
A Composition Theorem for Randomized Query
Complexity via Max-Conflict Complexity∗

Dmitry Gavinsky
Institute of Mathematics, Czech Academy of Sciences, 115 67 Žitna 25, Praha 1, Czech Republic

Troy Lee
Centre for Quantum Software and Information, Faculty of Engineering and Information Technology,
University of Technology Sydney, Australia
troyjlee@gmail.com

Miklos Santha
CNRS, IRIF, Université de Paris, 75205 Paris, France
Centre for Quantum Technologies, National University of Singapore, Singapore 117543
MajuLab, UMI 3654, Singapore
santha@irif.fr

Swagato Sanyal
Indian Institute of Technology Kharagpur, India
swagato@cse.iitkgp.ac.in

Abstract
For any relation f ⊆ {0, 1}n × S and any partial Boolean function g : {0, 1}m → {0, 1, ∗}, we
show that

R1/3(f ◦ gn) ∈ Ω(R4/9(f) ·
√

R1/3(g)),

where Rε(·) stands for the bounded-error randomized query complexity with error at most ε, and
f ◦ gn ⊆ ({0, 1}m)n × S denotes the composition of f with n instances of g.

The new composition theorem is optimal, at least, for the general case of relational problems:
A relation f0 and a partial Boolean function g0 are constructed, such that R4/9(f0) ∈ Θ

(√
n
)
,

R1/3(g0) ∈ Θ(n) and R1/3(f0 ◦ gn0) ∈ Θ(n).
The theorem is proved via introducing a new complexity measure, max-conflict complexity,

denoted by χ̄(·). Its investigation shows that χ̄(g) ∈ Ω(
√

R1/3(g)) for any partial Boolean function
g and R1/3(f ◦ gn) ∈ Ω(R4/9(f) · χ̄(g)) for any relation f , which readily implies the composition
statement. It is further shown that χ̄(g) is always at least as large as the sabotage complexity of g.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees

Keywords and phrases query complexity, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.64

Category Track A: Algorithms, Complexity and Games

Related Version https://arxiv.org/abs/1811.10752 [6]

Funding Part of this work was conducted while T.L. and S.S. were at the Nanyang Technological
University and the Centre for Quantum Technologies, supported by the Singapore National Research
Foundation under NRF RF Award No. NRF-NRFF2013-13. This work was additionally supported
by the Singapore National Research Foundation, the Prime Minister’s Office, Singapore and the
Ministry of Education, Singapore under the Research Centres of Excellence programme under
research grant R 710-000-012-135. This research was supported in part by the QuantERA ERA-NET
Cofund project QuantAlgo. D.G. is partially funded by the grant 19-27871X of GA ČR.

∗ This paper is a merger of [5] and [12], together with some new results.

EA
T

C
S

© Dmitry Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 64; pp. 64:1–64:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:troyjlee@gmail.com
mailto:santha@irif.fr
mailto:swagato@cse.iitkgp.ac.in
https://doi.org/10.4230/LIPIcs.ICALP.2019.64
https://arxiv.org/abs/1811.10752
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 A Composition Theorem for Randomized Query Complexity

Acknowledgements We thank Rahul Jain for useful discussions. We thank Srijita Kundu and
Jevgēnijs Vihrovs for their helpful comments on the manuscript. We thank Yuval Filmus for
suggesting to look at the min-max version of conflict complexity, which led to the development of
max-conflict complexity. We thank the anonymous reviewers for their helpful comments.

1 Introduction

For a relational problem f ⊆ {0, 1}n×S and a partial Boolean function g : {0, 1}m → {0, 1, ∗},
their composition f ◦ gn ⊆ ({0, 1}m)n × S is defined as

f ◦ gn(x) =
{
S if ∗ ∈

{
g(xi)

∣∣i ∈ [n]
}
;

f(g(x1), . . . , g(xn)) otherwise.

Relating the complexity of f ◦ gn to the complexities of f and g is a natural research problem.
A query algorithm for computing h is allowed to query individual bits of the input x, with

the goal of outputting h(x) (or an element of h(x) if the problem is a relational one). The
query complexity of an algorithm is the maximum possible number of queries that it makes.

Query algorithms can be deterministic, randomized or quantum, where the latter two
classes allow for (bounded) errors. The corresponding query complexity of a function –
denoted, respectively, by D(h), R(h) or Q(h) – is the minimal query complexity of an
algorithm that belongs to the corresponding class and computes h with error 1/31. Section 2
contains formal definitions of various query complexity measures.

It is easy to see that D(f ◦ gn) ≤ D(f) ·D(g). 2 For the cases of randomized and quantum
query complexity the argument is slightly more subtle, though very similar conceptually; in
particular, both R(f ◦ gn) ∈ O(R(f) · R(g) · logn) and Q(f ◦ gn) ∈ O(Q(f) · Q(g)) hold. 3

Showing a strong lower bounds on the query complexity of f ◦gn (preferably, matching the
trivial upper bound) is often more interesting, the corresponding statements are sometimes
called composition theorems. Such results can lead to further theoretical developments (e.g.,
separating complexity measures, as well as different classes in structural complexity).

