results.)

This model for constrained parallelism is a natural one, both in theory and in practice.
In theory, this precedence-constrained (and non-clairvoyant!) scheduling model (with other
objective functions) goes back to Graham’s work on list scheduling [8]. In practice, most
languages and libraries produce parallel code that can be modeled using precedence DAGs [20,
1, 9]. Often these jobs (i.e., units of processing) are distributed among some m workstations
or servers, either in server farms or on the cloud, i.e., they use identical parallel machines.

1.1 Our Results and Techniques
Weighted Completion Time. We develop our techniques on the problem of minimizing
the average weighted completion time

∑
j wjCj . Our convex-programming approach gives us:

I Theorem 1.1. There is a 10-competitive deterministic online algorithm for minimizing the
average weighted completion time on parallel machines with both release dates and precedences,
in the online non-clairvoyant setting.

For this result, at each time t, the algorithm has to know only the partial order restricted
to {j ∈ [n] | rj ≤ t}, i.e., the jobs released by time t. The algorithmic idea is simple in
hindsight: the algorithm looks at the minimal unfinished jobs (i.e., they do not depend on
any other unfinished jobs): call them It. If Jt is the set of (already released and) unfinished
jobs at time t, then It ⊆ Jt. To figure out how to divide our processing among the jobs in It,
we write a convex program that fairly divides the time among all jobs in the larger set Jt,
such that (a) these jobs can “donate” their allocated time to some preceding jobs in It, and
that (b) the jobs in It do not get more than 1 unit of processing per time-step.

For this fair allocation, we maximize the (weighted) Nash Welfare
∑

j∈Jt
wj logRj , where

Rj is the virtual rate of processing given to job j ∈ Jt, regardless of whether it can currently
be run (i.e., is in It). This tries to fairly distribute the virtual rates among the jobs [19],
and can be solved using an Eisenberg-Gale-type convex program. (We can solve this convex
program in our setting using a simple primal-dual algorithm, see the full version.) The proof
of Theorem 1.1 is via writing a linear-programming relaxation for the weighted completion
time problem, and fitting a dual to it. Conveniently, the dual variables for the completion
time LP naturally fall out of the dual (KKT) multipliers for the convex program!

Weighted Flow Time. We then turn to the weighted flow-time minimization problem. We
first observe that the problem has no competitive algorithm if there are jobs j that depend
on jobs released before rj . Indeed, if OPT ever has an empty queue while the algorithm is
processing jobs, the adversary could give a stream of tiny new jobs, and we would be sunk.
Hence we make an additional no-surprises assumption about our instance: when a job j is
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released, all the jobs having a precedence relationship to j are also released at the same time.
In other words, the partial order is a collection of disjoint connected DAGs, where all jobs in
each connected component have the same release date. A special case of this model has been
studied in [20, 1] where each DAG is viewed as a “hyper-job” and there are no precedence
constraints between different hyper-jobs. In this model, we show:

I Theorem 1.2. There is an O(1/ε2)-competitive deterministic non-clairvoyant online
algorithm for the problem of minimizing the average weighted flow time on parallel machines
with release dates and precedences, under the no-surprises and (1 + ε)-speedup assumptions.

Interestingly, the algorithm for weighted flow-time is almost the same as for weighted
completion time. In fact, exactly the same algorithm works for both the completion time and
flow time cases, if we allow a speedup of (2 + ε) for the latter. To get the (1 + ε)-speedup
algorithm, we give preference to the recently-arrived jobs, since they have a smaller current
time-in-system and each unit of waiting proportionally hurts them more. This is along the
lines of strategies like LAPS and WLAPS [7].

1.2 The Intuition
Consider the case of unit weight jobs on a single machine. Without precedence constraints,
the round-robin algorithm, which runs all jobs at the same rate, is O(1)-competitive for the
flow-time objective with a 2-speed augmentation. Now consider precedences, and let the
partial order be a collection of disjoint chains: only the first remaining job from each chain
can be run at each time. We generalize round-robin to this setting by running all minimal
jobs simultaneously, but at rates proportional to length of the corresponding chains. We can
show this algorithm is also O(1)-competitive with a 2-speed augmentation. While this is
easy for chains and trees, let us now consider the case when the partial order is the union of
general DAGs, where each DAG may have several minimal jobs. Even though the sum of the
rates over all the minimal jobs in any particular DAG should be proportional to the number
of jobs in this DAG, running all minimal jobs at equal rates does not work. (Indeed, if many
jobs depend on one of these minimal jobs, and many fewer depend on the other minimal
jobs in this DAG, we want to prioritize the former.)