For deterministic query complexity it has been shown [10, 13] that

D(f ◦ gn) = D(f) · D(g),

which means that the trivial query algorithm for f ◦ gn described above is optimal. Similarly,
for bounded-error quantum query complexity it has been shown [8, 11] that

Q(f ◦ gn) ∈ Θ(Q(f) · Q(g)).

Prior to this work, the randomized query complexity of composition has remained an
open problem. We partially solve it for the most general case of composition: namely, letting
f be a relational problem and g be a partial Boolean function. 4

1 In general, Rε(h) (resp. Qε(h)) stands for the randomized (resp. quantum) query complexity with
respect to error ε.

2 To compute f ◦ gn, one can simulate an optimal query algorithm for f , serving every query of this
algorithm by running an optimal query algorithm for g.

3 The multiplicative factor of logn in the case of R(h) is due to the need to reduce the error in computing
each instance of g to O(1/n); in the quantum case this can be handled in a more elegant, “lossless” way.

4 Letting g be a relation seems to result in a rather awkward definition of f ◦ gn. Letting g be a
non-Boolean promise function doesn’t seem to lead to any interesting development (the original version
of this work [5] has demonstrated the same composition result for an arbitrary partial g; switching to
the Boolean case in the current version has allowed somewhat clearer presentation).

D. Gavinsky, T. Lee, M. Santha, and S. Sanyal 64:3

I Theorem 1. For any relation f ⊆ {0, 1}n × S and any partial Boolean function g :
{0, 1}m → {0, 1, ∗},

R1/3(f ◦ gn) ∈ Ω
(

R4/9(f) ·
√

R1/3(g)
)
.

Note that the above lower bound does not match the trivial upper bound, so its optimality
has to be addressed separately. That is done via constructing an example where the above
bound is tight: in other words, while some incomparable lower bounds on R1/3(f ◦ gn) are
conceivable, the statement of Theorem 1 is a strongest possible in general. 5

I Theorem 2. There exists a relation f0 ⊆ {0, 1}n × {0, 1}n and a partial Boolean function
g0 : {0, 1}n → {0, 1, ∗}, such that

R4/9(f0) ∈ Θ
(√
n
)
, R1/3(g0) ∈ Θ(n) and R1/3(f0 ◦ gn0) ∈ Θ(n).

Our approach
We introduce a new complexity measure of Boolean functions, the max-conflict complexity,
denoted by χ̄(g). We show that χ̄(g) is a quadratically tight lower bound on randomized
query complexity of a (partial) function g.
I Theorem 3. For any partial Boolean function g : {0, 1}m → {0, 1, ∗},

χ̄(g) ∈ Ω
(√

R1/3(g)
)
.

The main technical ingredient of this work is the following composition statement for the
max-conflict complexity.
I Theorem 4. For any relation f ⊆ {0, 1}n × S and any partial Boolean function g :
{0, 1}m → {0, 1, ∗},

R1/3(f ◦ gn) ∈ Ω
(
R4/9(f) · χ̄(g)

)
.

Combining Theorem 3 with Theorem 4 implies Theorem 1.

Previous work
In the special case of f being a partial function and g being a total one, a significant progress
has been made by Ben-David and Kothari [4], who showed recently that

R1/3(f ◦ gn) ∈ Ω
(
R1/3(f) ·

√
R0(g)

logR0(g)

)
. (1)

To prove the above statement, the authors have introduced and investigated a new
complexity measure of Boolean functions, sabotage complexity, denoted by RS(g). This
notion has a very natural definition and is of independent interest. In this work we show
that max-conflict complexity is always lower-bounded by the sabotage complexity of the
same function.
I Theorem 5. For any partial Boolean function g : {0, 1}m → {0, 1, ∗},

χ̄(g) ≥ RS(g).

Theorem 5 along with Theorem 4 imply (1).

5 The following construction also witnesses the possibility of R(f ◦ gn) ∈ O(R(g)) when R(f) ∈ Ω
(√

n
)

– in other words, it is not, in general, true, that composition with a “hard” relation makes a Boolean
function harder for randomized query algorithms.

ICALP 2019

64:4 A Composition Theorem for Randomized Query Complexity

1.1 Proof Technique
At a high level, the proof of Theorem 4 follows the structure of the proof by Anshu et al.
[2] and Ben-David and Kothari [4]. We show that for every probability distribution η over
the input space {0, 1}n of f , there exists a deterministic query algorithm A that makes
O(R1/3(f ◦ gn)/

√
R1/3(g)) queries in the worst case, and computes f with high probability,

Prz∼η[(z,A(z)) ∈ f] ≥ 5/9. By the minimax principle (Fact 4) this implies Theorem 4.
We do this by using a query algorithm for f ◦ gn to construct a query algorithm for f .

We define a sampling procedure that for any z ∈ {0, 1}n samples x = (x1, . . . , xn) such that
(z, s) ∈ f if and only if (x, s) ∈ f ◦ gn. This procedure is defined in terms of Q, which is a
probability distribution over pairs of distributions (µ0, µ1), where µ0 is supported on g−1(0)
and µ1 is supported on g−1(1). We define a distribution γη over ({0, 1}m)n in terms of this
sampling process as follows:
1. Sample z = (z1, . . . , zn) from {0, 1}n according to η.
2. Independently sample (µ(i)

0 , µ
(i)
1) from Q for i = 1, . . . , n.