Instead, we use a convex program to find rates. Our approach assigns a “virtual rate”
Rj to each job in the DAG (regardless of whether it is minimal or not). This virtual rate
allows us to ensure that even though this job may not run, it can help some minimal jobs to
run at higher rates. This is done by an assignment problem where these virtual rates get
translated into actual rates for the minimal jobs. The virtual rates are then calculated using
Nash fairness, which gives us max-min properties that are crucial for our analysis.

Analysis Challenges: In typical applications of the dual-fitting technique, the dual variables
for each job encode the increase in total flow-time caused by arrival of this job. Using this
notion turns out to create problems. Indeed, consider a minimal job of low weight which is
running at a high rate (because a large number of jobs depend on it). The increase in overall
flow-time because of its arrival is very large. However the dual LP constraints require these
dual variables to be bounded by the weights of their jobs, which now becomes difficult to
ensure. To avoid this, we define the dual variables directly in terms of the virtual rates of
the jobs, given by the convex program.

Having multiple machines instead of a single machine creates new problems. The actual
rates assigned to any minimal job cannot exceed 1, and hence we have to throttle certain
actual rates. Again the versatility of the convex program helps us, since we can add this as a
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constraint. Arguing about the optimal solution to such a convex program requires dealing
with the suitable KKT conditions, from which we can infer many useful properties. We also
show in the full version that the optimal solution corresponds to a natural “water-filling”
based algorithm.

Finally, we obtain matching results for the case of (1 + ε)-speed augmentation. Im et
al. [12] gave a general-purpose technique to translate a round-robin based algorithm to a
LAPS-like algorithm. In our setting, it turns out that the LAPS-like policy needs to be run
on the virtual rates of jobs. Analyzing this algorithm does not follow in a black-box manner
(as prescribed by [12]), and we need to adapt our dual-fitting analysis suitably.

1.3 Related Work and Organization
Completion Time. Minimizing

∑
j wjCj on parallel machines with precedence constraints

has O(1)-approximations in the offline setting: Li [16] improves on [11, 18] to give a 3.387+ε-
approximation. For related machines, the precedence constraints make the problem much
harder: there is a O(logm/ log logm)-approximation [16] improving on a prior O(logm)
result [4], and a hardness of ω(1) under certain complexity assumptions [3]. In the online
setting, any offline algorithm for (a dual problem to)

∑
j wjCj gives an clairvoyant online

algorithm, losing O(1) factors [11]. Two caveats: it is unclear (a) how to make this algorithm
non-clairvoyant, and (b) how to solve the (dual of the) weighted completion time problem
with precedences in poly-time.

Flow Time without Precedence. To minimize
∑

j wj(Cj − rj), strong lower bounds are
known for the competitive ratio of any online algorithm even on a single machine [17]. Hence
we use speed augmentation [14]. For the general setting of non-clairvoyant weighted flow-time
on unrelated machines, Im et al. [13] showed that weighted round-robin with a suitable
migration policy yields a (2 + ε)-competitive algorithm using (1 + ε)-speed augmentation.
They gave a general purpose technique, based on the LAPS scheduling policy, to convert any
such round-robin based algorithm to a (1 + ε)-competitive algorithm while losing an extra
1/ε factor in the competitive ratio. Their analysis also uses a dual-fitting technique [2, 10].
However, they do not consider precedence constraints.

Flow Time with Precedence. Much less is known for flow-time problems with precedence
constraints. For the offline setting on identical machines, [15] give O(1)-approximations
with O(1)-speedup, even for general delay functions. In the current paper, we achieve a
poly(1/ε)-approximation with (1 + ε)-speedup for flow-time. Interestingly, [15] show that
beating a n1−c-approximation for any constant c ∈ [0, 1) requires a speedup of at least the
optimal approximation factor of makespan minimization in the same machine environment.
However, this lower bound requires different jobs with a precedence relationship to have
different release dates, which is something our model disallows. (The full version gives
another lower bound showing why we disallow such precedences in the online setting.)