3. Sample xi = (x(1)
i , . . . , x

(m)
i) according to µ(i)

zi for i = 1, . . . , n. Return x = (x1, . . . , xn).
Notice that steps (1) and (2) are independent and the order in which they are performed
does not matter. For future reference, for a fixed z let γz(Q) be the probability distribution
defined by the last two steps.

Now γη is simply a probability distribution over ({0, 1}m)n. Thus by the minimax
principle (Fact 4 below), there is a deterministic query algorithm A′ of worst-case complexity
at most R1/3(f ◦gn) such that Prx∼γη [(x,A′(x)) ∈ f ◦gn] ≥ 2/3. We first use A′ to construct
a randomized query algorithm T for f with bounded expected query complexity and error
at most 1/3. The final algorithm A will be a truncation of T which has bounded worst-case
complexity and error at most 4/9.

On input z, the algorithm T seeks to sample a string x from γz(Q), and run A′ on x.
Put another way, γz(Q) induces a probability distribution over the leaves of A′, and the
goal of T is to sample a leaf of A′ according to this distribution. Since for each s ∈ S,
(x, s) ∈ f ◦ gn if and only if (z, s) ∈ f , and Prx∼γη [(x,A′(x)) ∈ f ◦ gn] ≥ 2/3, we have that
Prz∼η[(z, T (z)) ∈ f] ≥ 2/3. Thus T meets the accuracy requirement.

The catch, of course, is to specify how T samples from γz(Q) without making too many
queries to z. To sample xi from µ

(i)
zi seems to require knowledge of zi, and thus T would

have to query all of z.
To bypass this problem, we remember that A′, being an efficient algorithm, will query

only a few bits of x. This allows us to sample x bit by bit as and when they are queried
by A′. To see this more clearly, consider a run of T where the pairs of distributions
(µ(1)

0 , µ
(1)
1), . . . , (µ(n)

0 , µ
(n)
1) were chosen in step (2) of the sampling procedure. Suppose that

T is trying to simulate A′ at a vertex v where x(j)
i is queried. To respond to this query, T

will sample x(j)
i from its marginal distribution according to µ(i)

zi conditioned on the event
x ∈ v. Let the following be the marginal distributions of x(j)

i for the two possible values of zi.

Pr
xi∼µ(i)

zi

[x(j)
i = 0 | x ∈ v] Pr

xi∼µ(i)
zi

[x(j)
i = 1 | x ∈ v]

zi = 0 p0 1− p0
zi = 1 p1 1− p1

Without loss of generality, assume that p0 ≤ p1. T answers the query by the procedure
Bitsampler given in Algorithm 1. Note that the bit returned by Bitsampler has the
desired distribution. The step in which Bitsampler returns the bit depends on the value

D. Gavinsky, T. Lee, M. Santha, and S. Sanyal 64:5

Algorithm 1: Bitsampler (suppose p0 ≤ p1).
1 Sample r ∼ [0, 1] uniformly at random.
2 if r < p0 then
3 return 0.
4

5 else if r > p1 then
6 return 1.
7

8 else
9 query zi.

10 if r ≤ pzi then
11 return 0.
12 else
13 return 1.

of r sampled in step 1. In particular, zi is queried if and only if r ∈ [p0, p1], and the bit is
returned in step 11 or 13. Such a query to zi contributes to the query complexity of T . Thus
the probability that T makes a query when the underlying simulation of A′ is at vertex v is
(p1 − p0). We refer to this quantity as ∆(v). It plays an important role in our analysis (in
particular, in the proof of Theorem 6 that can be found in [6]).

Our sampling procedure and the tools we use to bound its cost is reminiscent of work
of Barak et al. [3] in communication complexity. They look at a communication analog of
our setting where two players are trying to sample a leaf in a communication protocol while
communicating as little as possible.

1.1.1 Conflict complexity and max-conflict complexity

Bounding the query complexity of T naturally suggests the quantities that we define in this
work: the conflict complexity χ(g) and the max-conflict complexity χ̄(g) of a partial Boolean
function g. A formal definition can be found in Section 4; here we give the high-level idea
and motivation behind these quantities.

Forget about T for a moment and just consider a deterministic query algorithm B
computing the partial function g ⊆ {0, 1}m × {0, 1}. Let µ0, µ1 be distributions with
support on g−1(0), g−1(1), respectively. For each vertex v ∈ B let p0(v) (respectively p1(v))
be the probability that the answer to the query at v is 0 on input x ∼ µ0 (respectively
x ∼ µ1), conditioned on x reaching v. Now we can imagine a process P(B, µ0, µ1) that runs
BITSAMPLER on the tree B: P(B, µ0, µ1) begins at the root, and at a vertex v in B it
uniformly chooses a random real number r ∈ [0, 1]. If r < min{p0(v), p1(v)} then the query
is “answered” 0 and it moves to the left child. If r > max{p0(v), p1(v)} then the query is
“answered” 1 and it moves to the right child. If r ∈ [min{p0(v), p1(v)},max{p0(v), p1(v)}]
then the process halts. The conflict complexity χ(B, (µ0, µ1)) is the expected number of
vertices this process visits before halting. The conflict complexity of g is defined to be