In the online setting, [20] introduced the DAG model where each job is a directed acyclic
graph (of tasks) released at some time, and a job/DAG completes when all the tasks in it are
finished, and we want to minimize the total unweighted flow-time. They gave a (2 + ε)-speed
O(κ/ε)-competitive algorithm, where κ is the largest antichain within any job/DAG. [1]
show poly(1/ε)-competitiveness with (1 + ε)-speedup, again in the non-clairvoyant setting.
The case where jobs are entire DAGs, and not individual nodes within DAGs, is captured in
our weighted model by putting zero weights for all original jobs, and adding a unit-weight
zero-sized job for each DAG which now depends on all jobs in the DAG. Assigning arbitrary
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weights to individual nodes within DAGs makes our problem quite non-trivial – we need
to take into account the structure of the DAG to assign rates to jobs. Another model to
capture parallelism and precedences uses speedup functions [6, 5, 7]: relating our model to
this setting remains an open question.

Our work is closely related to Im et al. [12] who use a Nash fairness approach for
completion-time and flow-time problems with multiple resources. While our approaches are
similar, to the best of our understanding their approach does not immediately extend to the
setting with precedences. Hence we have to introduce new ideas of using virtual rates (and
being fair with respect to them), and throttling the induced actual rates at 1. The analyses
of [12] and our work are both based on dual-fitting; however, we need some new ideas for the
setting with precedences.

Organization. The weighted completion time case is solved in §2. A (2 + ε)-speedup result
for weighted flow-time is in §3. In the full version we improve this to a (1 + ε)-speedup.
There we also show the need for the “no-surprises” assumption on release dates, how to solve
the convex program using a “water-filling” based algorithm, and the missing proofs.

2 Minimizing Weighted Completion Time

In this section, we describe and analyze the scheduling algorithm for the problem of minimizing
weighted completion time on parallel machines. Recall that the precedence constraints are
given by a DAG G, and each job j has a release date rj , processing size pj and weight wj .

2.1 The Scheduling Algorithm
We first assume that each of the m machines run at rate 2 (i.e., they can perform 2 units of
processing in a unit time). We will show later how to remove this assumption (at a constant
loss of competitive ratio). We begin with some notation. We say that a job j is waiting at
time t (with respect to a schedule) if rj ≤ t, but j has not been processed to completion
by time t. We use Jt to denote the set of waiting jobs at time t. Note that at time t, the
algorithm gets to see the subgraph Gt of G which is induced by the jobs in Jt. We say that
a job j is unfinished at time t if it is either waiting at time t, or its release date is at least
t (and hence the algorithm does not even know about this job). Let Ut denote the set of
unfinished jobs at time t. Clearly, Jt ⊆ Ut. At time t, the algorithm can only process those
jobs in Jt which do not have a predecessor in Gt – denote these minimal jobs by It: they are
independent of all other current jobs. For every time t, the scheduling algorithm needs to
assign a rate to each job j ∈ It. We now describe how it decides on these rates.

Consider a time t. The algorithm considers a bipartite graph Ht = (It, Jt, Et) with vertex
set consisting of the minimal jobs It on left and the waiting jobs Jt on right. Since It ⊆ Jt, a
job in It appears as a vertex on both sides of this bipartite graph. When there is no confusion,
we slightly overload terminology by referring to a job as a vertex in Ht. The set of edges Et

are as follows: let jl ∈ It, jr ∈ Jt be vertices on the left and the right side respectively. Then
(jl, jr) is an edge in Et if and only if there is a directed path from jl to jr in the DAG Gt.

The following convex program now computes the rate for each vertex in It. It has variables
zt

e for each edge e ∈ Et. For each job j on the left side, i.e., for j ∈ It, define Lt
j :=

∑
e∈∂j z

t
e

as the sum of ze values of edges incident to j. Similarly, define Rt
j :=

∑
e∈∂j z

t
e for a job

j ∈ Jt, i.e., on the right side. The objective function is the Nash bargaining objective function
on the Rt

j values, which ensures that each waiting job gets some attention. In the full version
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we give a combinatorial algorithm to efficiently solve this convex program.

max
∑
j∈Jt

wj lnRt
j (CP)

Lt
j =

∑
j′∈Jt:(j,j′)∈Et

zt
jj′ ∀j ∈ It (1)

Rt
j =

∑
j′∈It:(j′,j)∈Et

zt
j′j ∀j ∈ Jt (2)

Lt
j ≤ 1 ∀j ∈ It (3)∑

j∈It

Lt
j ≤ m (4)

zt
e ≥ 0 ∀e ∈ Et (5)

Let (z̄t, L̄t, R̄t) be an optimal solution to the above convex program. We define the rate of a
job j ∈ It as being L̄t

j .
Although we have defined this as a continuous time process, it is easy to check that the

rates only change if a new job arrives, or if a job completes processing. Also observe that we
have effectively combined the m machines into one in this convex program. But assuming
that all events happen at integer times, we can translate the rate assignment to an actual
schedule as follows. For a time slot [t, t + 1], the total rate is at most m (using (4)), so
we create m time slots [t, t+ 1]i, one for each machine i, and iteratively assign each job j
an interval of length L̄t

j within these time slots. It is possible that a job may get assigned
intervals in two different time slots, but the fact that L̄t

j ≤ 1 means it will not be assigned
the same time in two different time slots. Further, we will never exceed the slots because
of (4). Thus, we can process these jobs in the m time slots on the m parallel machines such
that each job j gets processed for L̄t

j amount of time and no job is processed concurrently
on multiple machines. This completes the description of the algorithm; in this, we assume
that we run the machines at twice the speed. Call this algorithm A.

The final algorithm B, which is only allowed to run the machines at speed 1, is obtained
by running A in the background, and setting B to be a slowed-down version of A. Formally,
if A processes a job j on machine i at time t ∈ R≥0, then B processes this at time 2t. This
completes the description of the algorithm.

2.2 A Time-Indexed LP formulation
We use the dual-fitting approach to analyze the above algorithm. We write a time-indexed
linear programming relaxation (LP) for the weighted completion time problem, and use the
solutions to the convex program (CP) to obtain feasible primal and dual solutions for (LP)
which differ by only a constant factor.

We divide time into integral time slots (assuming all quantities are integers). Therefore,
the variable t will refer to integer times only. For every job j and time t, we have a variable
xj,t which denotes the volume of j processed during [t, t+ 1]. Note that this is defined only
for t ≥ rj . The LP relaxation is as follows:

min
∑

j,t wj · t·xj,t

pj
(LP)∑

t≥rj

xj,t

pj
≥ 1 ∀j (6)∑

j xj,t ≤ m ∀t (7)∑
s≤t

xj,s

pj
≥
∑

s≤t

xj′,s

pj′
∀t, j ≺ j′ (8)
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The following claim, whose proof is deferred to the full version, shows that it is a valid
relaxation.

B Claim 2.1. Let opt denote the weighted completion time of an optimal off-line policy
(which knows the processing time of all the jobs). Then the optimal value of the LP relaxation
is at most opt.

The (LP) has a large integrality gap. Observe that the LP just imagines the m machines
to be a single machine with speed m. Therefore, (LP) has a large integrality gap for two
reasons: (i) a job j can be processed concurrently on multiple machines, and (ii) suppose
we have a long chain of jobs of equal size in the DAG G. Then the LP allows us to process
all these jobs at the same rate in parallel on multiple machines. We augment the LP lower
bound with another quantity and show that the sum of these two lower bounds suffice.

A chain C in G is a sequence of jobs j1, . . . , jk such that j1 ≺ j2 ≺ . . . ≺ jk. Define
the processing time of C, p(C), as the sum of the processing time of jobs in C. For a
job j, define chainj as the maximum over all chains C ending in j of p(C). It is easy to
see that

∑
j wj · (rj + chainj) is a lower bound (up to a factor 2) on the objective of an

optimal schedule.
We now write down the dual of the LP relaxation above. We have dual variables αj for

every job j, and βt for every time t, and γs,j→j′

max
∑

j

αj −m
∑

t

βt (DLP)

αj − wj · t+
∑
s≥t

(∑
j≺j′

γs,j→j′ −
∑
j′≺j

γs,j′→j

)
≤ pj · βt ∀j, t ≥ rj (9)

αj , βt ≥ 0

We write the dual constraint (9) in a more readable manner. For a job j and time s, let
γins,j denote

∑
j′≺j γs,j′→j , and define γouts,j similarly. We now write the dual constraint (9) as

αj − wj · t+
∑
s≥t

(
γouts,j − γins,j

)
≤ pj · βt ∀j, t ≥ rj (10)

2.3 Properties of the Convex Program
We now prove certain properties of an optimal solution (z̄t, L̄t, R̄t) to the convex program (CP).
The first property, whose proof is deferred to the full version, is easy to see:

B Claim 2.2. If
∑

j∈It
L̄t

j < m, then L̄t
j = 1 for all j ∈ It.