χ(g) = max
(µ0,µ1)

min
T
χ(T, (µ0, µ1)) ,

ICALP 2019

64:6 A Composition Theorem for Randomized Query Complexity

where the minimum is taken over trees T that compute g. For max-conflict complexity we
enlarge the set over which we maximize. Let Q be a distribution over pairs of distributions
(µ0, µ1), where supp(µ0) ⊆ g−1(0), supp(µ1) ⊆ g−1(1) for each pair (µ0, µ1) in the support of
Q. Let χ(B,Q) = E(µ0,µ1)∼Q [χ(B, (µ0, µ1))]. The max-conflict complexity χ̄(g) is defined as

χ̄(g) = max
Q

min
T
χ(T,Q) ,

where the minimum is taken over trees T that compute g. Clearly, the max-conflict complexity
is at least as large as the conflict complexity.

To motivate the max-conflict complexity, note that the query complexity of T is the
number of times step 9 in Bitsampler is executed, i.e. when the random number r ∈ [p0, p1].
In the definition of T we will choose Q to achieve the optimal value in the definition of
χ̄(g). Then intuitively one expects that for each i, T queries zi only after A′ makes about
χ̄(g) queries into xi. By means of a direct sum theorem for max-conflict complexity we
make this intuition rigorous and prove that the expected query complexity of T is at most
R1/3(f ◦ gn)/χ̄(g). We refer the reader to [6] for a formal proof.

1.1.2 χ̄(g) and R(g)
Note that applying Theorem 4 with the outer function f(z) = z1 shows that R1/3(g) ∈ Ω(χ̄(g)).
We complete the proof of Theorem 1 by showing that max-conflict complexity is a quadratically
tight lower bound on randomized query complexity, even for partial functions g. In fact, we
show the stronger result that this is true even for the conflict complexity.

I Theorem 6. For any partial Boolean function g ⊆ {0, 1}m × {0, 1},

χ(g) ∈ Ω
(√

R1/3(g)
)
.

A proof of Theorem 6 can be found in [6]. At a high level, our proof is reminiscent of the
result of [3] on compressing communication protocols in that both look at a random sampling
process to navigate a tree, and relate the probability of this process needing to query or
communicate at a node to the amount of information that is learned at the node.

To prove R(g) ∈ O(χ(g)2), we again resort to the minimax principle; we show that for
each probability distribution µ over the valid inputs to g, there is an accurate and efficient
distributional query algorithm for g. For b ∈ {0, 1}, let µb be the distribution obtained by
conditioning µ on the event g(x) = b. By the definition of χ(g), there is a query algorithm B
such that the following is true: if its queries are served by Bitsampler, step 9 is executed
within expected χ(B, µ0, µ1) ≤ χ(g) queries. Note that at a vertex v which queries i, the
probability that step 9 is executed is ∆(v) = |Prµ0 [xi = 0 | x at v]− Prµ1 [xi = 0 | x at v]|.
This roughly implies that for a typical vertex v of B, ∆(v) is at least about 1

χ(g) . By a technical
claim this implies that the query outcome at v carries about 1

χ(g)2 bits of information about
g(x). Using the chain rule of mutual information, we can show that the mutual information
between g(x) and the outcomes of first O(χ(g))2 queries by B is Ω(1). This enables us to
conclude that we can infer the value of g(x) with success probability 1/2 + Ω(1) from the
transcript of B restricted to the first O(χ(g)2) queries. The distributional algorithm of g for
µ is simply the algorithm B terminated after O(χ(g)2) queries.

1.1.3 χ̄(g) and RS(g)
To see why χ̄(g) ≥ RS(g), we first give an alternative characterization of RS(g). For a
deterministic tree T computing g and strings x, y such that g(x) 6= g(y), let sepT (x, y) be
the depth of the node v in T such that x and y both reach v yet xq(v) 6= yq(v), where q(v)

D. Gavinsky, T. Lee, M. Santha, and S. Sanyal 64:7

is the index queried at v. Let T be a zero-error randomized protocol for g, i.e. T is a
probability distribution supported on deterministic trees that compute g. Then we have (for
a proof see [6])

RS(g) = min
T

max
x,y

g(x)6=g(y)

ET∼T [sepT (x, y)] .

By von Neumann’s minimax theorem [14], this is equal to

RS(g) = max
p

min
T

E(x,y)∼p[sepT (x, y)] .

Here, the max is taken over distributions p on pairs (x, y) where g(x) 6= g(y), and the min is
taken over deterministic trees T computing g.

We have seen that the definition of χ̄(g) is

χ̄(g) = max
Q

min
T

E(µ0,µ1)∼Q [χ(T, (µ0, µ1))] ,

where Q is a distribution over pairs (µ0, µ1) and T is a deterministic tree computing g.
When (µ0, µ1) are taken to be singleton distributions, i.e. µ0 puts all its weight on a single
x with g(x) = 0, and µ1 puts all its weight on a single y with g(y) = 1, it can be shown
that χ(T, (µ0, µ1)) = sepT (x, y) (see [6] for details). Thus χ̄(g) is at least as large as the
sabotage complexity of g as Q is allowed to be a distribution over general (µ0, µ1), not just
singleton distributions.