We now write down the KKT conditions for the convex program. (In fact, we can use (1)
and (2) to replace L̄t

j and R̄t
j in the objective and the other constraints.) Then letting

θt
j ≥ 0, ηt ≥ 0, νt

e ≥ 0 be the Lagrange multipliers corresponding to constraints (3), (4)
and (5), we get

wj

R̄t
j

= θt
j′ + ηt − νt

e ∀e = (j′, j), j′ ∈ It, j ∈ Jt (11)

θt
j (L̄t

j − 1) = 0 ∀j ∈ It (12)
ηt (
∑

j∈It
L̄t

j −m) = 0 (13)

νt
e · z̄t

e = 0 ∀e ∈ Et (14)

We derive a few consequences of these conditions, the proofs are deferred to the full
version.

ICALP 2019



63:8 Non-Clairvoyant Precedence Constrained Scheduling

B Claim 2.3. Consider a job j ∈ Jt on the right side of Ht. Then wj ≥ R̄t
j · ηt.

B Claim 2.4. Consider a job j ∈ Jt on the right side of Ht. Suppose j has a neighbor j′ ∈ It

such that L̄t
j′ < 1 and z̄t

j′j > 0. Then wj = R̄t
j · ηt.

A crucial notion is that of an active job:

I Definition 2.5 (Active Jobs). A job j ∈ Jt is active at time t if it has at least one neighbor
in It (in the graph Ht) running at rate strictly less than 1.

Let Jactt denote the set of active jobs at time t. We can strengthen the above claim
as follows.

I Corollary 2.6. Consider an active job j at time t. Then wj = R̄t
j · ηt.

B Claim 2.7. w(Jactt )/m ≤ ηt ≤ w(Jt)/m.

2.4 Analysis via Dual Fitting
We analyze the algorithm A first. We define feasible dual variables for (DLP) such that the
value of the dual objective function (along with the chainj values that capture the maximum
processing time over all chains ending in j) forms a lower bound on the weighted completion
time of our algorithm. Intuitively, αj would be the weighted completion time of j, and βt

would be 1/2m times the total weight of unfinished jobs at time t. Thus,
∑

j αj −m
∑

t βt

would be at 1/2 times the total weighted completion time. This idea works as long as all
the machines are busy at any point of time, the reason being that the primal LP essentially
views the m machines as a single speed-m machine. Therefore, we can generate enough dual
lower bound if the rate of processing in each time slot is m. If all machines are not busy, we
need to appeal to the lower bound given by the chainj values.

We use the notation used in the description of the algorithm. In the graph Ht, we had
assigned rates L̄t

j to all the nodes j in It. Recall that a vertex j ∈ Jt on the right side of Ht

is said to be active at time t if it has a neighbor j′ ∈ It for which L̄t
j′ < 1. Otherwise, we say

that j is inactive at time t. We say that an edge e = (jl, jr) ∈ Et, where jl ∈ It, jr ∈ Jt is
active at time t if the vertex jr is active. Let At denote the set of active edges in Et. Let
e = (jl, jr) be an edge in Et. By definition, there is a path from jl to jr in Gt – we fix such
a path Pe. As before, let Cj denote the completion time of job j. The dual variables are
defined as follows:

For each job j and time t, we define quantities αj,t. The dual variable αj would be equal
to
∑

t≥0 αj,t. Fix a job j. If t /∈ [rj , Cj ] we set αj,t to 0. Now, suppose j ∈ Jt. Consider
the job j as a vertex in Jt (i.e., right side) in the bipartite graph Ht. We set αj,t to wj if
j is active at time t, otherwise it is inactive.
For each time t, we set β to 1/2m · w(Ut) (Recall that Ut is the set of unfinished jobs at
time t).
We now need to define γt,j′→j , where j′ ≺ j. If j or j′ does not belong to Jt, we set this
variable to 0. So assume that j, j′ ∈ Jt (and so the edge (j′, j) lies in Gt). We define

γt,j′→j := ηt ·
∑

e:e∈At,(j′→j)∈Pe

z̄t
e.

In other words, we consider all the active edges e in the graph Ht for which the cor-
responding path Pe contains (j′, j). We add up the fractional assignment z̄t

e for all
such edges.
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This completes the description of the dual variables.
We first show that the objective function for (DLP) is close to the weighted completion

time incurred by the algorithm. The proof is deferred to the full version.

B Claim 2.8. The total weighted completion time of the jobs in A is at most 2(
∑

j αj −m ·∑
t βt) +

∑
j wj · (chainj + 2rj).