2 Preliminaries

Let g ⊆ {0, 1}m×{0, 1} be a partial Boolean function. For b ∈ {0, 1}, g−1(b) is defined to be
the set of strings x in {0, 1}m for which (x, b) ∈ g and (x, b) /∈ g. We refer to g−1(0)∪ g−1(1)
as the set of valid inputs to g. We assume that for all strings y /∈ g−1(0)∪ g−1(1), both (y, 0)
and (y, 1) are in g. For a string x ∈ g−1(0)∪ g−1(1), g(x) refers to the unique bit b such that
(x, b) ∈ g. All the probability distributions µ over the domain of a partial Boolean function g
in this paper are assumed to have support on g−1(0) ∪ g−1(1). Thus g(x) is well-defined for
any x in the support of µ.

Let S be any set. Let h ⊆ {0, 1}k × S be any relation. Consider query algorithms A that
accept a string x ∈ {0, 1}k as input, query various bits of x, and produce an element of S as
output. We denote the output by A(x).

I Definition 1 (Deterministic query complexity). A deterministic query algorithm A is said
to compute h if (x,A(x)) ∈ h for all x ∈ {0, 1}k. The deterministic query complexity D(h)
of h is the minimum over all deterministic query algorithms A computing h of the maximum
number of queries made by A over x ∈ {0, 1}k.

I Definition 2 (Bounded-error randomized query complexity). Let ε ∈ [0, 1/2). We say that
a randomized query algorithm A computes h with error ε if Pr[(x,A(x)) ∈ h] ≥ 1 − ε for
all x ∈ {0, 1}k. The bounded-error randomized query complexity Rε(h) of h is the minimum
over all randomized query algorithms A computing h with error ε of the maximum number
of queries made by A over all x ∈ {0, 1}k and the internal randomness of A.

I Definition 3 (Distributional query complexity). Let µ a distribution on the input space
{0, 1}k of h, and ε ∈ [0, 1/2). We say that a deterministic query algorithm A computes h
with distributional error ε on µ if Prx∼µ[(x,A(x)) ∈ h] ≥ 1 − ε. The distributional query
complexity Dµ

ε (h) of h is the minimum over deterministic algorithms A computing h with
distributional error ε on µ of the maximum over x ∈ {0, 1}k of the number of queries made
by A on x.

ICALP 2019

64:8 A Composition Theorem for Randomized Query Complexity

We will use the minimax principle in our proofs to go between distributional and ran-
domized query complexity.

I Fact 4 (Minimax principle). For any integer k > 0, set S, and relation h ⊆ {0, 1}k × S,

Rε(h) = max
µ

Dµε (h).

A proof of Fact 4 can be found in [6].
Let µ be a probability distribution over {0, 1}k. We use supp(µ) to denote the support

of µ. By x ∼ µ we mean that x is a random string drawn from µ. Let C ⊆ {0, 1}k be an
arbitrary set such that Prx∼µ[x ∈ C] =

∑
y∈C µ(y) > 0. Then µ | C is defined to be the

probability distribution obtained by conditioning µ on the event that the sampled string
belongs to C, i.e.,

(µ | C)(x) =
{

0 if x /∈ C
µ(x)∑
y∈C

µ(y)
if x ∈ C

For a distribution Q over pairs of distributions (µ0, µ1), let supp0(Q) = ∪{supp(µ0) :
∃µ1, (µ0, µ1) ∈ supp(Q)}. Similarly let supp1(Q) = ∪{supp(µ1) : ∃µ0, (µ0, µ1) ∈ supp(Q)}.
We say that Q is consistent if supp0(Q) and supp1(Q) are disjoint sets. We say that Q is
consistent with a (partial) function g if supp0(Q) ⊆ g−1(0) and supp1(Q) ⊆ g−1(1).

I Definition 5 (Subcube, co-dimension). A subset C ⊆ {0, 1}m is called a subcube if there
exists a set S ⊆ {1, . . . ,m} of indices and an assignment function σ : S → {0, 1} such that
C = {x ∈ {0, 1}m : ∀i ∈ S, xi = σ(i)}. The co-dimension codim(C) of C is defined to be |S|.

Now we define the composition of a relation and a partial Boolean function.

I Definition 6 (Composition of a relation and a partial Boolean function). Let f ⊆ {0, 1}n×S
and g ⊆ {0, 1}m × {0, 1} be a relation and a partial Boolean function respectively. The
composed relation f ◦ gn ⊆ ({0, 1}m)n × S is defined as follows: For x = (x(1), . . . , x(n)) ∈
({0, 1}m)n and s ∈ S, (x, s) ∈ f ◦ gn if and only if one of the following holds:

xi /∈ g−1(0) ∪ g−1(1) for some i ∈ {1, . . . , n}.
xi ∈ g−1(0) ∪ g−1(1) for each i ∈ {1, . . . , n} and ((g(x1), . . . , g(xn)), s) ∈ f .

We will often view a deterministic query algorithm as a binary decision tree. In each vertex
v of the tree, an input variable is queried. Depending on the outcome of the query, the
computation goes to a child of v. The child of v corresponding to outcome b of the query is
denoted by vb.

The set of inputs that lead the computation of a decision tree to a certain vertex is a
subcube. We will use the same symbol (e.g. v) to refer to a vertex as well as the subcube
associated with it.