We now argue about feasibility of the dual constraint (9). Consider a job j and time
t ≥ rj . Since αj,s ≤ wj for all time s,

∑
s≤t αj,s ≤ wj · t. Therefore, it suffices to show:∑

s≥t

αj,s +
∑
s≥t

(
γouts,j − γins,j

)
≤ pj · βt (15)

Let t?j be the first time t when the job j appears in the set It. This would also be the
first time when the algorithm starts processing j because a job that enters It does not leave
It before completion.

B Claim 2.9. For any time s lying in the range [rj , t
?
j ), αj,s + γouts,j − γins,j = 0.

Proof. Fix such a time s. Note that j /∈ Is. Thus j appears as a vertex on the right side in
the bipartite graph Hs, but does not appear on the left side. Let e be in active edge in Hs

such that the corresponding path Pe contains j as an internal vertex. Then z̄s
e gets counted

in both γouts,j and γins,j . There cannot be such a path Pe which starts with j, because then j
will need to be on the left side of the bipartite graph. There could be paths Pe which end
with j – these will correspond to active edges e incident with j in the graph Ht (this happens
only if j itself is active). Let Γ(j) denote the edges incident with j. We have shown that

γouts,j − γins,j = −ηt ·
∑

e∈Γ(j)∩As

z̃s
e . (16)

If j is not active, the RHS is 0, and so is αj,s. So we are done. Therefore, assume that j is
active. Now, A(s) contains all the edges incident with j, and so, the RHS is same as −ηt · R̄t

j .
But then, Corollary 2.6 implies that −ηt · R̄t

j = −wj . Since αj,s = wj , we are done again. C

Coming back to inequality (15), we can assume that t ≥ t?j . To see this, suppose t < t?j .
Then by Claim 2.9 the LHS of this constraint is same as∑

s≥t?
j

αj,s +
∑
s≥t?

j

(
γouts,j − γins,j

)
.

Since βt ≥ βt?
j
(the set of unfinished jobs can only diminish as time goes on), (15) for time t

follows from the corresponding statement for time t?j . Therefore, we assume that t ≥ t?j . We
can also assume that t ≤ Cj , otherwise the LHS of this constraint is 0.

B Claim 2.10. Let s ∈ [t?j , Cj ] be such that j is inactive at time s. Then αj,s + γouts,j − γins,j ≤
ηs · L̄s

j .

Proof. We know that αj,s = 0. As in the proof of Claim 2.9, we only need to worry about
those active edges e in Hs for which Pe either ends at j or begins with j. Since any edge
incident with j as a vertex on the right side is inactive, we get (let Γ(j) denote the edges
incident with j, where we consider j on the left side)

αj,s + γouts,j − γins,j = ηs ·
∑

e∈Γ(j)∩A(s)

z̄s
e ≤ ηs · L̄s

j ,

because ηs ≥ 0 and L̄s
j =

∑
e∈Γ(j) z̄

s
e . C
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B Claim 2.11. Let s ∈ [t?j , Cj ] be such that j is active at time s. Then αj,s + γouts,j − γins,j ≤
ηs · L̄s

j .

Proof. The argument is very similar to the one in the previous claim. Since j is active,
αj,s = wj . As before we only need to worry about the active edges e for which Pe either
ends or begins with j. Any edge which is incident with j on the right side (note that there
will only one such edge – one the one joining j to its copy on the left side of Ht) is active.
The following inequality now follows as in the proof of Claim 2.10:

αj,s + γouts,j − γins,j ≤ wj + ηs · L̄s
j − ηs · R̄s

j .

The result now follows from Corollary 2.6. C

We are now ready to show that (15) holds. The above two claims show that the LHS
of (15) is at most

∑Cj

s=t η
s · L̄s

j . Note that for any such time s, the rate assigned to j is L̄j
s,

and so, we perform 2 · L̄j
s amount of processing on j during this time slot. It follows that∑Cj

s=t L̄
s
j ≤ pj/2. Now Claim 2.7 shows that ηs ≤ w(Us)/m ≤ w(Ut)/m, and so we get

Cj∑
s=t

ηs · L̄s
j ≤

pj · w(Ut)
2m = pj · βt.

This shows that (15) is satisfied. We can now prove our algorithm is constant competitive.

I Theorem 2.12. The algorithm B is 10-competitive.

Proof. We first argue about A. We have shown that the dual variables are feasible to (DLP),
and so, Claim 2.8 shows that the total completion time of A is at most 2opt +

∑
j wj(chainj +

2rj), where opt denotes the optimal off-line objective value. Clearly, opt ≥
∑

j wj · rj and
opt ≥

∑
j wj · chainj . This implies that A is 5-competitive. While going from A to B the

completion time of each job doubles. J

3 Minimizing Weighted Flow Time

We now consider the setting of minimizing the total weighted flow time, again in the non-
clairvoyant setting. The setting is almost the same as in the completion-time case: the major
change is that all jobs which depend on each other (i.e., belong to the same DAG in the
“collection of DAGs view” have the same release date). In the full version we show that if
related jobs can be released over time then no competitive online algorithms are possible.

As before, let Jt denote the jobs which are waiting at time t, i.e., which have been released
but not yet finished, and let Gt be the union of all the DAGs induced by the jobs in Jt.
Again, let It denote the minimal set of jobs in Jt, i.e., which do not have a predecessor in Gt

and hence can be scheduled.

I Theorem 3.1. There exists an O(1/ε)-approximation algorithm for non-clairvoyant DAG
scheduling to minimize the weighted flow time on m parallel machines, when there is a speedup
of 2 + ε.

The rest of this section gives the proof of Theorem 3.1. The algorithm remains unchanged
from §2 (we do not need the algorithm B now): we write the convex program (CP) as before,
which assign rates L̄t

j to each job j ∈ It. The analysis again proceeds by writing a linear
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programming relaxation, and showing a feasible dual solution. The LP is almost the same
as (LP), just the objective is now (with changes in dashed box):

∑
j,t

wj ·
(t− rj) · xj,t

pj
.

Hence, the dual is also almost the same as (DLP): the new dual constraint requires that for
every job j and time t ≥ rj :

αj +
∑
s≥t

(
γouts,j − γins,j

)
≤ βt · pj + wj (t− rj) . (17)

3.1 Defining the Dual Variables
In order to set the dual variables, define a total order ≺ on the jobs as follows: First arrange
the DAGs in order of release dates, breaking ties arbitrarily. Let this order be D1, D2, . . . , D`.
All jobs in Di appear before those in Di+1 in the order ≺. Now for each dag Di, arrange
its jobs in the order they complete processing by our algorithm. Note that this order is
consistent with the partial order given by the DAG. This also ensures that at any time t, the
set of waiting jobs in any DAG Di form a suffix in this total order (restricted to Di).

For a time t and j ∈ Jt, let I[j ∈ Jactt ] denote the indicator variable which is 1 exactly if
j is active at time t. The dual variables are defined as follows:

For a job j ∈ Jt, we set αj :=
∑Cj

t=rj
αj,t, where the quantity αj,t as defined as:

αj,t := 1
m

[
wj · I[j ∈ Jactt ] ·

( ∑
j′∈Jt:j′�j

R̄t
j′

)
+ R̄t

j ·
( ∑

j′∈Jact
t :j′≺j

wj′

)]
.

The variable βt := w(Jt)
(1+ε)m . Recall that the machines are allowed 2(1 + ε)-speedup.

The definition of the γ variables changes as follows. Let (j′ → j) be an edge in the DAG
Gt. Earlier we had considered paths Pe containing (j′ → j) only for the active edges
e. But now we include all edges. Moreover, we replace the multiplier ηt by ηt

j , where
ηt

j := 1
m ·
(∑

j′∈Jt:j′�j wj′

)
. In other words, we define

γt,j′→j := ηt
j ·

∑
e:e∈Ht,(j′→j)∈Pe

z̄t
e.

In the following sections, we show that these dual settings are enough to “pay for” the flow
time of our solution (i.e., have large objective function value), and also give a feasible lower
bound (i.e., are feasible for the dual linear program).

3.2 The Dual Objective Function
We first show that

∑
j αj −m

∑
t βt is close to the total weighted flow-time of the jobs. The

quantity chainj is defined as before. Notice that chainj is still a lower bound on the flow-time
of job j in the optimal schedule because all jobs of a DAG are simultaneously released. The
following claim, whose result is deferred to the full version, shows that the dual objective
value is close to the weighted flow time of the algorithm.

B Claim 3.2. The total weighted flow-time is at most 2
ε

(∑
j αj −m

∑
t βt +

∑
j wj · chainj

)
.
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3.3 Checking Dual Feasibility
Now we need to check the feasibility of the dual constraint (17). In fact, we will show the
following weaker version of that constraint:

αj + 2
∑
s≥t

(
γouts,j − γins,j

)
≤ βt · pj + 2 wj(t− rj). (18)

This suffices to within another factor of 2: indeed, scaling down the α and β variables by
another factor of 2 then gives dual feasibility, and loses only another factor of 2 in the
objective function. We begin by bounding αj,s in two different ways.