The execution of a decision tree terminates at some leaf. If the tree computes some
relation h ⊆ {0, 1}k × S, the leaves are labelled by elements of S, and the tree outputs the
label of the leaf at which it terminates. We will also consider decision tree with unlabelled
leaves (see Section 4).

3 Conflict Complexity

In this section, we define the conflict complexity and max-conflict complexity of a partial
Boolean function g on m bits. For this, we will need to introduce some notation related to a
deterministic decision tree T . For a node v ∈ T , let π(v) = ⊥ if v is the root and π(v) be the
parent of v otherwise. Let q(v) be the index that is queried at v in T , and let dT (v) be the
number of vertices on the unique path in T from the root to v. The depth of the root is 1.

D. Gavinsky, T. Lee, M. Santha, and S. Sanyal 64:9

Now fix a partial function g ⊆ {0, 1}m × {0, 1} and probability distributions µ0, µ1
over g−1(0), g−1(1), respectively. Let T be a tree that computes g. For a node v ∈ T let
p0(v) = Prµ0 [xq(v) = 0|x at v] and p1(v) = Prµ1 [xq(v) = 0|x at v], and

R(v) =
{

1 if v is the root
R(π(v)) ·min{Prµ0 [x→ v|x at π(v)],Prµ1 [x→ v|x at π(v)]} otherwise .

Also define

∆(v) = |p0(v)− p1(v)| .

To gather intuition about these quantities, imagine a random walk on T that begins at
the root. At a node v, this walk moves to the left child with probability min{p0(v), p1(v)},
and it moves to the right child with probability 1−max{p0(v), p1(v)}. With the remaining
probability, ∆(v), it terminates at v. Note that for any tree T computing g we have∑
v∈T ∆(v)R(v) = 1. This is because the walk always terminates before it reaches a leaf of

T . In particular, this means that
∑
v∈T dT (v)∆(v)R(v) – the expected number of steps the

walk takes before it terminates – is always at most the depth of the tree T .

I Definition 7 (Conflict complexity and max-conflict complexity). Let g be a partial function.
For distributions µ0, µ1 with supp(µb) ⊆ g−1(b) for b ∈ {0, 1}, and a deterministic decision
tree T computing g, define

χ(T, (µ0, µ1)) =
∑
v∈T

dT (v)∆(v)R(v) .

The conflict complexity of g is

χ(g) = max
µ0,µ1

min
T
χ(T, (µ0, µ1)) ,

where the maximum is over all pairs of distributions (µ0, µ1) supported on g−1(0) and g−1(1)
respectively, and the minimum is taken over all deterministic trees T computing g. For Q a
distribution over pairs satisfying suppb(Q) ⊆ g−1(b) for b ∈ {0, 1}, and T a deterministic tree
computing g, let χ(T,Q) = E(µ0,µ1)∼Q[χ(T, (µ0, µ1))]. Finally, the max-conflict complexity
of g is

χ̄(g) = max
Q

min
T
χ(T,Q) ,

where the maximum is taken over Q with suppb(Q) ⊆ g−1(b) for b ∈ {0, 1}, and the minimum
is taken over deterministic trees T computing g.

We can extend the definition of conflict complexity and max-conflict complexity to more
general query processes that do not necessarily compute a function. We first need the notion
of FULL.

I Definition 8. For a deterministic tree T and pair of distributions (µ0, µ1) with disjoint
support, we say that (T, (µ0, µ1)) is FULL if

∑
v∈T ∆(v)R(v) = 1, i.e. if the random walk

described above terminates with probability 1. We say that (T,Q) is FULL if (T, (µ0, µ1)) is
FULL for each (µ0, µ1) ∈ supp(Q).

I Definition 9. For a deterministic tree T and pair of distributions (µ0, µ1) such that
(T, (µ0, µ1)) is FULL, define χ(T, (µ0, µ1)) =

∑
v∈T dT (v)∆(v)R(v). For a distribution Q

such that (T,Q) is FULL, define χ(T,Q) = E(µ0,µ1)∼Q[χ(T, (µ0, µ1))].

ICALP 2019

64:10 A Composition Theorem for Randomized Query Complexity

3.1 Comparison with other query measures
Li [9] shows that the conflict complexity of a total Boolean function g is at least the block
sensitivity of g. As mentioned in Section 1.1.3, in this work we show that the max-conflict
complexity of a (partial) function g is at least as large as the sabotage complexity of g. For a
total Boolean function g, Ben-David and Kothari [4] show that the sabotage complexity of g
is at least as large as the fractional block sensitivity of g [1, 13, 7], which in turn is at least as
large as the block sensitivity. They also show examples where the sabotage complexity is much
larger than the partition bound, quantum query complexity and approximate polynomial
degree, thus the same holds for max-conflict complexity as well.

I Theorem 7. Let g ⊆ {0, 1}m × {0, 1} be a partial function. Then χ̄(g) ≥ RS(g).

A proof of Theorem 7 can be found in [6].

4 Query Process

We now come to the most important definition of the paper, that of the query process
P(B,Q). Let t > 0 be any integer and B be any deterministic query algorithm that runs
on inputs in ({0, 1}m)t. Let x = (x(j)

i) i=1,...,t
j=1,...,m

be a generic input to B, and let xi stand for

(x(j)
i)j=1,...,m. For a vertex v of B, let v(i) denote the subcube in v corresponding to xi, i.e.,

v = v(1) × . . .× v(t). Recall from Section 2 that vb stands for the child of v corresponding to
the query outcome being b, for b ∈ {0, 1}.

The query process P(B,Q) runs on an input z ∈ {0, 1}t and uses the BITSAMPLER
(Algorithm 1) routine to simulate the queries of B to x when it can. This process is the heart
of how we will transform an algorithm for f ◦ gn into a query efficient algorithm for f .

I Definition 10 (Query process P(B,Q)). Let B be a decision tree that runs on inputs
({0, 1}m)t. Let Q be a consistent probability distribution over pairs of distributions (µ0, µ1).
The query process P(B,Q) is run on an input z ∈ {0, 1}t and is defined by Algorithm 2.

A few comments about Definition 10. First, we think of B and P as query procedures
that query input variables and terminate. In particular, they do not have to produce outputs,
i.e. their leaves do not have to be labeled. Also note that in Algorithm 2 the segment from
line 9 to line 19 corresponds to the Bitsampler procedure in Algorithm 1. Queries to the
input bits zi are made in line 15, which corresponds to step 9 of Bitsampler.

We now present an important structural result about P(B,Q). In particular, this formally
proves that the procedure Bitsampler given in Algorithm 1 samples the bits from the right
distribution.

I Theorem 8. Let B be a deterministic decision tree running on inputs from ({0, 1}m)t, and
let v be a vertex in B. Let Az(v,Q) be the event that P(B,Q), when run on z, reaches node
v. Let Bz(v,Q) be the event that for a random input x sampled from γz(Q), the computation
of B reaches v. Then for every z ∈ {0, 1}t and each vertex v of B,

Pr[Az(v,Q)] = Pr[Bz(v,Q)] .

A proof of Theorem 8 is given in [6].
We will be interested in the number of queries P(B,Q) is able to simulate before making

a query to zi. To this end, let the random variable Ni(B, z,Q) stand for the value of the
variable Ni in Algorithm 2 after the termination of P(B,Q) on input z. Note that Ni depends
on the randomness in the choices of r (step 9) and also on the randomness in Q in the choice
of distributions (µ(k)

0 , µ
(k)
1) (step 4).

D. Gavinsky, T. Lee, M. Santha, and S. Sanyal 64:11

Algorithm 2: P(B,Q).
Input: z = (z1, . . . , zt) ∈ {0, 1}t.

1 for 1 ≤ k ≤ t do
2 QUERYk ← 0. // Indicates if zk is queried.
3 Nk ← 0. // Counts references to xk till zk is queried.

4 Sample (µ(k)
0 , µ

(k)
1) from Q.

5 v ←Root of B // Corresponds to ({0, 1}m)t.
6 while v is not a leaf of B do
7 Let q(v) = (i, j), the jth coordinate of xi
8 if QUERYi = 0 then
9 Sample a fresh real number r ∼ [0, 1] uniformly at random.

10 if r < minb Pr
xi∼µ(i)

b

[x(j)
i = 0 | xi ∈ v(i)] then

11 v ← v0.

12 else if r > maxb Pr
xi∼µ(i)

b

[x(j)
i = 0 | xi ∈ v(i)] then

13 v ← v1.
14 else
15 Query zi. QUERYi ← 1.
16 if r ≤ Pr

xi∼µ(i)
zi

[x(j)
i = 0 | xi ∈ v(i)] then

17 v ← v0.
18 else
19 v ← v1.

20 Ni ← Ni + 1.
21 else

22 b←

 1 with probability Pr
xi∼µ(i)

zi

[x(j)
i = 1 | xi ∈ v(i)]

0 with probability Pr
xi∼µ(i)

zi

[x(j)
i = 0 | xi ∈ v(i)]

23 v ← vb

4.1 Relating P(B,Q) to max-conflict complexity
A key to our composition theorem will be relating the number of simulated queries made by
P(B,Q) to max-conflict complexity, which we do in this section. Let B be a query algorithm
taking inputs from {0, 1}m. In this case, N1(B, 1,Q) = N1(B, 0,Q). This is because the
behavior of P(B,Q) on input 0 is exactly the same as the behavior on input 1 before a query
to z is made, and after z is queried the value of Ni does not change.

B Claim 11. Let B be an algorithm taking inputs from {0, 1}m. Then (B,Q) is FULL if and
only if P(B,Q) queries z with probability 1. If (B,Q) is FULL then

χ(B,Q) = E[N1(T, 1,Q)]

Proof. Note that until z is queried, P(B, (µ0, µ1)) exactly executes the random walk described
in Section 3, and querying z in P(B, (µ0, µ1)) corresponds to this random walk terminating.
The first part of the claim then follows as P(B,Q) queries z with probability 1 if and only if
P(B, (µ0, µ1)) queries z with probability 1 for every (µ0, µ1) ∈ supp(Q).