I Lemma 3.3. For any time s ≥ rj, we have αj,s ≤ 2wj.

Proof. Consider the second term in the definition of αj,s. This term contains
∑

j′∈Jact
s :j′≺j wj′ .

By Corollary 2.6, for any j′ ∈ Jacts we have wj′ = R̄s
j′ · ηs. Therefore,∑

j′∈Jact
s :j′≺j

wj′ ≤ ηs ·
∑

j′∈Jact
s :j′≺j

R̄s
j′ ≤ ηs ·

∑
j′∈Js

R̄s
j′ .

Now we can bound αj,s by dropping the indicator on the first term to get

1
m
·
[(
wj ·

∑
j′∈Js:j′�j

R̄s
j′

)
+ R̄s

j ·
(
ηs ·

∑
j′∈Jact

s :j′≺j

R̄s
j′

)]
≤ 1

m
wj

[ ∑
j′∈Js

R̄s
j′ +

∑
j′∈Js

R̄s
j′

]
,

the last inequality using Claim 2.3. Simplifying, αj,s ≤ 2
m · wj ·

∑
j′′∈Is

L̄s
j′′ = 2wj . J

Here is a slightly different upper bound on αj,s.

I Lemma 3.4. For any time s ≥ rj, we have αj,s ≤ 2ηs
j · R̄s

j .

Proof. The second term in the definition of αj,s is at most ηs
j · R̄s

j , directly using the
definition of ηs

j . For the first term, assume j is active at time s, otherwise this term is 0.
Now Corollary 2.6 shows that wj = ηs · R̄s

j , so the first term can be bounded as follows:

wj

m
·
∑

j′∈Js:j′�j

R̄s
j′ =

R̄s
j · ηs

m
·
∑

j′∈Js:j′�j

R̄s
j′

(Claim 2.3)
≤

R̄s
j

m
·
∑

j′∈Js:j′�j

wj′ = R̄s
j ·ηs

j ,

which completes the proof. J

To prove (18), we write αj =
∑t−1

s=rj
αj,s +

∑
s≥t αj,s, and use Lemma 3.3 to cancel the

first summation with the term 2wj(t− rj). Hence, it remains to prove∑
s≥t

αj,s + 2
∑
s≥t

(
γouts,j − γins,j

)
≤ βt · pj . (19)

Let t?j be the time at which the algorithm starts processing j. We first argue why we can
ignore times s < t?j on the LHS of (19).

B Claim 3.5. Let s be a time satisfying rj ≤ s < t?j . Then αj,s + 2(γouts,j − γins,j) ≤ 0.

Proof. While computing γouts,j − γins,j , we only need to consider paths Pe for edges e in Hs

which have j as end-point. Since j does not appear on the left side of Hs, this quantity is
equal to −ηs

j · R̄s
j . The result now follows from Lemma 3.4. C
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So using Claim 3.5 in (19), it suffices to show∑
s≥max{t,t?

j
}

αj,s + 2
∑

s≥max{t,t?
j
}

(
γouts,j − γins,j

)
≤ βt · pj . (20)

Note that we still have βt on the right hand side, even though the summation on the left is
over times s ≥ max{t, t?j}. The proof of the following claim is deferred to the full version.

B Claim 3.6. Let s be a time satisfying s ≥ max{t, t?j}. Then αj,s + 2(γouts,j − γins,j) ≤
2(1 + ε)βt · L̄s

j .

Hence, the left-hand side of (20) is at most 2(1 + ε)βt ·
∑

s≥max{t,t?
j
} L̄

s
j . However, since

job j is assigned a rate of L̄s
j and the machines run at speed 2(1 + ε), we get that this

expression is at most pj · βt, which is the right-hand side of (20). This proves the feasibility
of the dual constraint (18).

Proof of Theorem 3.1. In the preceding §3.3 we proved that the variables αj/2, βt/2 and
γt,j′→j satisfy the dual constraint for the flow-time relaxation. Since

∑
j(αj/2)−m

∑
t(βt/2)

is a feasible dual, it gives a lower bound on the cost of the optimal solution. Moreover,∑
j wj · chainj is another lower bound on the cost of the optimal schedule. Now using the

bound on the weighted flow-time of our schedule given by Claim 3.2, this shows that we have
an O(1/ε)-approximation with 2(1 + ε)-speedup. J

In the full version we show how to use a slightly different scheduling policy that prioritizes
the last arriving jobs to reduce the speedup to (1 + ε).
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