ICALP 2019

64:12 A Composition Theorem for Randomized Query Complexity

Also because P(B, (µ0, µ1)) exactly executes the random walk described in Section 3 we
see that χ(B, (µ0, µ1)) = E[N1(T, 1, (µ0, µ1))]. The second part of the claim follows by taking
the expectation of this equality over (µ0, µ1) ∼ Q. C

The correspondence of claim 11 prompts us to define FULL in a more general setting.

I Definition 12 (FULL). Let B be a query algorithm taking inputs from ({0, 1}m)t. The
pair (B,Q) is said to be FULL if for every z ∈ {0, 1}t it holds that P(B,Q) queries zi with
probability 1, for every i = 1, . . . , t.

5 The Composition Theorem

A proof of Theorem 4 is given in [6].

6 Tightness: R1/3(f ◦ gn) ∈ O
(
R4/9(f) ·

√
R1/3(g)

)
is possible

In this section we prove Theorem 2. We construct a relation f0 ⊆ {0, 1}n × {0, 1}n (i.e.,
S = {0, 1}n) and a promise function g0 ⊆ {0, 1}n × {0, 1} (i.e., m = n), such that R4/9(f0) ∈
Θ(
√
n), R1/3(g0) ∈ Θ(n) and R1/3(f0 ◦ gn0) ∈ Θ(n).
For strings x = (x1, . . . , xn), z = (z1, . . . , xn) in {0, 1}n, let x ⊕ z be the string (x1 ⊕

z1, . . . , xn⊕ zn) obtained by taking their bitwise XOR. Let |x| stand for the Hamming weight
|{i ∈ [n] : xi = 1}| of x. We define f0 as follows:

f0(z) def=
{

(a, z) ∈ {0, 1}n × {0, 1}n
∣∣∣|a⊕ z| ≤ n

2 −
√
n
}

Now we define g0 by specifying g−1
0 (0) and g−1

0 (1).

g−1
0 (0) def=

{
(x, 0)

∣∣x ∈ {0, 1}n, |x| ≤ n/2−
√
n
}
,

g−1
0 (1) def=

{
(x, 1)

∣∣x ∈ {0, 1}n, |x| ≥ n/2 +
√
n
}
.

We now determine the randomized query complexities of f0, g0 and f0 ◦ gn0 .

B Claim 13.
(i) R4/9(f0) ∈ Ω(

√
n).

(ii) R1/3(g0) ∈ Ω(n).
(iii) Rε(f0 ◦ gn0) ∈ O

(
n ·
√

log(1/ε)
)
.

A proof of Claim 13 can be found in [6]. Theorem 2 follows from Theorem 4 and Claim 13
with ε set to 1/3.

References
1 Scott Aaronson. Quantum certificate complexity. Journal of Computer and System Sciences,

74(3):313–322, 2008.
2 Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopad-

hyay, Miklos Santha, and Swagato Sanyal. A Composition Theorem for Randomized Query
Complexity. In 37th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur, India, pages
10:1–10:13, 2017.

3 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to Compress Interactive
Communication. SIAM J. Comput., 42(3):1327–1363, 2013. doi:10.1137/100811969.

http://dx.doi.org/10.1137/100811969

D. Gavinsky, T. Lee, M. Santha, and S. Sanyal 64:13

4 Shalev Ben-David and Robin Kothari. Randomized Query Complexity of Sabotaged and Com-
posed Functions. In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, pages 60:1–60:14, 2016.

5 Dmitry Gavinsky, Troy Lee, and Miklos Santha. On the randomised query complexity of
composition. Technical report, arXiv, 2018. arXiv:1801.02226.

6 Dmitry Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal. A composition theorem
for randomized query complexity via max conflict complexity. CoRR, abs/1811.10752, 2018.
arXiv:1811.10752.

7 Justin Gilmer, Michael Saks, and Srikanth Srinivasan. Composition limits and separating
examples for some Boolean function complexity measures. Combinatorica, 36(3):265–311,
2016.

8 Peter Høyer, Troy Lee, and Robert Spalek. Negative weights make adversaries stronger.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 11-13, 2007, pages 526–535, 2007.

9 Yaqiao Li. Conflict complexity is lower bounded by block sensitivity. Technical report, arXiv,
2018. arXiv:1810.08873.

10 Ashley Montanaro. A composition theorem for decision tree complexity. Chicago J. Theor.
Comput. Sci., 2014, 2014.

11 Ben Reichardt. Reflections for quantum query algorithms. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco,
California, USA, January 23-25, 2011, pages 560–569, 2011.

12 Swagato Sanyal. A composition theorem via conflict complexity. Technical report, arXiv,
2018. arXiv:1801.03285.

13 Avishay Tal. Properties and applications of boolean function composition. In Innovations in
Theoretical Computer Science, ITCS ’13, pages 441–454, 2013.

14 John von Neumann. Zur Theorie der Gessellschaftsspiele. Math. Ann., 100:295–320, 1928.

ICALP 2019

http://arxiv.org/abs/1801.02226
http://arxiv.org/abs/1811.10752
http://arxiv.org/abs/1810.08873
http://arxiv.org/abs/1801.03285

	Introduction
	Proof Technique
	Conflict complexity and max-conflict complexity
	
	

	Preliminaries
	Conflict Complexity
	Comparison with other query measures

	Query Process
	Relating to max-conflict complexity

	The Composition Theorem
	Tightness: is possible

